
Supplementary Results 
Single nucleus RNAseq reveals proliferative, astrocyte-like/mesenchymal, and progenitor-
like/proneural states in both primary and recurrent GBM 
Radiographically, GBM typically has a CE core surrounded by a non-enhancing infiltrated brain 
that is highlighted by FLAIR-signal abnormality by MRI (Supplementary Fig.1a). The 
histopathological features of the resected tumor can vary from highly cellular tumor with vascular 
proliferation to less cellular infiltrated brain. These features are shown in Supplementary Fig. 2h, 
demonstrating samples with a cellular GBM core (red star in Supplementary Fig. 1a, 
Supplementary Fig. 2h PA1, PA2, PA3, and PO2_1) and others with overlying cortex (green 
star in Supplementary Fig. 1a, Supplementary Fig. 2h PO2_2 and PO1), which we use below. 

To explore the heterogeneity of primary GBM, we analyzed several banked surgical 
samples using snRNAseq as shown in (Supplementary Fig. 1a). A total of 8 samples from 7 
patients were selected for analysis (Supplementary Dataset 1). Neuropathological assessment 
of tumor cellularity ranged from cellular tumor with hallmarks of GBM, to reactive brain 
parenchyma with few atypical cells. This assessment was made on Hematoxylin and Eosin (H&E) 
stained formalin fixed paraffin embedded sections adjacent to or frozen cryosections of the frozen 
tissue analyzed by snRNAseq (Supplementary Fig. 2h). We isolated nuclei from the frozen 
tissue and subjected them to snRNAseq followed by downstream analyses including clustering, 
differential gene expression analysis, cluster marker detection, and gene set enrichment analysis 
(GSEA) as outlined (Supplementary Fig. 1a). 15189 nuclei passed our QC (Supplementary 
Dataset 1). To distinguish putative glioma cells from non-neoplastic cells, we employed an 
established approach that infers large scale copy number alterations/variations (CNV) from RNA 
expression profiles 1. Chromosomal heat maps showing putative neoplastic nuclei are shown in 
Supplementary Fig. 2a-g. Next, we also applied a second method to label nuclei based on a 
“malignancy score”, which we have previously shown to be a robust metric to distinguish glioma 
cells from non-neoplastic cells 2,3, and the consensus nuclei designated by both methods was 
used for downstream analysis. Nuclei with no consensus CNV status were excluded (4.7%). 
Uniform manifold approximation and projection (UMAP) plots from individual cases labeled by 
transformation status are shown in Supplementary Fig. 1b. We identified 7954 putative 
neoplastic nuclei with inferred large scale chromosomal CNV (CNVpos/glioma nuclei). Glioma 
nuclei showed multiple chromosomal alterations including gains of chromosome 7 and losses of 
chromosome 10 (Supplementary Fig. 2). Having identified neoplastic and non-neoplastic nuclei, 
we aligned the datasets from multiple samples and performed clustering analyses separately on 
CNVpos (glioma) nuclei from all cases using shared nearest neighbor and the smart local moving 
algorithm 4. A UMAP plot is shown for all primary glioma nuclei non-neoplastic nuclei color-coded 
by glioma state/lineage Supplementary Fig. 1c. This approach identified 6 distinct clusters: these 
resembled progenitors (oligodendrocyte-progenitors (gl_PN1 - proneural) and neural-progenitors 
(gl_PN2 - proneural), astrocytes (gl_Mes1 and gl_Mes2 - mesenchymal), and proliferative cells 
(gl_Pro1 and gl_Pro2).  

The identity of the glioma states is akin to previously described glioma states, as 
demonstrated by the enrichment of several gene lists from 5-8 – (Supplementary Fig. 1d, 
Supplementary Dataset 2).  For example, gl_Pro1 and gl_Pro2 showed enrichment in gene sets 
specific for cell-cycle phases 8, with gl_Pro1 showing highest enrichment of G2/M genes 
(Gobin_G1) and gl_Pro2 showing highest enrichment of G1/S phase genes and DNA repair 
related genes (Gobin_G3). Clusters gl_PN1 showed enrichment of the Verhaak’s proneural, and 



OPC signature genes, while gl_PN2 showed enrichment of NPC signature genes. Finally, 
gl_Mes1 showed enrichment of astrocyte-like signatures and Verhaak’s classical signature while 
cluster gl_Mes2 showed enrichment of several gene sets related to reactive astrocytes, and 
Verhaak’s mesenchymal signature 5,7,9. Our clustering is consistent with that described in Neftel 
et al. 2019 6 and Wang et al. 2019 9, and the states we describe are compatible with those in 
Yuan et al 2018 3.  To further clarify the cellular phenotypes represented in our glioma clusters, 
we measured the enrichment of the major biologic process and molecular function gene 
ontologies (GO) in the glioma state top gene markers (see methods). GO enrichment analysis 
demonstrated enrichment of GO’s relating to locomotion, neurogenesis, neuronal migration, and 
cell projection in gl_PN1 markers genes; Notch signaling, neuron development, and GABA 
reuptake differentiation, and synaptic signaling in gl_PN2 genes; response to organic substances, 
ion homeostasis, and signaling by tyrosine kinases in gl_Mes1 genes; response to cytokines, 
interferon gamma, and leukocyte activation and immune response in gl_Mes2 genes; mitosis and 
nuclear division in gl_Pro1, and S-phase, DNA replication, and DNA repair in 
gl_Pro2(Supplementary Fig. 1f and Supplementary Dataset 2). The identities of the clusters 
can also be appreciated by examining select gene markers Supplementary Fig. 1e and 
Supplementary Dataset 2. gl_Pro1 expressed cell-cycle genes TOP2A, CENPF, and AURKB. 
gl_Pro2 showed highest expression of DNA damage/repair including FANCI, HELLS, and 
XRCC2. gl_PN2 showed high levels of CD24, MEG3, and SOX4. gl_Mes1 showed high levels of 
protoplasmic astrocyte genes including SLC1A3, LIFR, ATP1A2, C1orf61, and NTM, while 
gl_Mes2 showed highest expression levels for reactive astrocyte and immune genes including 
CLU, VIM, and SAT1. While our glioma states resemble those described in the literature, less is 
known about whether glioma cells assume similar states in the recurrent setting. Therefore, we 
bridged this gap by directly analyzing recurrent IDH-WT glioma samples using the same approach 
we used for primary GBM samples.  

To define the states of IDH-WT glioma in the post-treatment recurrence setting, we 
analyzed 8 cases of post-recurrent IDH-WT glioma using snRNAseq (Supplementary Fig. 3a). 
We identified 8908 neoplastic nuclei harboring large-scale CNV (Supplementary Fig. 4). Of the 
eight cases, two were paired recurrences from the primary samples (TB5124 – recurrent of 
TB4916, and TB5053 – recurrent of TB4718, see respective section on comparing paired samples 
below). We treated recurrent gliomas similarly to the treatment naïve primary tumors and 
clustered all neoplastic nuclei together. Like primary gliomas, we found that recurrent glioma 
clusters can be assigned two proneural, two mesenchymal, and two proliferative states 
(Supplementary Fig. 3b). The gene markers of the recurrent glioma states are enriched for 
similar ontologies to those seen for primary glioma states (Supplementary Fig. 3c and 
Supplementary Dataset 3), showed similar patterns of enrichment for the previously presented 
gene sets in Supplementary Fig. 1d (Supplementary Fig. 3d), and displayed comparable gene 
marker expression (Supplementary Fig. 3f). These results demonstrate that post-treatment 
recurrent glioma states closely resemble states observed in the primary pre-treatment setting. 
Indeed, Pearson correlation analysis demonstrates that corresponding states were positively 
correlated (Supplementary Fig. 3e). The correlation patterns reveal that gl_Mes1 and gl_Mes2 
are positively correlated with each other in the primary and recurrent settings. This is also seen 
with gl_PN1 and gl_PN2, as well as gl_Pro1 and gl_Pro2. We therefore contend that a view of 
primary and recurrent glioma states may benefit from simplification and embrace a viewpoint that 
primary and recurrent glioma states can be classified as progenitor-like/proneural (gl_PN1 and 
gl_PN2), astrocyte-like/mesenchymal (gl_Mes1 and gl_Mes2), and proliferative (gl_Pro2 and 



gl_Pro1) states. A select set of markers of both primary and recurrent GBM states is provided in 
Supplementary Fig. 4i. Assigning cell cycle scores using Seurat cell-cycle score assignment 
reveals that gl_Pro1 has the majority of cells in G2M phase, whilst gl_Pro2 has the majority of 
cells in S phase Supplementary Fig. 4i. Integration of both primary and recurrent glioma nuclei 
shows cells from primary and recurrent samples overlap in the UMAP space, and that this overlap 
is seen for all 6 GBM states (Supplementary Fig. 5g). 

While the transcriptional signatures of glioma are relatively well defined, the spatial 
distribution of these glioma states is less well understood. Given the marked difference in cellular 
composition between the cortex and the deeper (typically more heavily infiltrated) white matter, 
and the highly cellular tumor core, we asked if these different anatomic regions harbor distinct 
glioma states. In other words, we posited that the cellular microenvironment of glioma influences 
glioma states. Specifically, we hypothesized that we would find more glioma cells that resemble 
astrocytes (astrocyte-like/mesenchymal glioma) or neurons (progenitor-like - specifically gl_PN2) 
in the cortical margins. To address this question, we examined the expression of select 
combinations of glioma state transcripts using in situ hybridization (ISH) across the cellular tumor 
and the infiltrated cortical margin. We used probes to detect PTPRZ1 (high in glioma), CLU (high 
in astrocytes and astrocyte-like/mesenchymal glioma), SOX2 (high glioma), NOVA1 (high in 
progenitor-like/proneural glioma), and MEG3 (high in neurons and progenitor-like/proneural 
glioma - gl_PN2) in the cellular core and overlying infiltrated cortical margin in 5 cases of primary 
GBM (Supplementary Fig. 5a, c). We found that a significantly higher proportion of PTPRZ1+ 
glioma cells co-expressed CLU (high in gl_Mes2) in the cortex versus the core (Supplementary 
Fig. 5b). Similarly, we found a significantly higher proportion of SOX2+NOVA1+MEG3+ glioma 
cells in the cortex versus the core (Supplementary Fig. 5d). These findings indicate that the 
different glioma states have distinct distributions throughout the landscape of glioma and suggest 
that local tissue cellular composition and perhaps other microenvironmental influences can affect 
glioma states. We note that astrocyte-like/mesenchymal glioma states were negatively correlated 
with proliferative states. Consistent with this result, our ISH findings demonstrated a significantly 
smaller proportion of CLU+ cells that co-expressed TOP2A (mean=31.71388837%, Standard 
deviation = 15.73850618, one-tailed t-test p= 0.000249641, n=5, Supplementary Fig. 5e-f). 

Comparison between primary and recurrent glioma pairs 
Not surprisingly, the recurrent tumors did not show identical chromosomal CNVs with their primary 
counterparts. While TB5014 retained the CNV of TB4916 (gain of 7, loss of 10 and 14) and 
acquired additional alterations including gains in chromosomes 19 and 20 (Supplementary Fig. 
2f and 4a), TB5053 showed a complex gains and losses across multiple chromosomes 
(Supplementary Fig. 2g and 4b).  

In the main text, we note that gl_PN1 is depleted from our recurrent GBM samples (Figure 4a). 
This is consistent with the literature 10, since the Verhaak classical subtype resembles our gl_PN1, 
which showed positive enrichment scores of the Verhaak’s classical gene set. Of the non-
neoplastic cell types, OPCs were depleted in recurrence. This may be explained by the fact the 
OPCs are the proliferative cell type in the brain and glioma treatment with chemotherapy and 
radiotherapy depletes proliferative cells, as have been previously demonstrated 11.  

Analysis of low-grade glioma and epilepsy cases 
To sample states of myeloid cells and astrocytes across different disease states, we chose to 
analyze the microenvironment of low-grade glioma (LGG) and temporal lobe epilepsy. We 
conducted snRNAseq on 6 cases: two IDH-mutant oligodendroglioma (TB3652 & TB3926), one 



IDH-mutant astrocytoma (TB4100), and three temporal lobe epilepsies (TB4189, TB4437, & 
TB4957). We identified 970, 1154, 1036 nuclei for LGG cases TB3652, TB3926, and TB4100, 
respectively. We identified CNVpos nuclei using a combination of chromosomal CNV, clustering, 
and tumor marker expression as shown in Supplementary Fig. 6. Cases TB3652 and TB3926 
had typical chromosome 1p and 19q codeletions (Supplementary Fig. 6a, d), and harbored 817 
and 942 CNVpos nuclei, respectively (Supplementary Fig. 6b, e). The tumor nuclei expressed 
tumor markers SOX2, EGFR, and PTPRZ1, and/or OPC markers DSCAM and TNR; myeloid cells 
expressed CD74, C3, ITGAX/CD11c, ITM2B, and/or HLA-B; while oligodendrocytes expressed 
MBP and MOG (Supplementary Fig. 6c, f). 382 CNVpos nuclei were found in case TB4100, 
which did not harbor CNVs across most cells, and CNVpos nuclei were identified by clustering 
and marker expression as noted above. Of the epilepsy cases, we identified 2558, 179, and 138 
nuclei in cases TB4189, TB4437, and TB4957, respectively. Supplementary Fig. 7a-c show 
marker expression in cases TB4437, TB4189, and TB4957, where markers of astrocytes (GFAP, 
AQP4, SLC1A2, SLC1A3), neurons (RBFOX3, MEG3, GAD1, and SLC17A6), myeloid cells 
(CD74, ITGAX, C3, ITM2B), oligodendrocytes (MBP, MOG, OPALIN, and CNP), and OPCs 
(DSCAM, TNR, SOX2, and PDGFRA). The CNVneg nuclei from all LGG and epilepsy cases were 
combined with those from primary and recurrent IDH-WT GBM and were analyzed as presented 
in the section below (myeloid cells) and main text (astrocytes). 

Astrocytes cluster into three distinct astrocyte cell states 
Based on the resemblance to known astrocyte phenotypes we curated three gene sets  
(Supplementary Dataset 4), which represent three major astrocyte states (protoplasmic, 
reactive-1, and reactive-2), and then clustered astrocyte nuclei using Ward D2 hierarchical 
clustering on the Manhattan distance of the enrichment scores (overlaid on the 3D tSNE plots in 
Figure 2, into a protoplasmic cluster (Ast1), and two reactive clusters (Ast2 and Ast3 – as 
described in the main text (Fig. 2a). We asked whether our method of clustering astrocytes, 
described in figure 2, can result in similar clusters to more “unbiased” methods. Thus, we 
performed Louvain clustering on shared nearest neighbor graphs (created through igraph – k=500 
– Supplementary Fig. 13a). Examination of marker expression for each cluster demonstrate that 
Louv 2 is similar to Ast1 - with expression of protoplasmic genes, Louv 3 is similar to Ast2 – with 
expression of PLP1 and ribosomal genes, and Louv 1 is similar to Ast3 – with expression of C3 
and CD44 (Supplementary Fig. 13b). Examination of the overlap of astrocyte calls between the 
method employed in figure 2 and the “unbiased” clustering reveals that the unbiased Louv clusters 
overlap to high extent with those described in Figure 1, as described above (Supplementary Fig. 
13c). Therefore, overall, we conclude that the clustering approach we employed in figure 2 is 
highly analogous to unbiased clustering. However, there were some differences in the 
transcriptional features of the unsupervised clusters when compared to the clusters we generated 
through supervised classification (Ast1-Ast3). While most markers for Ast1-Ast3 were enriched in 
one unsupervised cluster, CLU, a marker for Ast3, is expressed at similar levels in two of the 
unsupervised clusters (Louv1 and Louv 3). 

Analysis of myeloid cell states 
Myeloid cells have been implicated in modulating glioma migration, infiltration, and progression 
12. We identified 5925 nuclei we classified as myeloid cells. Unbiased clustering revealed 8 
subclusters which we then used to assign the specific myeloid lineages. We merged clusters with 
similar enrichment scores of gene sets representing microglia-derived tumor-associated 
macrophages (mgTAM), monocyte-derived TAMs (moTAM), proliferative TAMs (prTAMs), and T-
cells as described in 13 - Myeloid subclusters 0 and 9 were combined as Myel1 (baseline), 



subclusters 1 and 3 – moTAM (monocyte derived TAMs); subclusters 2, 4, 6, and 8 as mgTAM 
(microglia-derived TAMs); subcluster 5 was kept as prTAM (proliferative TAMs); and subcluster 
7 was kept as T-cells. . The enrichment of these gene sets in the final myeloid states is provided 
in Supplementary Fig. 9e. A subset of myeloid cells showed mixed enrichment scores across 
mgTAM, moTAM, and dendritic cells, and were considered baseline (referred to as Myel1). 
Overall, we classified 2678, 1346, 1364, 360, and 177 nuclei as Myel1, moTAM, mgTAM, prTAM, 
and T-cells, respectively, and these are shown in 3D tSNE space in Supplementary Fig. 9a. 
Myel1 state showed higher expression of SAT1, CEBPD, and GLUL (Supplementary Fig. 9c-
top row). moTAM showed highest expression of CD163, MS4A4E, NHSL1, FMN1, and MSR1 
(Supplementary Fig. 9c-2nd row). mgTAM showed highest expression of SORL1, RIN3, ITGAX, 
HS3ST4, and FRMD4A (Supplementary Fig. 9c-3rd row). prTAMs showed highest expression 
of CST3, MEF2A, DBI, PLXDC2, and DOCK4 (Supplementary Fig. 9c-4th row). Finally, T-cells 
showed highest expression of CD2, CD247, CD96, FYN, and SKAP1 (Supplementary Fig. 9c-
5th row). Different myeloid states were accounted for different conditions (Supplementary Fig. 
9b). While Myel1 was present in Epilepsy, primary and recurrent GBM, mgTAM was the main 
state found in LGG, but was also in primary and recurrent GBM. moTAM, T-cells, and prTAM 
were found in primarily in recurrent GBM (Supplementary Fig. 9d). The gene-wise DGE between 
myeloid states and the myeloid state markers are provided in Supplementary Dataset 5. 

snRNAseq of samples used for ST – a validation dataset  
Single nuclei from each ST patient were analyzed when available (n = 7). The nuclei were 
obtained, cleaned, and analyzed as described elsewhere. CNVpos nuclei were identified using 
inferCNV (Supplementary Fig. 8a-g, sample QC, number of nuclei per sample as well as lineage 
assignment is provided in Supplementary Dataset 1). They were classified as was done for the 
previously presented datasets. The CNVneg nuclei were then classified into cell types using the 
singleR package (de.method=”wilcox”) with the previously annotated single nuclei data set as a 
reference14. Proportions of nuclei per cell type are included in Supplemental dataset-1. Using 
the compositional matrix of these samples, they were able to be classified into tissue states using 
k-means clustering with the centers of the discovery data set samples supplied as centers 
(Supplementary Fig. 8h).  The integrated CNVneg nuclei are shown in a UMAP (Supplementary 
Fig. 8i).   

Spatial cross-correlation analysis of deconvolved cell type proportions 
Our analysis of cell type composition in snRNAseq samples highlights prognostically relevant 
compositional patterns. To examine these patterns with spatial resolution, we analyzed 9 IDH-
WT GBM samples using spatial transcriptomics and deconvolution (see methods). To validate the 
accuracy of our deconvolution, we compared the distribution of deconvolved cell type proportions 
to fluorescent staining for select cell type markers. Supplementary Fig. 11a-b show the 
deconvolved proportion of neurons in a subset of ST samples alongside fluorescent staining of 
the same samples for NeuN, a canonical marker for neurons – see Supplementary Fig. 10b. 
This highlights that our deconvolution approach was able to reflect patterns of spatial 
heterogeneity that were also suggested by fluorescent staining. Supplementary Fig. 11c-d 
shows deconvolved proportions of select cell types in 2 ST samples and shows that cell types 
whose proportions covary in each tissue-state show similar patterns of spatial heterogeneity to 
each other across multiple samples. We quantified and aggregated trends across our 9 ST 
samples using spatial cross-correlation and tested them for significance—see methods for details. 
To determine the relative representation of tumor within each ST sample and confirm the ability 
of our deconvolution approach to identify tumor, we correlated nuclear density (cellularity) 



obtained from immunohistochemical staining for DAPI (Supplementary Fig. 10a) with our 
deconvolved cell type proportions. BayesSpace was used to segment each sample into clusters 
containing transcriptionally similar spots (see methods). A total of 33 clusters were generated 
(Supplementary Fig. 10d). The density of nuclei was obtained for all of these clusters across the 
data set, and we calculated the correlation with the deconvolved proportion of each cell type 
(Supplementary Dataset 1). The total proportion of CNVpos cell types was positively and 
significantly correlated with density of nuclei (correlation: 0.388, p=0.025).  Supplementary Fig. 
11e shows a representative sample with DAPI staining and Supplementary Fig. 11f shows the 
same sample segmented by BayesSpace generated clusters and colored by the proportion of 
deconvolved CNVpos cell types present in that cluster. 

The spatial landscape of glioma associated tissue-states in primary and recurrent GBM 
To understand the spatial landscape of primary and recurrent glioma, we mapped the distribution 
of our “tissue-state” signatures in space in primary and recurrent GBM. First, we tested one of our 
cases that we utilized for snRNAseq (PO2) and took 48 localized biopsies that we analyzed using 
plate-seq 15. Immunofluorescence of frozen sections taken prior to analysis revealed a cellular 
DAPI-dense glioma core and a NeuN rich cortical margin (Supplementary Fig. 12a).  We 
conducted GSEA analysis of our tissue-state signatures in the RNAseq data from the localized 
biopsies and mapped that against the location of the biopsies (Supplementary Fig. 12b). Tissue-
state C signature was highest in the core, compared to tissue-state A signature, which was highest 
in the cortical margin. Tissue-state B signature showed a patchier distribution with foci of 
enrichment in both the core and margin. Interestingly, the intermediate region between the core 
and cortex, showed mixed enrichment across all three tissue-states. This data highlights the 
anatomic localization of tissue-state signatures and underscores the heterogeneous patterns in 
the intermediate non-cortical “margin” region.  

Next, we performed deconvolution on a previously published dataset of bulk RNA sequencing 
from MRI-localized biopsies of primary and recurrent GBM, and control brain samples 7 to assess 
the abundance of neoplastic and non-neoplastic cell types in different radiographic regions of 
primary and recurrent GBM.  Our results showed that in contrast enhancing regions of primary 
GBM, the cell types associated with tissue states B and C were more abundant than cell types 
associated with tissue state A, while in the contrast enhancing regions of recurrent GBM, the cell 
types associated with tissue state B were more abundant than cell types associated with tissue 
state C or A. The FLAIR+ samples in primary GBM showed a mixture of neoplastic and non-
neoplastic cell types from all three tissue states, while the FLAIR+ samples from recurrent GBM 
showed predominantly non-neoplastic cells, with highest abundance of cell types of tissue state 
A. As expected, control samples were also predominately composed of non-neoplastic cell types 
associated with tissue state A. (Supplementary Fig. 12c). We also assessed for the expression 
of tissue-state signature genes in these same samples. This analysis showed similar patterns to 
those of the deconvolved cell types (Supplementary Fig. 12c). In summary, contrast enhancing 
regions in both primary and recurrent tumors predominantly represent neoplastic and reactive cell 
types, but the distribution of specific glioma subtypes varies between primary and recurrent tissue. 
Non-enhancing margins of recurrent GBM samples predominantly represent reactive/gliotic brain 
tissue with relatively low levels of tumor infiltration, whereas the non-enhancing margins of 
primary GBM can contain a wider range of pathological features, including regions of abundant 
glioma infiltration. 



Astrocyte CLU alters U87 glioma cell gene expression 
In examining the cellular milieu co-inhabiting tissue state B, we focused on Ast3, an astrocytic 
state with high expression of Clusterin (CLU). Astrocytic CLU is known to reduce amyloid 
accumulation in mouse models of Alzheimer’s disease and is thought to be neuroprotective16-18. 
CLU is upregulated in GBM and can protect GBM cells from radiation-induced apoptosis 19. 
However, little is known about the interaction between CLU+ astrocytes (i.e. Ast3) and GBM. We 
first identified the genes that were significantly correlated with CLU expression (using the 
psych::corr.test R function) in astrocytes that have high CLU expression, defined as in the 3rd and 
4th quantiles of normalized CLU levels. These include ATP1B2, F3, AQP4, GJA1, CHI3L2, 
CHI3L1, LGALS1, and LGALS3 among others (Supplementary Fig. 13d and Supplementary 
Dataset 8).  Analysis of pathways enriched in CLU-correlated genes reveals they encompass 
Reactome and KEGG pathways involved in signal transduction, Rho GTPases, Hippo signaling, 
and translation (Supplementary Fig. 13e). With a testable Ast3 (CLU-high) astrocytic signature 
at hand, we modeled an Ast3-like astrocyte state in vitro by overexpressing CLU in human 
astrocytes (Supplementary Fig. 13f). As a separate experimental condition we overexpressed 
LGALS3. rt-qPCR analysis shows that merely co-culturing astrocytes with U87 glioma cells leads 
to reduction of astrocytic SOX2, NES, CLU, and HES5 expression. Rt-qPCR confirms CLU and 
LGALS3 overexpression in CLU- and LGALS3- astrocytes, respectively, and reveals CLU 
astrocytes increase HES5 expression, whereas LGALS3 astrocytes increase NES expression, 
both when compared to GFP control astrocytes in the setting of U87 co-culture (Supplementary 
Fig. 13j). CHI3L1, and Ast3 gene, was increased in both LGALS3+ and CLU+ astrocytes. Since 
both CLU+ and LGALS3+ astrocytes model some aspects of Ast3, and only CLU+ astrocytes 
significantly increased astrocytic CLU, we chose to use the CLU+ astrocytes as an Ast3-like 
model and analyzed those cells further. Comparing the genes differentially expressed between 
sorted CLU-overexpressing versus control astrocytes revealed 274 differentially expressed 
genes, including many that are positively correlated with CLU levels as defined by human glioma-
associated astrocytes (Supplementary Fig. 13g and Supplementary Dataset 8). These genes 
are enriched in KEGG/Reactome pathways that encompass Hippo signaling, and extracellular 
matrix organization (Supplementary Fig. 13h). Notably, these CLU induced genes are 
significantly positively enriched in the Ast3 gene signature (Supplementary Fig. 13i).  These 
results provide support for the resemblance between Ast3 cells and CLU+ astrocytes. Next, we 
focused on glioma cells and asked if co-culture of U87 glioma cells with astrocytes leads to altered 
glioma gene expression. rt-qPCR of sorted U87 glioma showed that merely co-culturing U87 
glioma with astrocytes leads to increased SOX2 and HES1 expression. When co-cultured with 
CLU astrocytes HES5 is increased in U87 cells, whereas HES1 is reduced in U87 cells co-cultured 
with LGALS3 astrocytes (Supplementary Fig. 13k). RNAseq of U87 glioma co-cultured with 
control (GFP) astrocytes leads to enrichment of gene ontologies involved in monocyte 
differentiation and leukocyte migration (Supplementary Fig. 13l and Supplementary Dataset 
8. When co-cultured with CLU-astrocytes, the transcriptome of U87 glioma cells is enriched in 
ontologies involved in glial differentiation, neural precursor proliferation, and biosynthesis of 
unsaturated fatty acids (Supplementary Fig. 13m and Supplementary Dataset 8). Together, 
these results show that astrocytes can exert different effects on glioma gene expression, and 
Ast3-like astrocytes promote a signature related to glial differentiation and precursor proliferation. 

 

  



Supplementary figures  





Supplementary Figure 1: snRNAseq-derived transcriptional states of putative neoplastic nuclei 
from primary IDH-wildtype GBM samples 
a) Outline of Analytic Design: T 2/FLAIR and post-contrast T1 MRI sequences of a glioblastoma 
showing the classic radiological appearance of a glioblastoma (Case PO2); with a ring enhancing 
mass (red star) with surrounding increased FLAIR signal (green star). The tumor was resected 
and banked (frozen). Nuclei are extracted from frozen tissue and are subjected to droplet based 
single nuclei RNA sequencing using the 10X chromium platform. The resultant barcoded cDNA 
is then sequenced and analyzed. Analyses performed include identification of putative neoplastic 
cells by identifying cells with inferred copy number variations (CNV), clustering, differential gene 
expression (DGE), and gene set enrichment analysis (GSEA). Scale bars = 50 um. This panel 
was created with BioRender.com. b) Uniform-manifold approximation and projection (UMAP) 
graphs showing putative neoplastic (CNVpos) and non-neoplastic (CNVneg) nuclei from the 
seven primary IDH-wildtype glioma cases selected for analysis indicated by subpanels b1-b7. c) 
UMAP plot showing all putative CNVpos (c) nuclei from the seven primary glioma cases aligned 
and projected in shared UMAP spaces. The nuclei are color-coded by glioma state: 
Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-progenitor-like (proneural - 
gl_PN2), Mesenchymal/astrocyte like (gl_Mes1 and gl_Mes2), and proliferative (gl_Pro1 & 
gl_Pro2). d) Geneset enrichment analysis (GSEA) of selected genesets from Verhaak et al. 2009 
(v), Gobin M et al 2019, Gill et al 2014, Wang et al. 2019 (W), and Neftel et al. 2019 (N) showing 
enrichment of genes specific for states described in the literature in our described glioma states. 
e) Dot plots showing expression of certain markers in glioma states. f) Gene ontology (GO) term 
enrichment analysis (KEGG and REACTOME pathways and biological process GO) of the major 
terms enriched in glioma state top gene markers. The bars represent the negative log10 of the 
Bonferroni adjusted p.value, and are color-coded as in c. 

 

  





Supplementary Figure 2: Identifying neoplastic nuclei based on chromosomal copy number 
alterations, and histopathologic characterization of glioma cases 
a-g) Large scale chromosomal copy number alterations were inferred from RNA expression using 
InferCNV R package (see methods for details). The heat maps show gains (red) and losses (blue) 
in case PA1 (a), PA2 (b), PA3 (c), PO1 (d), PO2 (two samples – core and margin) (e), TB4916 
(f), and TB4718 (g).  h) Representative Hematoxylin and Eosin-stained section of the brain tissue 
used for single nuclei RNAseq of the first five cases (scale bar equals 50µm) . Some cases 
showed clear infiltration with glioma cells PA1, PA2, PA3, and PO2_c, PO2_2. Cases PO1 and 
PO2_m showed no clear evidence of cellular tumor.  

  





Supplementary Figure 3: snRNAseq-derived transcriptional states of putative neoplastic nuclei 
from post-treatment recurrent IDH-wildtype GBM samples 
a) Uniform-manifold approximation and projection (UMAP) graphs showing putative neoplastic 
(CNVpos) and non-neoplastic (CNVneg) nuclei from the eight post-treatment recurrent IDH-
wildtype glioblastoma cases. a) UMAP plot showing all putative CNVpos nuclei from the eight 
recurrent glioma cases aligned and projected in shared UMAP spaces. The nuclei are color-coded 
by glioma state: Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-progenitor-like 
(proneural - gl_PN2), Mesenchymal/astrocyte like (gl_Mes1 and gl_Mes2), and proliferative 
(gl_Pro1 & gl_Pro2). c) Gene ontology (GO) term enrichment analysis (KEGG and REACTOME 
pathways and biological process GO) of the major terms enriched in glioma state top gene 
markers. The bars represent the negative log10 of the false discovery rate adjusted p.value and 
are color-coded as in B. d) Geneset enrichment analysis (GSEA) of selected genesets from 
Verhaak et al. 2009, Gobin M et al 2019, Gill et al 2014, and Neftel et al. 2019 showing enrichment 
of genes specific for states described in the literature in our described glioma states. e) Correlation 
heatmap between glioma states in primary and post-treatment recurrent GBM based on 
expression on glioma state marker genes. The size and color of the circles denote the strength of 
correlation. f) Gene expression dot plots showing select gene marker expression in glioma states. 

  





Supplementary Figure 4: CNV analysis of recurrent glioma samples 
a-h) Large scale chromosomal copy number alterations were inferred from RNA expression using 
InferCNV R package. The heat maps show gains (red) and losses (blue) in case TB5014 (a), 
TB5053 (b), TB3864 (c), TB4898 (d), TB8762 (e), TB4416 (f), and TB4027 (g), and TB3966 (h). 
i) Dotplot showing expression of select set of markers of both primary and recurrent glioma states. 
The proportion of each glioma state in cell cycle phases as determined by Seurat cell-cycle 
scoring is shown on the bottom. 

  





Supplementary Figure 5: The spatial landscape of glioma states across the cellular tumor and 
cortex  
a) Confocal images showing optical sections of in situ hybridization for PTPRZ1 and CLU in the 
core (upper row) and cortex (lower row). The pial surface is outlined (lower row). High-power 
images of the insets show that PTPRZ1+ CLU+ cells (arrows) are more abundant in the cortex, 
while PTPRZ1+CLU- (arrowheads) are more numerous in the core. scale bars = 20 μm. M.V: 
Microvascular proliferation b) Quantification of PTPRZ1 and CLU expression across the core 
(orange boxplot) and cortex (green boxplot). The data is shown as boxplots with the 25th, 50th, 
and 75th percentiles indicated Two tailed paired t-test, n=5 independent samples external to the 
snRNAseq datasets. The p value is indicated. c) Confocal images showing optical sections of in 
situ hybridization for NOVA, SOX2, and MEG3 in the core (upper row) and cortex (lower row). 
The pial surface is outlined (lower row). High-power images of the insets show that 
NOVA1+SOX2+MEG3+ cells (arrows) are more abundant in the cortex, while MEG3- cells 
(arrowheads) are more numerous in the core. scale bars = 20 μm. d) Quantification of 
MEG3+NOVA1+SOX2+ cells as a proportion of all tumor cells (SOX2+ and/or NOVA1+) across 
the core (orange boxplot) and cortex (green boxplot). The data is shown as boxplots,  with the 
25th, 50th, and 75th percentiles indicated. One tailed paired t-test, n=5 independent samples. The 
p value is indicated. e) Confocal images showing optical sections of in situ hybridization for 
TOP2A and CLU in the GBM infiltrated tissue. Arrows indicate CLU+TOP2A+ cells, and 
arrowheads indicate CLU+TOP2A- cells. scale bar = 20 μm. f) Quantification of TOP2A and CLU 
expression. The percentage of TOP2A+CLU+/CLU+ cells is shown as a boxplot. One-sample t-
test, n=5 independent tumor samples, three regions per sample. *=p value < 0.001. g) Integration 
of primary and recurrent GBM CNVpos nuclei color-coded by glioma state and condition. 

  





Supplementary Figure 6: Analysis of Low-grade glioma samples using single nucleus RNAseq 
Large scale chromosomal copy number alterations were inferred from RNA expression of cases 
TB3652 (a), TB3926 (d) – both IDH1-mutant oligodendrogliomas, and TB4100 (g) – IDH-mutant 
astrocytoma. Uniform manifold approximation and projection (UMAP) plots of the three cases are 
shown in panels b, e, and h, color-coded by copy number alteration status. Gene expression 
UMAPs showing markers of tumor cells (PTPRZ1, EGFR, SOX2, TNR, and DSCAM), immune 
cells (CD74, C3, HLA-B, ITGAX, ITM2B), and oligodendrocytes (MBP, MOG) of cases TB3652, 
TB3926, and TB4100 in panels c, f, and i, respectively.  

  





Supplementary Figure 7: Analysis of Epilepsy samples using single nucleus RNAseq 
a-c) Uniform-manifold approximation and projection (UMAP) graphs plots showing normalized 
gene expression of select lineage markers for cases TB4437 (a), TB4189 (b), TB4957 (c). The 
markers include astrocyte markers (GFAP, AQP4, SLC1A2, and SLC1A3), neuron makers 
(RBFOX3, MEG3, GAD1, SLC17A6), myeloid markers (CD74, C3, ITGAX, ITM2B), 
oligodendrocyte markers (MBP, MOG, OPALIN, CNP), and OPC markers (PDGFRA, DSCAM, 
TNR, and SOX2). 

  





Supplementary Figure 8: Analysis of Validation single nuclei data set 
a-g) Heatmaps and UMAP projections of single nuclei extracted from separate sections of tissue 
that underwent spatial transcriptomics analysis showing copy number variation analysis using the 
InferCNV R package. Nuclei colored red were classified CNVneg and nuclei colored blue were 
classified CNVpos. CNVpos and CNVneg cells across samples were integrated and clustered 
separately before being categorized into specific cell types (see methods.) h)  The composition 
of each validation dataset sample was determined and each validation sample was projected onto 
the PCA axes used to classify the discovery dataset samples. i) UMAP projection of all CNVneg 
nuclei across the validation data set, colored by cell type identity.  

  





Supplementary Figure 9: The transcriptional landscape of microglia in glioma 
a) Uniform-manifold approximation and projection (UMAP) graphs plots showing all myeloid nuclei 
from color-coded by cluster (b) and condition (primary glioma, recurrent glioma, low grade glioma 
(LGG), and epilepsy (c). Gene expression violin plots showing select gene marker expression for 
the immune cell clusters from top to bottom; Myel1, mgTAM, moTAM, prTAM, and T cells. d) 
Heatmap showing the proportion of nuclei in each cluster (columns) contributed by condition 
(rows). e) Heatmap showing the scaled enrichment scores of gene sets derived from Movahedi 
et al 2021 in the nuclei pooled from each myeloid cluster.  

  





Supplementary Figure 10: Spatial transcriptomics samples.  
a-b) DAPI and NeuN staining of ST samples (n= 9 samples; scale bar equals 1000µm). c) Spatial 
transcriptomic images annotated with number of unique genes observed at each spot (n= 9 
samples). d) BayesSpace-generated clusters overlaid on each ST sample. The number of 
clusters for each sample was determined through maximization of the modified Bayesian 
Information Criterion (MBIC). 

  





Supplementary Figure 11: Deconvolution of Spatial Transcriptomic Samples. 
a-b) Representative images of staining for NeuN alongside the deconvolved proportions of 
Neurons in samples ST1B1 and ST1D1 (scale bar equals 500µm.) Red and yellow insets show 
detailed view of NeuN staining that correlates with the patterns of heterogeneity shown by the 
deconvolved proportion of neurons. c-d) Deconvolved proportions of selected cell types that 
comprise each tissue state projected onto maps of samples ST1B1 and ST1D1 respectively. e) 
Sample ST1D1 stained for DAPI (scale bar equals 1000µm) and f) sample ST1D1 segmented by 
BayesSpace into clusters and shaded based on the proportion of CNVpos cell types determined 
by deconvolution. Clusters with a higher density of nuclei were correlated with a higher proportion 
of CNVpos cell types across the dataset.  

  





Supplementary Figure 12: The spatial landscape of glioma margins.  
a) Outline of spatial transcriptomic analysis of infiltrating GBM. DAPI (left) and NeuN (right) 
immunostains of frozen sections from case PO2, for which snRNAseq was done. Each circle 
represents a biopsy on which bulk RNAseq was done. After the biopsies were taken, the specimen 
was bisected along the dashed white line (y-axis) and subjected to snRNASeq. b) Enrichment 
analysis of each of the spatially mapped biopsies using the genesets of the three compositional 
clusters (see text for details) displaying normalized single sample GSEA enrichment scores for 
the tumor cluster (C - upper panel), the tumor-reactive cluster (B– middle panel), and the normal 
brain cluster (A – lower panel). The enrichment scores are coded by color and size. The 
normalized RNA data for the spatial biopsy map is available in an interactive web interface at 
https://vmenon.shinyapps.io/gbm_expression/. c) Heatmaps showing the scaled proportion of 18 
cell types obtained by deconvolution and corresponding normalized expression of markers from 
tissue-state signatures for each sample as applied to the Gill et al. 2014 MRI localized biopsy 
dataset (n=92). Results are stratified by condition and by MRI localization. Cell types/markers are 
annotated with their corresponding tissue-states on the left.  

  





Supplementary Figure 13: Astrocytes influence glioma gene expression.  
a) UMAP projection of astrocytes clustered using Louvain clustering on shared-nearest neighbor 
graphs created using igraph – k=500. Three clusters are shown. b) Dotplots of select cluster 
markers. c) Scaled overlap between astrocyte identities designated using geneset enrichment 
clustering (described in figure 2) versus unbiased clustering described in a  - scaled by column. 
d) Correlation analysis showing the Pearson correlation coefficients (y-axis) of genes that 
correlate with CLU expression in CLU-high astrocytes – defined as having normalized expression 
in the third or fourth quantiles. The p value (against the null hypothesis of no correlation) is shown 
on the x-axis. e) Gene ontology enrichment analysis of genes that positively correlate with CLU 
from A. The negative log10 p value of enrichment is indicated. f) Outline of astrocyte glioma co-
culture experiment. This panel was created with BioRender.com. g) Heatmap of normalized 
expression of astrocytes with CLU over-expression (CLU_OE) versus GFP control astrocytes co-
cultured with U87 glioma cells. The genes are annotated by the correlation coefficient with CLU 
from A. h) KEGG/Reactome pathway enrichment in genes differentially expressed in FACSorted 
CLU_OE astrocytes versus GFP astrocytes after co-culture with U87 glioma. The negative log10 
p value of enrichment is indicated. i) Pre-ranked GSEA in differentially expressed genes between 
CLU_OE and GFP control astrocytes for the Ast3 gene signature. Normalized Enrichment Score 
(NES)  p-values (two tailed t-test) and FDR-adjusted q-values are displayed. j-k) Real-time 
quantitative PCR of select genes from CLU_OE, GFP, or LGALS3_OE astrocytes (j) and U87 
glioma (k) FACSorted from co-culture. Genes were selected for relevance to Ast3 signature orto 
glioma biology). The y-axis shows log normalized delta-delta Ct values. The p values are 
indicated. #: one-tailed paired t-test, *: two-tailed paired t-test. n = 3 independent FACsorting 
experiments. Error bars indicate standard error of the mean. Comparison group: control 
astrocytes not co-cultured with glioma for “red” * or  #; control astrocytes co-cultured with U87 
cells for “green” * or #. l-m) Gene ontology enrichment of genes differentially expressed in U87 
cells co-cultured with GFP astrocytes (versus U87 cells not co-cultured l) or co-cultured with 
CLU_OE astrocytes versus U87 glioma co-cultured with GFP astrocytes (m). The negative log10 
p value of enrichment is indicated.   
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