Supplementary Results

Single nucleus RNAseq reveals proliferative, astrocyte-like/mesenchymal, and progenitor-
like/proneural states in both primary and recurrent GBM

Radiographically, GBM typically has a CE core surrounded by a non-enhancing infiltrated brain
that is highlighted by FLAIR-signal abnormality by MRI (Supplementary Fig.1a). The
histopathological features of the resected tumor can vary from highly cellular tumor with vascular
proliferation to less cellular infiltrated brain. These features are shown in Supplementary Fig. 2h,
demonstrating samples with a cellular GBM core (red star in Supplementary Fig. 1a,
Supplementary Fig. 2h PA1, PA2, PA3, and PO2_1) and others with overlying cortex (green
star in Supplementary Fig. 1a, Supplementary Fig. 2h PO2_2 and PO1), which we use below.

To explore the heterogeneity of primary GBM, we analyzed several banked surgical
samples using snRNAseq as shown in (Supplementary Fig. 1a). A total of 8 samples from 7
patients were selected for analysis (Supplementary Dataset 1). Neuropathological assessment
of tumor cellularity ranged from cellular tumor with hallmarks of GBM, to reactive brain
parenchyma with few atypical cells. This assessment was made on Hematoxylin and Eosin (H&E)
stained formalin fixed paraffin embedded sections adjacent to or frozen cryosections of the frozen
tissue analyzed by snRNAseq (Supplementary Fig. 2h). We isolated nuclei from the frozen
tissue and subjected them to snRNAseq followed by downstream analyses including clustering,
differential gene expression analysis, cluster marker detection, and gene set enrichment analysis
(GSEA) as outlined (Supplementary Fig. 1a). 15189 nuclei passed our QC (Supplementary
Dataset 1). To distinguish putative glioma cells from non-neoplastic cells, we employed an
established approach that infers large scale copy number alterations/variations (CNV) from RNA
expression profiles '. Chromosomal heat maps showing putative neoplastic nuclei are shown in
Supplementary Fig. 2a-g. Next, we also applied a second method to label nuclei based on a
“malignancy score”, which we have previously shown to be a robust metric to distinguish glioma
cells from non-neoplastic cells 2, and the consensus nuclei designated by both methods was
used for downstream analysis. Nuclei with no consensus CNV status were excluded (4.7%).
Uniform manifold approximation and projection (UMAP) plots from individual cases labeled by
transformation status are shown in Supplementary Fig. 1b. We identified 7954 putative
neoplastic nuclei with inferred large scale chromosomal CNV (CNVpos/glioma nuclei). Glioma
nuclei showed multiple chromosomal alterations including gains of chromosome 7 and losses of
chromosome 10 (Supplementary Fig. 2). Having identified neoplastic and non-neoplastic nuclei,
we aligned the datasets from multiple samples and performed clustering analyses separately on
CNVpos (glioma) nuclei from all cases using shared nearest neighbor and the smart local moving
algorithm *. A UMAP plot is shown for all primary glioma nuclei non-neoplastic nuclei color-coded
by glioma state/lineage Supplementary Fig. 1c. This approach identified 6 distinct clusters: these
resembled progenitors (oligodendrocyte-progenitors (gl_PN1 - proneural) and neural-progenitors
(gl_PN2 - proneural), astrocytes (gl_Mes1 and gl_Mes2 - mesenchymal), and proliferative cells
(gl_Pro1 and gl_Pro2).

The identity of the glioma states is akin to previously described glioma states, as
demonstrated by the enrichment of several gene lists from *® — (Supplementary Fig. 1d,
Supplementary Dataset 2). For example, gl_Pro1 and gl_Pro2 showed enrichment in gene sets
specific for cell-cycle phases 8 with gl_Pro1 showing highest enrichment of G2/M genes
(Gobin_G1) and gl_Pro2 showing highest enrichment of G1/S phase genes and DNA repair
related genes (Gobin_G3). Clusters gl_PN1 showed enrichment of the Verhaak’s proneural, and



OPC signature genes, while gl_PN2 showed enrichment of NPC signature genes. Finally,
gl_Mes1 showed enrichment of astrocyte-like signatures and Verhaak’s classical signature while
cluster gl_Mes2 showed enrichment of several gene sets related to reactive astrocytes, and
Verhaak’s mesenchymal signature *>”°. Our clustering is consistent with that described in Neftel
et al. 2019 ® and Wang et al. 2019 °, and the states we describe are compatible with those in
Yuan et al 2018 3. To further clarify the cellular phenotypes represented in our glioma clusters,
we measured the enrichment of the major biologic process and molecular function gene
ontologies (GO) in the glioma state top gene markers (see methods). GO enrichment analysis
demonstrated enrichment of GO’s relating to locomotion, neurogenesis, neuronal migration, and
cell projection in gl_PN1 markers genes; Notch signaling, neuron development, and GABA
reuptake differentiation, and synaptic signaling in gl_PN2 genes; response to organic substances,
ion homeostasis, and signaling by tyrosine kinases in gl_Mes1 genes; response to cytokines,
interferon gamma, and leukocyte activation and immune response in gl_Mes2 genes; mitosis and
nuclear division in gl_Pro1, and S-phase, DNA replication, and DNA repair in
gl_Pro2(Supplementary Fig. 1f and Supplementary Dataset 2). The identities of the clusters
can also be appreciated by examining select gene markers Supplementary Fig. 1e and
Supplementary Dataset 2. gl_Pro1 expressed cell-cycle genes TOP2A, CENPF, and AURKB.
gl_Pro2 showed highest expression of DNA damage/repair including FANCI, HELLS, and
XRCC2. gl_PN2 showed high levels of CD24, MEG3, and SOX4. gl_Mes1 showed high levels of
protoplasmic astrocyte genes including SLC1A3, LIFR, ATP1A2, C1orf61, and NTM, while
gl_Mes2 showed highest expression levels for reactive astrocyte and immune genes including
CLU, VIM, and SAT1. While our glioma states resemble those described in the literature, less is
known about whether glioma cells assume similar states in the recurrent setting. Therefore, we
bridged this gap by directly analyzing recurrent IDH-WT glioma samples using the same approach
we used for primary GBM samples.

To define the states of IDH-WT glioma in the post-treatment recurrence setting, we
analyzed 8 cases of post-recurrent IDH-WT glioma using snRNAseq (Supplementary Fig. 3a).
We identified 8908 neoplastic nuclei harboring large-scale CNV (Supplementary Fig. 4). Of the
eight cases, two were paired recurrences from the primary samples (TB5124 — recurrent of
TB4916, and TB5053 — recurrent of TB4718, see respective section on comparing paired samples
below). We treated recurrent gliomas similarly to the treatment naive primary tumors and
clustered all neoplastic nuclei together. Like primary gliomas, we found that recurrent glioma
clusters can be assigned two proneural, two mesenchymal, and two proliferative states
(Supplementary Fig. 3b). The gene markers of the recurrent glioma states are enriched for
similar ontologies to those seen for primary glioma states (Supplementary Fig. 3¢ and
Supplementary Dataset 3), showed similar patterns of enrichment for the previously presented
gene sets in Supplementary Fig. 1d (Supplementary Fig. 3d), and displayed comparable gene
marker expression (Supplementary Fig. 3f). These results demonstrate that post-treatment
recurrent glioma states closely resemble states observed in the primary pre-treatment setting.
Indeed, Pearson correlation analysis demonstrates that corresponding states were positively
correlated (Supplementary Fig. 3e). The correlation patterns reveal that gl_Mes1 and gl_Mes2
are positively correlated with each other in the primary and recurrent settings. This is also seen
with gl_PN1 and gl_PN2, as well as gl_Pro1 and gl_Pro2. We therefore contend that a view of
primary and recurrent glioma states may benefit from simplification and embrace a viewpoint that
primary and recurrent glioma states can be classified as progenitor-like/proneural (gl_PN1 and
gl_PN2), astrocyte-like/mesenchymal (gl_Mes1 and gl_Mes2), and proliferative (gl_Pro2 and



gl_Pro1) states. A select set of markers of both primary and recurrent GBM states is provided in
Supplementary Fig. 4i. Assigning cell cycle scores using Seurat cell-cycle score assignment
reveals that gl_Pro1 has the majority of cells in G2M phase, whilst gl_Pro2 has the majority of
cells in S phase Supplementary Fig. 4i. Integration of both primary and recurrent glioma nuclei
shows cells from primary and recurrent samples overlap in the UMAP space, and that this overlap
is seen for all 6 GBM states (Supplementary Fig. 59).

While the transcriptional signatures of glioma are relatively well defined, the spatial
distribution of these glioma states is less well understood. Given the marked difference in cellular
composition between the cortex and the deeper (typically more heavily infiltrated) white matter,
and the highly cellular tumor core, we asked if these different anatomic regions harbor distinct
glioma states. In other words, we posited that the cellular microenvironment of glioma influences
glioma states. Specifically, we hypothesized that we would find more glioma cells that resemble
astrocytes (astrocyte-like/mesenchymal glioma) or neurons (progenitor-like - specifically gl_PN2)
in the cortical margins. To address this question, we examined the expression of select
combinations of glioma state transcripts using in situ hybridization (ISH) across the cellular tumor
and the infiltrated cortical margin. We used probes to detect PTPRZ1 (high in glioma), CLU (high
in astrocytes and astrocyte-like/mesenchymal glioma), SOX2 (high glioma), NOVA1 (high in
progenitor-like/proneural glioma), and MEG3 (high in neurons and progenitor-like/proneural
glioma - gl_PN2) in the cellular core and overlying infiltrated cortical margin in 5 cases of primary
GBM (Supplementary Fig. 5a, ¢). We found that a significantly higher proportion of PTPRZ1+
glioma cells co-expressed CLU (high in gl_Mes2) in the cortex versus the core (Supplementary
Fig. 5b). Similarly, we found a significantly higher proportion of SOX2+NOVA1+MEG3+ glioma
cells in the cortex versus the core (Supplementary Fig. 5d). These findings indicate that the
different glioma states have distinct distributions throughout the landscape of glioma and suggest
that local tissue cellular composition and perhaps other microenvironmental influences can affect
glioma states. We note that astrocyte-like/mesenchymal glioma states were negatively correlated
with proliferative states. Consistent with this result, our ISH findings demonstrated a significantly
smaller proportion of CLU+ cells that co-expressed TOP2A (mean=31.71388837%, Standard
deviation = 15.73850618, one-tailed t-test p= 0.000249641, n=5, Supplementary Fig. 5e-f).

Comparison between primary and recurrent glioma pairs

Not surprisingly, the recurrent tumors did not show identical chromosomal CNVs with their primary
counterparts. While TB5014 retained the CNV of TB4916 (gain of 7, loss of 10 and 14) and
acquired additional alterations including gains in chromosomes 19 and 20 (Supplementary Fig.
2f and 4a), TB5053 showed a complex gains and losses across multiple chromosomes
(Supplementary Fig. 2g and 4b).

In the main text, we note that gl_PN1 is depleted from our recurrent GBM samples (Figure 4a).
This is consistent with the literature '°, since the Verhaak classical subtype resembles our gl_PN1,
which showed positive enrichment scores of the Verhaak’s classical gene set. Of the non-
neoplastic cell types, OPCs were depleted in recurrence. This may be explained by the fact the
OPCs are the proliferative cell type in the brain and glioma treatment with chemotherapy and
radiotherapy depletes proliferative cells, as have been previously demonstrated .

Analysis of low-grade glioma and epilepsy cases

To sample states of myeloid cells and astrocytes across different disease states, we chose to
analyze the microenvironment of low-grade glioma (LGG) and temporal lobe epilepsy. We
conducted snRNAseq on 6 cases: two IDH-mutant oligodendroglioma (TB3652 & TB3926), one




IDH-mutant astrocytoma (TB4100), and three temporal lobe epilepsies (TB4189, TB4437, &
TB4957). We identified 970, 1154, 1036 nuclei for LGG cases TB3652, TB3926, and TB4100,
respectively. We identified CNVpos nuclei using a combination of chromosomal CNV, clustering,
and tumor marker expression as shown in Supplementary Fig. 6. Cases TB3652 and TB3926
had typical chromosome 1p and 19q codeletions (Supplementary Fig. 6a, d), and harbored 817
and 942 CNVpos nuclei, respectively (Supplementary Fig. 6b, e). The tumor nuclei expressed
tumor markers SOX2, EGFR, and PTPRZ1, and/or OPC markers DSCAM and TNR; myeloid cells
expressed CD74, C3, ITGAX/CD11c, ITM2B, and/or HLA-B; while oligodendrocytes expressed
MBP and MOG (Supplementary Fig. 6¢c, f). 382 CNVpos nuclei were found in case TB4100,
which did not harbor CNVs across most cells, and CNVpos nuclei were identified by clustering
and marker expression as noted above. Of the epilepsy cases, we identified 2558, 179, and 138
nuclei in cases TB4189, TB4437, and TB4957, respectively. Supplementary Fig. 7a-c show
marker expression in cases TB4437, TB4189, and TB4957, where markers of astrocytes (GFAP,
AQP4, SLC1A2, SLC1A3), neurons (RBFOX3, MEG3, GAD1, and SLC17A6), myeloid cells
(CD74, ITGAX, C3, ITM2B), oligodendrocytes (MBP, MOG, OPALIN, and CNP), and OPCs
(DSCAM, TNR, SOX2, and PDGFRA). The CNVneg nuclei from all LGG and epilepsy cases were
combined with those from primary and recurrent IDH-WT GBM and were analyzed as presented
in the section below (myeloid cells) and main text (astrocytes).

Astrocytes cluster into three distinct astrocyte cell states

Based on the resemblance to known astrocyte phenotypes we curated three gene sets
(Supplementary Dataset 4), which represent three major astrocyte states (protoplasmic,
reactive-1, and reactive-2), and then clustered astrocyte nuclei using Ward D2 hierarchical
clustering on the Manhattan distance of the enrichment scores (overlaid on the 3D tSNE plots in
Figure 2, into a protoplasmic cluster (Ast1), and two reactive clusters (Ast2 and Ast3 — as
described in the main text (Fig. 2a). We asked whether our method of clustering astrocytes,
described in figure 2, can result in similar clusters to more “unbiased” methods. Thus, we
performed Louvain clustering on shared nearest neighbor graphs (created through igraph — k=500
— Supplementary Fig. 13a). Examination of marker expression for each cluster demonstrate that
Louv 2 is similar to Ast1 - with expression of protoplasmic genes, Louv 3 is similar to Ast2 — with
expression of PLP1 and ribosomal genes, and Louv 1 is similar to Ast3 — with expression of C3
and CD44 (Supplementary Fig. 13b). Examination of the overlap of astrocyte calls between the
method employed in figure 2 and the “unbiased” clustering reveals that the unbiased Louv clusters
overlap to high extent with those described in Figure 1, as described above (Supplementary Fig.
13c). Therefore, overall, we conclude that the clustering approach we employed in figure 2 is
highly analogous to unbiased clustering. However, there were some differences in the
transcriptional features of the unsupervised clusters when compared to the clusters we generated
through supervised classification (Ast1-Ast3). While most markers for Ast1-Ast3 were enriched in
one unsupervised cluster, CLU, a marker for Ast3, is expressed at similar levels in two of the
unsupervised clusters (Louv1 and Louv 3).

Analysis of myeloid cell states

Myeloid cells have been implicated in modulating glioma migration, infiltration, and progression
2. We identified 5925 nuclei we classified as myeloid cells. Unbiased clustering revealed 8
subclusters which we then used to assign the specific myeloid lineages. We merged clusters with
similar enrichment scores of gene sets representing microglia-derived tumor-associated
macrophages (mgTAM), monocyte-derived TAMs (moTAM), proliferative TAMs (prTAMs), and T-
cells as described in ™ - Myeloid subclusters 0 and 9 were combined as Myel1 (baseline),




subclusters 1 and 3 — moTAM (monocyte derived TAMs); subclusters 2, 4, 6, and 8 as mgTAM
(microglia-derived TAMs); subcluster 5 was kept as prTAM (proliferative TAMs); and subcluster
7 was kept as T-cells. . The enrichment of these gene sets in the final myeloid states is provided
in Supplementary Fig. 9e. A subset of myeloid cells showed mixed enrichment scores across
mgTAM, moTAM, and dendritic cells, and were considered baseline (referred to as Myel1).
Overall, we classified 2678, 1346, 1364, 360, and 177 nuclei as Myel1, moTAM, mgTAM, prTAM,
and T-cells, respectively, and these are shown in 3D tSNE space in Supplementary Fig. 9a.
Myel1 state showed higher expression of SAT1, CEBPD, and GLUL (Supplementary Fig. 9c-
top row). moTAM showed highest expression of CD163, MS4A4E, NHSL1, FMN1, and MSR1
(Supplementary Fig. 9c-2nd row). mgTAM showed highest expression of SORL1, RIN3, ITGAX,
HS3ST4, and FRMD4A (Supplementary Fig. 9¢c-3rd row). prTAMs showed highest expression
of CST3, MEF2A, DBI, PLXDC2, and DOCK4 (Supplementary Fig. 9c-4th row). Finally, T-cells
showed highest expression of CD2, CD247, CD96, FYN, and SKAP1 (Supplementary Fig. 9c-
5th row). Different myeloid states were accounted for different conditions (Supplementary Fig.
9b). While Myel1 was present in Epilepsy, primary and recurrent GBM, mgTAM was the main
state found in LGG, but was also in primary and recurrent GBM. moTAM, T-cells, and prTAM
were found in primarily in recurrent GBM (Supplementary Fig. 9d). The gene-wise DGE between
myeloid states and the myeloid state markers are provided in Supplementary Dataset 5.

snRNAseq of samples used for ST — a validation dataset

Single nuclei from each ST patient were analyzed when available (n = 7). The nuclei were
obtained, cleaned, and analyzed as described elsewhere. CNVpos nuclei were identified using
inferCNV (Supplementary Fig. 8a-g, sample QC, number of nuclei per sample as well as lineage
assignment is provided in Supplementary Dataset 1). They were classified as was done for the
previously presented datasets. The CNVneg nuclei were then classified into cell types using the
singleR package (de.method="wilcox”) with the previously annotated single nuclei data set as a
reference™. Proportions of nuclei per cell type are included in Supplemental dataset-1. Using
the compositional matrix of these samples, they were able to be classified into tissue states using
k-means clustering with the centers of the discovery data set samples supplied as centers
(Supplementary Fig. 8h). The integrated CNVneg nuclei are shown in a UMAP (Supplementary
Fig. 8i).

Spatial cross-correlation analysis of deconvolved cell type proportions

Our analysis of cell type composition in snRNAseq samples highlights prognostically relevant
compositional patterns. To examine these patterns with spatial resolution, we analyzed 9 IDH-
WT GBM samples using spatial transcriptomics and deconvolution (see methods). To validate the
accuracy of our deconvolution, we compared the distribution of deconvolved cell type proportions
to fluorescent staining for select cell type markers. Supplementary Fig. 11a-b show the
deconvolved proportion of neurons in a subset of ST samples alongside fluorescent staining of
the same samples for NeuN, a canonical marker for neurons — see Supplementary Fig. 10b.
This highlights that our deconvolution approach was able to reflect patterns of spatial
heterogeneity that were also suggested by fluorescent staining. Supplementary Fig. 11c-d
shows deconvolved proportions of select cell types in 2 ST samples and shows that cell types
whose proportions covary in each tissue-state show similar patterns of spatial heterogeneity to
each other across multiple samples. We quantified and aggregated trends across our 9 ST
samples using spatial cross-correlation and tested them for significance—see methods for details.
To determine the relative representation of tumor within each ST sample and confirm the ability
of our deconvolution approach to identify tumor, we correlated nuclear density (cellularity)




obtained from immunohistochemical staining for DAPI (Supplementary Fig. 10a) with our
deconvolved cell type proportions. BayesSpace was used to segment each sample into clusters
containing transcriptionally similar spots (see methods). A total of 33 clusters were generated
(Supplementary Fig. 10d). The density of nuclei was obtained for all of these clusters across the
data set, and we calculated the correlation with the deconvolved proportion of each cell type
(Supplementary Dataset 1). The total proportion of CNVpos cell types was positively and
significantly correlated with density of nuclei (correlation: 0.388, p=0.025). Supplementary Fig.
11e shows a representative sample with DAPI staining and Supplementary Fig. 11f shows the
same sample segmented by BayesSpace generated clusters and colored by the proportion of
deconvolved CNVpos cell types present in that cluster.

The spatial landscape of glioma associated tissue-states in primary and recurrent GBM
To understand the spatial landscape of primary and recurrent glioma, we mapped the distribution
of our “tissue-state” signatures in space in primary and recurrent GBM. First, we tested one of our
cases that we utilized for snRNAseq (PO2) and took 48 localized biopsies that we analyzed using
plate-seq °. Immunofluorescence of frozen sections taken prior to analysis revealed a cellular
DAPI-dense glioma core and a NeuN rich cortical margin (Supplementary Fig. 12a). We
conducted GSEA analysis of our tissue-state signatures in the RNAseq data from the localized
biopsies and mapped that against the location of the biopsies (Supplementary Fig. 12b). Tissue-
state C signature was highest in the core, compared to tissue-state A signature, which was highest
in the cortical margin. Tissue-state B signature showed a patchier distribution with foci of
enrichment in both the core and margin. Interestingly, the intermediate region between the core
and cortex, showed mixed enrichment across all three tissue-states. This data highlights the
anatomic localization of tissue-state signatures and underscores the heterogeneous patterns in
the intermediate non-cortical “margin” region.

Next, we performed deconvolution on a previously published dataset of bulk RNA sequencing
from MRI-localized biopsies of primary and recurrent GBM, and control brain samples ” to assess
the abundance of neoplastic and non-neoplastic cell types in different radiographic regions of
primary and recurrent GBM. Our results showed that in contrast enhancing regions of primary
GBM, the cell types associated with tissue states B and C were more abundant than cell types
associated with tissue state A, while in the contrast enhancing regions of recurrent GBM, the cell
types associated with tissue state B were more abundant than cell types associated with tissue
state C or A. The FLAIR+ samples in primary GBM showed a mixture of neoplastic and non-
neoplastic cell types from all three tissue states, while the FLAIR+ samples from recurrent GBM
showed predominantly non-neoplastic cells, with highest abundance of cell types of tissue state
A. As expected, control samples were also predominately composed of non-neoplastic cell types
associated with tissue state A. (Supplementary Fig. 12c). We also assessed for the expression
of tissue-state signature genes in these same samples. This analysis showed similar patterns to
those of the deconvolved cell types (Supplementary Fig. 12c). In summary, contrast enhancing
regions in both primary and recurrent tumors predominantly represent neoplastic and reactive cell
types, but the distribution of specific glioma subtypes varies between primary and recurrent tissue.
Non-enhancing margins of recurrent GBM samples predominantly represent reactive/gliotic brain
tissue with relatively low levels of tumor infiltration, whereas the non-enhancing margins of
primary GBM can contain a wider range of pathological features, including regions of abundant
glioma infiltration.



Astrocyte CLU alters U87 glioma cell gene expression

In examining the cellular milieu co-inhabiting tissue state B, we focused on Ast3, an astrocytic
state with high expression of Clusterin (CLU). Astrocytic CLU is known to reduce amyloid
accumulation in mouse models of Alzheimer’s disease and is thought to be neuroprotective'®'8.
CLU is upregulated in GBM and can protect GBM cells from radiation-induced apoptosis '°.
However, little is known about the interaction between CLU+ astrocytes (i.e. Ast3) and GBM. We
first identified the genes that were significantly correlated with CLU expression (using the
psych::corr.test R function) in astrocytes that have high CLU expression, defined as in the 3™ and
4" quantiles of normalized CLU levels. These include ATP1B2, F3, AQP4, GJA1, CHI3L2,
CHI3L1, LGALS1, and LGALS3 among others (Supplementary Fig. 13d and Supplementary
Dataset 8). Analysis of pathways enriched in CLU-correlated genes reveals they encompass
Reactome and KEGG pathways involved in signal transduction, Rho GTPases, Hippo signaling,
and translation (Supplementary Fig. 13e). With a testable Ast3 (CLU-high) astrocytic signature
at hand, we modeled an Ast3-like astrocyte state in vitro by overexpressing CLU in human
astrocytes (Supplementary Fig. 13f). As a separate experimental condition we overexpressed
LGALSS. rt-qPCR analysis shows that merely co-culturing astrocytes with U87 glioma cells leads
to reduction of astrocytic SOX2, NES, CLU, and HES5 expression. Rt-gPCR confirms CLU and
LGALS3 overexpression in CLU- and LGALS3- astrocytes, respectively, and reveals CLU
astrocytes increase HES5 expression, whereas LGALS3 astrocytes increase NES expression,
both when compared to GFP control astrocytes in the setting of U87 co-culture (Supplementary
Fig. 13j). CHI3L1, and Ast3 gene, was increased in both LGALS3+ and CLU+ astrocytes. Since
both CLU+ and LGALS3+ astrocytes model some aspects of Ast3, and only CLU+ astrocytes
significantly increased astrocytic CLU, we chose to use the CLU+ astrocytes as an Ast3-like
model and analyzed those cells further. Comparing the genes differentially expressed between
sorted CLU-overexpressing versus control astrocytes revealed 274 differentially expressed
genes, including many that are positively correlated with CLU levels as defined by human glioma-
associated astrocytes (Supplementary Fig. 13g and Supplementary Dataset 8). These genes
are enriched in KEGG/Reactome pathways that encompass Hippo signaling, and extracellular
matrix organization (Supplementary Fig. 13h). Notably, these CLU induced genes are
significantly positively enriched in the Ast3 gene signature (Supplementary Fig. 13i). These
results provide support for the resemblance between Ast3 cells and CLU+ astrocytes. Next, we
focused on glioma cells and asked if co-culture of U87 glioma cells with astrocytes leads to altered
glioma gene expression. rt-qPCR of sorted U87 glioma showed that merely co-culturing U87
glioma with astrocytes leads to increased SOX2 and HES1 expression. When co-cultured with
CLU astrocytes HESS is increased in U87 cells, whereas HES1 is reduced in U87 cells co-cultured
with LGALS3 astrocytes (Supplementary Fig. 13k). RNAseq of U87 glioma co-cultured with
control (GFP) astrocytes leads to enrichment of gene ontologies involved in monocyte
differentiation and leukocyte migration (Supplementary Fig. 131 and Supplementary Dataset
8. When co-cultured with CLU-astrocytes, the transcriptome of U87 glioma cells is enriched in
ontologies involved in glial differentiation, neural precursor proliferation, and biosynthesis of
unsaturated fatty acids (Supplementary Fig. 13m and Supplementary Dataset 8). Together,
these results show that astrocytes can exert different effects on glioma gene expression, and
Ast3-like astrocytes promote a signature related to glial differentiation and precursor proliferation.
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Supplementary Figure 1: snRNAseq-derived transcriptional states of putative neoplastic nuclei
from primary IDH-wildtype GBM samples

a) Outline of Analytic Design: T 2/FLAIR and post-contrast T1 MRI sequences of a glioblastoma
showing the classic radiological appearance of a glioblastoma (Case PO2); with a ring enhancing
mass (red star) with surrounding increased FLAIR signal (green star). The tumor was resected
and banked (frozen). Nuclei are extracted from frozen tissue and are subjected to droplet based
single nuclei RNA sequencing using the 10X chromium platform. The resultant barcoded cDNA
is then sequenced and analyzed. Analyses performed include identification of putative neoplastic
cells by identifying cells with inferred copy number variations (CNV), clustering, differential gene
expression (DGE), and gene set enrichment analysis (GSEA). Scale bars = 50 um. This panel
was created with BioRender.com. b) Uniform-manifold approximation and projection (UMAP)
graphs showing putative neoplastic (CNVpos) and non-neoplastic (CNVneg) nuclei from the
seven primary IDH-wildtype glioma cases selected for analysis indicated by subpanels b1-b7. c)
UMAP plot showing all putative CNVpos (c) nuclei from the seven primary glioma cases aligned
and projected in shared UMAP spaces. The nuclei are color-coded by glioma state:
Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-progenitor-like (proneural -
gl_PN2), Mesenchymal/astrocyte like (gl_Mes1 and gl_Mes2), and proliferative (gl_Pro1 &
gl_Pro2). d) Geneset enrichment analysis (GSEA) of selected genesets from Verhaak et al. 2009
(v), Gobin M et al 2019, Gill et al 2014, Wang et al. 2019 (W), and Neftel et al. 2019 (N) showing
enrichment of genes specific for states described in the literature in our described glioma states.
e) Dot plots showing expression of certain markers in glioma states. f) Gene ontology (GO) term
enrichment analysis (KEGG and REACTOME pathways and biological process GO) of the major
terms enriched in glioma state top gene markers. The bars represent the negative log10 of the
Bonferroni adjusted p.value, and are color-coded as in c.
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Supplementary Figure 2: Identifying neoplastic nuclei based on chromosomal copy number
alterations, and histopathologic characterization of glioma cases

a-g) Large scale chromosomal copy number alterations were inferred from RNA expression using
InferCNV R package (see methods for details). The heat maps show gains (red) and losses (blue)
in case PA1 (a), PA2 (b), PA3 (c), PO1 (d), PO2 (two samples — core and margin) (e), TB4916
(f), and TB4718 (g). h) Representative Hematoxylin and Eosin-stained section of the brain tissue
used for single nuclei RNAseq of the first five cases (scale bar equals 50um) . Some cases
showed clear infiltration with glioma cells PA1, PA2, PA3, and PO2_c, PO2_2. Cases PO1 and
PO2_m showed no clear evidence of cellular tumor.
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Supplementary Figure 3: snRNAseq-derived transcriptional states of putative neoplastic nuclei
from post-treatment recurrent IDH-wildtype GBM samples

a) Uniform-manifold approximation and projection (UMAP) graphs showing putative neoplastic
(CNVpos) and non-neoplastic (CNVneg) nuclei from the eight post-treatment recurrent IDH-
wildtype glioblastoma cases. a) UMAP plot showing all putative CNVpos nuclei from the eight
recurrent glioma cases aligned and projected in shared UMAP spaces. The nuclei are color-coded
by glioma state: Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-progenitor-like
(proneural - gl_PN2), Mesenchymal/astrocyte like (gl_Mes1 and gl_Mes2), and proliferative
(gl_Pro1 & gl_Pro2). ¢) Gene ontology (GO) term enrichment analysis (KEGG and REACTOME
pathways and biological process GO) of the major terms enriched in glioma state top gene
markers. The bars represent the negative log10 of the false discovery rate adjusted p.value and
are color-coded as in B. d) Geneset enrichment analysis (GSEA) of selected genesets from
Verhaak et al. 2009, Gobin M et al 2019, Gill et al 2014, and Neftel et al. 2019 showing enrichment
of genes specific for states described in the literature in our described glioma states. e) Correlation
heatmap between glioma states in primary and post-treatment recurrent GBM based on
expression on glioma state marker genes. The size and color of the circles denote the strength of
correlation. f) Gene expression dot plots showing select gene marker expression in glioma states.
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Supplementary Figure 4: CNV analysis of recurrent glioma samples

a-h) Large scale chromosomal copy number alterations were inferred from RNA expression using
InferCNV R package. The heat maps show gains (red) and losses (blue) in case TB5014 (a),
TB5053 (b), TB3864 (c), TB4898 (d), TB8762 (e), TB4416 (f), and TB4027 (g), and TB3966 (h).
i) Dotplot showing expression of select set of markers of both primary and recurrent glioma states.
The proportion of each glioma state in cell cycle phases as determined by Seurat cell-cycle
scoring is shown on the bottom.
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Supplementary Figure 5: The spatial landscape of glioma states across the cellular tumor and
cortex

a) Confocal images showing optical sections of in situ hybridization for PTPRZ1 and CLU in the
core (upper row) and cortex (lower row). The pial surface is outlined (lower row). High-power
images of the insets show that PTPRZ1+ CLU+ cells (arrows) are more abundant in the cortex,
while PTPRZ1+CLU- (arrowheads) are more numerous in the core. scale bars = 20 ym. M.V:
Microvascular proliferation b) Quantification of PTPRZ1 and CLU expression across the core
(orange boxplot) and cortex (green boxplot). The data is shown as boxplots with the 25", 50",
and 75" percentiles indicated Two tailed paired t-test, n=5 independent samples external to the
snRNAseq datasets. The p value is indicated. ¢) Confocal images showing optical sections of in
situ hybridization for NOVA, SOX2, and MEG3 in the core (upper row) and cortex (lower row).
The pial surface is outlined (lower row). High-power images of the insets show that
NOVA1+SOX2+MEG3+ cells (arrows) are more abundant in the cortex, while MEG3- cells
(arrowheads) are more numerous in the core. scale bars = 20 uym. d) Quantification of
MEG3+NOVA1+SOX2+ cells as a proportion of all tumor cells (SOX2+ and/or NOVA1+) across
the core (orange boxplot) and cortex (green boxplot). The data is shown as boxplots, with the
25" 50", and 75" percentiles indicated. One tailed paired t-test, n=5 independent samples. The
p value is indicated. e) Confocal images showing optical sections of in situ hybridization for
TOP2A and CLU in the GBM infiltrated tissue. Arrows indicate CLU+TOP2A+ cells, and
arrowheads indicate CLU+TOP2A- cells. scale bar = 20 uym. f) Quantification of TOP2A and CLU
expression. The percentage of TOP2A+CLU+/CLU+ cells is shown as a boxplot. One-sample t-
test, n=5 independent tumor samples, three regions per sample. *=p value < 0.001. g) Integration
of primary and recurrent GBM CNVpos nuclei color-coded by glioma state and condition.
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Supplementary Figure 6: Analysis of Low-grade glioma samples using single nucleus RNAseq
Large scale chromosomal copy number alterations were inferred from RNA expression of cases
TB3652 (a), TB3926 (d) — both IDH1-mutant oligodendrogliomas, and TB4100 (g) — IDH-mutant
astrocytoma. Uniform manifold approximation and projection (UMAP) plots of the three cases are
shown in panels b, e, and h, color-coded by copy number alteration status. Gene expression
UMAPs showing markers of tumor cells (PTPRZ1, EGFR, SOX2, TNR, and DSCAM), immune
cells (CD74, C3, HLA-B, ITGAX, ITM2B), and oligodendrocytes (MBP, MOG) of cases TB3652,
TB3926, and TB4100 in panels ¢, f, and i, respectively.
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Supplementary Figure 7: Analysis of Epilepsy samples using single nucleus RNAseq

a-c) Uniform-manifold approximation and projection (UMAP) graphs plots showing normalized
gene expression of select lineage markers for cases TB4437 (a), TB4189 (b), TB4957 (c). The
markers include astrocyte markers (GFAP, AQP4, SLC1A2, and SLC1A3), neuron makers
(RBFOX3, MEG3, GAD1, SLC17A6), myeloid markers (CD74, C3, ITGAX, ITM2B),
oligodendrocyte markers (MBP, MOG, OPALIN, CNP), and OPC markers (PDGFRA, DSCAM,
TNR, and SOX2).
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Supplementary Figure 8: Analysis of Validation single nuclei data set

a-g) Heatmaps and UMAP projections of single nuclei extracted from separate sections of tissue
that underwent spatial transcriptomics analysis showing copy number variation analysis using the
InferCNV R package. Nuclei colored red were classified CNVneg and nuclei colored blue were
classified CNVpos. CNVpos and CNVneg cells across samples were integrated and clustered
separately before being categorized into specific cell types (see methods.) h) The composition
of each validation dataset sample was determined and each validation sample was projected onto
the PCA axes used to classify the discovery dataset samples. i) UMAP projection of all CNVneg
nuclei across the validation data set, colored by cell type identity.
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Supplementary Figure 9: The transcriptional landscape of microglia in glioma

a) Uniform-manifold approximation and projection (UMAP) graphs plots showing all myeloid nuclei
from color-coded by cluster (b) and condition (primary glioma, recurrent glioma, low grade glioma
(LGG), and epilepsy (c). Gene expression violin plots showing select gene marker expression for
the immune cell clusters from top to bottom; Myel1, mgTAM, moTAM, prTAM, and T cells. d)
Heatmap showing the proportion of nuclei in each cluster (columns) contributed by condition
(rows). e) Heatmap showing the scaled enrichment scores of gene sets derived from Movahedi
et al 2021 in the nuclei pooled from each myeloid cluster.
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Supplementary Figure 10: Spatial transcriptomics samples.

a-b) DAPI and NeuN staining of ST samples (n= 9 samples; scale bar equals 1000um). ¢) Spatial
transcriptomic images annotated with number of unique genes observed at each spot (n= 9
samples). d) BayesSpace-generated clusters overlaid on each ST sample. The number of
clusters for each sample was determined through maximization of the modified Bayesian
Information Criterion (MBIC).
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Supplementary Figure 11: Deconvolution of Spatial Transcriptomic Samples.

a-b) Representative images of staining for NeuN alongside the deconvolved proportions of
Neurons in samples ST1B1 and ST1D1 (scale bar equals 500um.) Red and yellow insets show
detailed view of NeuN staining that correlates with the patterns of heterogeneity shown by the
deconvolved proportion of neurons. c-d) Deconvolved proportions of selected cell types that
comprise each tissue state projected onto maps of samples ST1B1 and ST1D1 respectively. e)
Sample ST1D1 stained for DAPI (scale bar equals 1000um) and f) sample ST1D1 segmented by
BayesSpace into clusters and shaded based on the proportion of CNVpos cell types determined
by deconvolution. Clusters with a higher density of nuclei were correlated with a higher proportion
of CNVpos cell types across the dataset.
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Supplementary Figure 12: The spatial landscape of glioma margins.

a) Outline of spatial transcriptomic analysis of infiltrating GBM. DAPI (left) and NeuN (right)
immunostains of frozen sections from case PO2, for which snRNAseq was done. Each circle
represents a biopsy on which bulk RNAseq was done. After the biopsies were taken, the specimen
was bisected along the dashed white line (y-axis) and subjected to snRNASeq. b) Enrichment
analysis of each of the spatially mapped biopsies using the genesets of the three compositional
clusters (see text for details) displaying normalized single sample GSEA enrichment scores for
the tumor cluster (C - upper panel), the tumor-reactive cluster (B— middle panel), and the normal
brain cluster (A — lower panel). The enrichment scores are coded by color and size. The
normalized RNA data for the spatial biopsy map is available in an interactive web interface at
https://vmenon.shinyapps.io/gbm_expression/. ¢) Heatmaps showing the scaled proportion of 18
cell types obtained by deconvolution and corresponding normalized expression of markers from
tissue-state signatures for each sample as applied to the Gill et al. 2014 MRI localized biopsy
dataset (n=92). Results are stratified by condition and by MRI localization. Cell types/markers are
annotated with their corresponding tissue-states on the left.
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Supplementary Figure 13: Astrocytes influence glioma gene expression.

a) UMAP projection of astrocytes clustered using Louvain clustering on shared-nearest neighbor
graphs created using igraph — k=500. Three clusters are shown. b) Dotplots of select cluster
markers. ¢) Scaled overlap between astrocyte identities designated using geneset enrichment
clustering (described in figure 2) versus unbiased clustering described in a - scaled by column.
d) Correlation analysis showing the Pearson correlation coefficients (y-axis) of genes that
correlate with CLU expression in CLU-high astrocytes — defined as having normalized expression
in the third or fourth quantiles. The p value (against the null hypothesis of no correlation) is shown
on the x-axis. e) Gene ontology enrichment analysis of genes that positively correlate with CLU
from A. The negative log10 p value of enrichment is indicated. f) Outline of astrocyte glioma co-
culture experiment. This panel was created with BioRender.com. g) Heatmap of normalized
expression of astrocytes with CLU over-expression (CLU_OE) versus GFP control astrocytes co-
cultured with U87 glioma cells. The genes are annotated by the correlation coefficient with CLU
from A. h) KEGG/Reactome pathway enrichment in genes differentially expressed in FACSorted
CLU_OE astrocytes versus GFP astrocytes after co-culture with U87 glioma. The negative log10
p value of enrichment is indicated. i) Pre-ranked GSEA in differentially expressed genes between
CLU_OE and GFP control astrocytes for the Ast3 gene signature. Normalized Enrichment Score
(NES) p-values (two tailed t-test) and FDR-adjusted g-values are displayed. j-k) Real-time
quantitative PCR of select genes from CLU_OE, GFP, or LGALS3_OE astrocytes (j) and U87
glioma (k) FACSorted from co-culture. Genes were selected for relevance to Ast3 signature orto
glioma biology). The y-axis shows log normalized delta-delta Ct values. The p values are
indicated. #: one-tailed paired t-test, *: two-tailed paired t-test. n = 3 independent FACsorting
experiments. Error bars indicate standard error of the mean. Comparison group: control
astrocytes not co-cultured with glioma for “red” * or #; control astrocytes co-cultured with U87
cells for “green” * or #. I-m) Gene ontology enrichment of genes differentially expressed in U87
cells co-cultured with GFP astrocytes (versus U87 cells not co-cultured I) or co-cultured with
CLU_OE astrocytes versus U87 glioma co-cultured with GFP astrocytes (m). The negative log10
p value of enrichment is indicated.
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