Supplementary

S9.1 Proofs for Algorithm 2 True Positive Rates and Complexity

Given a HMM P, a set of buckets Viyckets along with corresponding bucketing functions h*
and hY, let’s define «, 5, v*, and 7Y as :

sa=PhIX)NK(Y)#£0 | (X,Y) ~P) (31)
o3 =P(hi(X)Nh(Y)#0 | (X,Y) ~P"PY) (32)
o 7" =E[hj(X)] (33)
7Y =E[hY(X)| (34)

for j € J (we assume that statistics are the same for all j). Moreover, from (8), (9), (10),
and (11) (in main text):

o B(X) ARY(Y)| < 1 (35)

Intuitively, this means that in each band, each pair of data points cannot both appear
in more than one bucket. Using this constraint, we can interpret a, 5, v* and ¥ as true
positive rate, false positive rate, and the expected number of buckets that data points fall
into, in each band:

a= > P(XevYcvinbandj|(X,Y)~P) (36)
vE€Vhuckets

= true positive rate in band j (37)

B= > P(Xe€vYevinbandj|(X,Y)~ PP (38)
vE€Vhuckets

= false positive rate in band j (39)

~* =E[# buckets that X falls into, in band j | X ~ P7] (40)

~Y =E[# buckets that Y falls into, in band j | Y ~ PY] (41)

For details of (36) — (41), see Supplementary Note 2. We can now use (36) — (41) to
compute the complexity of Algorithm 1. The complexity of Algorithm 1 can be divided into
three parts: (i) finding the buckets to which X and Y are mapped, (ii) inserting sequences
X and Y into these buckets, and (iii) checking all the pairs (X,Y") that fall into the same
buckets. Using prefix trees for mapping, the complexity is bounded by:

Cpreﬁm(M + N) . Maa:Depth (42>

where M is the number of sequences in |X|, N is the number of sequences in |Y|, MazDepth
is the maximum depth of the prefix tree, and cprf; is the complexity of progressing one
node further in the prefix tree. Inserting sequences into appropriate buckets has expected
complexity

cinsert(]\i')/:C + N’Yy) (43)

where cinsert is the computational cost of inserting a single sequence into a bucket. Therefore,
the total expected complexity per band is :

CVIT 2016

CprefisM - MaxDepth + cprefiz N - MaxDepth +

Cinsert(]\4’}/m + N’Yy) + Ccompute(a#TP + ﬁ#FP) (44)
where Ceompute denotes complexity of evaluating % via the forward algorithm, #71T P

is the number of jointly generated pairs and #F P is the number of independent pairs among
all pairs (#T P+ #FP = MN). Here we assume nearly all pairs are false, e.g. #7TP < #FP
and #FP ~ MN. Also note that cinsert, Ccompute a0 Cprefiz are constants not depending
on M or N. In practice, many of the true pairs are missed if we only use a single band, and
multiple bands are needed to achieve near one true positive rates. Using J bands, the true
positive rate is:

TPR=1-(1-a)! >1 -/ (45)

This is because the chance of a true pair not being captured in each band is 1 — «, and
we further assume the event that true pairs are captured in different bands are independent.
In order to have a nearly one true positive rate, i.e. TPR > 1 — € for a small ¢, using (45)
we can select

—1
Iz (46)

T«

Thus the overall expected computational complexity of Algorithm 1 is

—Ine

(Cpr-eﬁw(M + N) - MaxDepth + Cz’nsert(M’Ym + N7y)+

ﬁMNccompute) (47)

where Cprefiz and Cinsert are O(1), and Ceompute is equal to O(T|H|?), runtime of the forward
algorithm, in case of HMMs. Given that cprefiz; Cinserts Ccompute and MazxzDepth are constants
not growing with M and N, the complexity is:

O(log(e)((M~* + Nv¥) + BMN) /) (48)

In practice, we observe MaxDepth grows logarithmically with the number of data points.
Here, we assume log(M) and log(N) are small.

S9.2 Supplementary Note 1. String alignment by Maximum Inner
Products Search

Maximum Inner Products Search (MIPS) refers to finding the maximum vector p in a data
collection S such that it maximizes the inner product with a query vector q of the same
dimension. In the case of DNA sequences, we try to find the sequence X in the sequence
collection that maximizes the joint probability of appearing with query sequence Y.

To do this we calculate the joint probability of generating sequence X and sequence Y’
given a latent variable sequence h, which is a vector consisting of matches, insertions and
deletions. This probability can be expressed as the sum over all possible latent variables
that could generate the sequence pair (X,Y’), and thus can be expressed as an inner product
of two vectors (embeddings of X and Y). Hence, in theory it is possible to use MIPS for
solving our statistical inference problem.

However, the limitation is that we one needs to convert any string to its vector embedding.
Since the latent variable sequences that could generate a sequence have 3™ cases for a
string of length n (corresponding to match, insertion, and deletion), the time and space
required to perform the conversion also grow exponentially. Therefore, in practice MIPS is
computationally prohibitive for solving the string alignment problem for strings with length
above ~ 20.

S9.3 Supplementary Note 2. True Positive and True Negative Rates

The true positive rate of Algorithm 2 in a single band is:

o = PREX)NRIY) £D](X,Y) ~P) (49)
D

= Y Pleh™(X), ich’(Y)|(X,Y)~P) (50)
i=1
D

= Y P(Xev,Yeu|(X,Y)~P) (51)
i=1

= fraction of true pairs being called positive (52)

= true positive rate (53)

where (50) holds because of (35). Similarly the false positive rate in a single band is:

B = PME(X)NW(Y) A0 | (X,Y) ~ PPY) (54)
D
= Y Pleh™X, ich(Y)|(X,Y)~P"PY) (55)
i=1
D
= Y P(X€v,Y €v | (X,Y)~P'P) (56)
i=1
= fraction of random pairs being called positive (57)
= false positive rate (58)

where once again (55) holds because of (35). Moreover, note that

D
= ER(0] = Y Pk (X) | X ~) (59)

NE

P(X €v; | X ~P%) (60)
1
= [E[number of buckets that X falls into | X ~ P?] (61)

.
Il

and similarly

~vY = E[number of buckets that X falls into | Y ~ PY] (62)

CVIT 2016

S9.4 Supplementary Note 3. Dynamic Programming For Sequence

Alignment Model

®(Sy,S2) = P(S; Prefix of X, Sy Prefix of Y)
T +T>
= Z P(S; Prefix of X, Sy Prefix of Y | Ay, = match)
Ty=1
P(hp, = match)P(T3)
T1+T>
+ Z P(S; Prefix of X, Sy Prefix of Y | Ay, = insertion)
Ty=1
P(hr, = insertion)P(73)
Ty +T>
+ Z (S1 Prefix of X, Sy Prefix of Y | A, = deletion)

Ts=1

P(hr, = deletion)P(T5)

T1+T>
= Y P(Si[1: Ty — 1] Prefix of X, Sp[1 : Ty — 1] Prefix of Y)
Ty=1
Pm(Sl (Tl), 52(T2))P(hTJ = match)IP’(Tg)
T1+T>
+ Y P(Si[1: Ty] Prefix of X, Sy[1 : Ty — 1] Prefix of Y)
T3=1
P;(S2(T2))P(hy, = insertion)P(T5)
T +T>
+ Y P(Si[1: Ty — 1] Prefix of X, Sp[1 : T3] Prefix of Y)
Ts=1
Pyi(S1(Th))P(hp, = deletion)P(T5)

T +T>
= > B(Si[1: Ty — 1], Sa[l : Ty — 1)) P (S1(Th), Sa(T2))

T3=1
P(hr, = match)P(T3)
T +T>
+ Y O(Si[1: Ty], Sl : Ty — 1)) Pi(S2(Th))

Ty=1
P(hr, = insertion)P(T3)
Ty +T5
+ Z (S1[1: Ty — 1], 8[1 : To]) Pa(S1(T1))

P(hr, = deletion)P(T5)
=®(S1[1: Ty — 1], 82[1 : To — 1])gmateh Pm (S1(T1), S2(T3))
+@(S1[1: Th], S2[1 : To — 1])Ginsertion P (S2(T2))
+®(S1[1: Th — 1], S2[1 : T])qaetetion Pa(S1(T1))

Similarly, we have

(64)

\I/””(Sl) = P(Sl Prefix of X)
T +T>

= Z P(S; Prefix of X | hy, = match)gmaten P(T3)
T5=1
T +T2

+ Z P(Sy Prefix of X | hy, = insertion)qinsertion P(13)
Ts=1
T1+T»

+ Y P(S; Prefix of X | hy, = deletion)qaciction P(T53)
Ts=1
T1+T>

= > P(Si[1: Ty — 1] Prefix of X)gmaten P, (S1(T1)) P(T)
T3=1
Ti+T>

+ Y P(Si[1: Th] Prefix of X)ginsertionP(T3)
Ty=1
T1+T»

+ Y P(Si[1: Ty — 1] Prefix of X)qactetionPa(S1 (11))P(Ts)
Ts=1

= U (S1[1: T1 — 1])gmaten Py, (S1(T1))

+\I’I(Sl [1 : Tl])qinsertion

+U¥(S1[1: Th — 1])qaetetion Pa(S1(T1))

Therefore we have

_ qmatChP%(Sl(Tl)) + qdeletionpd(sl (Tl))
1- Qinsertion

\I/‘”(Sl[l : Tl - 1])

v (S1)

Similarly

\I/y(SQ) _ QmatchP%(SQ(j]TQ)_);Cjijsertionlgi(SQ (TQ))
\I/y(SQ[l : T2 - 1])

T
v(Sy) = [] Pa(si(tr)

t1=1

and

w(Sy) = T PY(Sa(12))

to=1

(71)

Here, P and PY denote marginals of P,,. Note that in the special case where P? = P, and
PY =P

(73)

CVIT 2016

S9.5 Supplementary Note 4. PBSIM Simulation Details

We use PBSIM to generate reads for Experiment 3 with the following specifications:

data-type: CLR

depth: 10

length-mean: 700

length-sd: 150

length-min: 400

length-max: 1000

accuracy-mean: [ACC]

accuracy-sd: 0.07

accuracy-min: [ACC] — 0.1

accuracy-max: [ACC] + 0.1

difference-ratio: 10:60:30
The depth denotes the depth of coverage. [ACC] denotes the mean accuracy for a condition.
We examine conditions where [ACC] ranges from 0.55 to 0.75 (equivalent to error rates from
0.25 to 0.45). The difference ratio denotes the distribution of substitution/insertion/deletion
in the simulation errors. The value used is the default for CLR data-type.

S$9.6 Technical details for Efficient Sequence Alignment by
Sub-quadratic Inference in Sequence Alignment Model.

In the sequence alignment model, X € A”* and Y € B" are dependent on a latent variable
H € H™ where H = {m,i,d} and max(Ty,T») < T3 < Ty + T» as follows:

P(X,Y)=Y_ > PX,Y|H)PH) (74)
T35 HeHTs
where
T3
P(X,Y | H) =P(Xy, Yy | H) = [[P(Xu0. Yirs | he) (75)
t=1
P(H) =[] P(h) (76)

In (75), Xp € {AU{=}}" and Yy € {BU{=}}"®, hy is the ¢*" entry in H, and Xy is
the t* entry in Xp , and:

_ if hy = “4”7
YH,t _ Yt—d(t)» %f he # “d”
-, if hy = “d”

where i(t) (resp. d(t)) is the number of insertions (resp. deletions) before s. Moreover,
P(ht — “m”) + P(ht — “Z'”) + P(ht — Léd”) — 1.

We use dynamic programming to compute ®(S7,S5;) for each string S; € A™ and
Sy € ATz, For any string S, let S[1 : ¢] denote the prefix substring of S of length ¢. It can be

shown that

D(S1,52) = P(S1([1: T1 — 1], So[1 : T])qaetetion Pa(S1(Th))+
O(S1([1: Th], S2[1 : To — 1])ginsertion Pi(S2(T2))+
@(Sl([l . T1 —].], SQ[I . T2 — 1])qmatchPm(Sl(T1), SQ(TQ)) (77)

(See Supplementary Note 3 for proof). For instance:

(I)(AA, CA) :qdeletionq)(Aa CA)Pd(A) + qmatch(p(Aa C)
Pm (A7 A) + qinsertionq)(AAy C)Pz (A) (78)

Similarly, ¥* and ¥¥ can be computed recursively (See Supplementary Note 3). Note
that in (77), the joint probability ® at each node depend on three other nodes (referred to
as parents). Thus, as opposed to the decision trees in case of HMMs, our data structure
is a decision graph (i.e. a directed acyclic graph). Moreover, in contrast to the case of
HMMs where the label of edges were limited to |.A| x |BJ, here the label of edges are from
AxBUAx {-=}U{-} x B (Figure S4).

Now, similar to the case of standard HMMs, we construct Viyckets via a directed graph

where we accept a node w if % is high, and prune it if % or
P(w.Sy,w.Sy)
s,y 18 low.

Algorithm 3 describes a strategy for sub-quadratic sequence alignment given a decision
graph and a set of buckets (analogous to Algorithm 1). Algorithm 5 describes how to
design the decision graph and the set of buckets to minimize the complexity (analogous to
Algorithm 2).

As using a single band usually results in low true positive rates, similar to the case of
HMMs we use multiple bands (Figure S5). However, Algorithm 3 differs from Algorithm 1 in
that we call the pair (X,Y") a positive if both sequences fall into the same bucket in any pair
of bands. In contrast, in Algorithm 1, (X,Y) is called a positive whenever X and Y fall into
the same bucket in the same band. We use this strategy because in contrast to the HMM

problem, in the sequence alignment problem we have data points that are not aligned (i.e.

they could have different lengths).

Selecting Decision Trees.

A naive choice of the decision tree and buckets could lead to high false negative rates or
inefficient runtime of Algorithm 1. Here, we propose an algorithm for constructing the
decision tree and the buckets utilized in Algorithm 1 to minimize the complexity in (14)
while maintaining a near perfect true positive rate. It is clear from (14) that in order to keep
the complexity of the tree low, Viycrets should be designed in a way that

g

L
max{ MN= N M- (79)
« « Q

is small. If we define ®(S1,.S2), ¥*(S1) and UY(S,) as:

®(S1,S2) =P(S; is a prefix of X

and Sy is a prefix of Y) (80)
U*(S1) =P(S; is a prefix of X) (81)
U¥(Sg) =P(S2 is a prefix of Y) (82)

CVIT 2016

Then from (36)-(41) (see supplementary materials) we have:

a= Z D (v.5;,v.5y) (83)

VEVhuckets

¥ = Z U (v.5z) (84)

VEVhuckets

W= > (0.8, (85)
VEVhuckets

B= Y T(0.5,)¥(v.5,) (86)
VEVhuckets

Thus, the decision of whether to prune a node, add it to Viyyepers, or branch it to more
children is done in the following way (i.e., Algorithm 2):
1. designate a node v as a bucket if W‘% > coNM.

ce P(v.55,0.9y) P(v.55,v.5y)
2. prune a node if W S CxN or V(v S CyM.

3. otherwise (if none of the above holds), branch the node to |A| x |B| children.
where ¢y, ¢, and ¢, are constants. In HMMs, ®(v.5;,v.5y), ¥*(v.S;) and ¥¥(v.S,) can be
computed via dynamic programming.

S9.7 Supplementary Algorithms

Algorithm 1 Efficient database search for HMMs.

Input:Alphabets A, B, HMM P(x,y), set of buckets Viyerets, bands J C {1...J},
X={X' . . XN CAT y={Y' .. ,YM} e BT and threshold A € R*.
Output: All pairs of sequences X, Y € X x) satisfying % > A.
Preprocessing: Construct two prefix trees for Vyycrers based on S, and Sy:
For j € J:
map(X, Y, j)
Procedure map(X,),j):
For X in X:
For {v € Viyckets | Prefix®(v, X,j) = 1}:
v.insert,(X).
For Y in):
For {v € Viyckets | Prefix?(v,Y, j) = 1}
v.ansert,(Y).
For v € ‘/buckets:
For X € v:
For Y € v:
Compute % by forward algorithm
presented in ALGORITHM 4.

Call (X,Y) a positive and report a pair if

P(X.Y)
ooy > A

CVIT 2016

Algorithm 2 Constructing Viyegers for HMMs.

Input: bucketing and termination thresholds ¢y, ¢, and c,.
Output: A decision tree G = (V, E), and buckets Viycrets-
Step 1: Initialize root node.
Define root.S, = root.Sy = 0.
Define ®(0, 0, h) = ¥= (D, h) = $¥ (D, h) = 1/|H]
for h € H.
Step 2: ConstructTree(root)
Procedure: ConstructTree(v)
For a € A:
For b € B:
Create a new node w
Set w as the child of v through edge (a,b)
w.S; = 0.8, +a
w.Sy = .5y +b
For h € H:
O (w.Sy, w.Sy, h) +
Yonen P(0.Se,v.8y, 1) Pirans(h | h')
Popit(a,b | h)
U%(w.Sy, h) +
Yonren ¥ (0.8, ') Prrans(h | BY)
Poit(alh)
VY (w.Sy, h) +
Yonen ¥V (0.Sy, 1) Pirans(h | h')
Pemi(b |)
Q(w.Sz, w.Sy) < Y pey Plw.Sz,w.Sy, h)
U (w.Se) = > pep ¥* (.S, h)
WY (w.Sy) < > pep VY (w.Sy, h)
If (% > coNM):
then Viyckets.insert(w) # accept bucket
Else If (%ﬁjy) < ¢y M)
then prune w #do nothing
Else If (W < e N):
then prune w #do nothing
Else then ConstructTree(w) # spawn

Algorithm 3 Sequence alignment via bucketing

Input: The latent variable model P, threshold A, buckets Viyckets, bands J = {1, , J},

X={X1. ., XN CA%and Y = {V!,...YM} € BS.
Output: All pairs of sequences X,Y € X x) satisfying % > A,
For j € J:
For X in X:
For {v € Viyckets | Prefix®(v, X, j) = 1}:
v.insert,(X).
For Y in):
For {v € Viyckets | Prefix?(v,Y, j) = 1}:
v.nsert,(Y).
For v € %uckets:
For X € v:
For Y cuv:
Call (X,Y) a positive

Report the pair if %ﬂ% > A.

CVIT 2016

Algorithm 4 Brute force solution to inference problem in case of HMMs using forward
algorithm.

Input: A threshold A, database X = {X',..., XV} and queries J = {Y! ..., YM}.
Output: All pairs (X,Y) € X x Y that are likely to be produced by the HMM.
Step 1: For X € X:
For Y e).
Run ForwardAlgorithm(X,Y") to compute
P(X,Y), P*(X), and PY(Y).

Report (X,Y) if %ﬁggm > 4.

Procedure: ForwardAlgorithm(X,Y)
Step 1: Initialize p(X,Y,0,h) < 1/|H]|,
p*(X,0,h) < 1/|H], p*(Y,0,h) < 1/|H]
for all h.
Step 2: For t € {1,...,T}:
For h € H:
p(X,Y,t,h) <0
(X, t,h) + 0
pY(Y,t,h) <0
For h' € H:
p(X, Yt h) < p(X,Y,t, h)
+p(X, Yt -1, h/) : Ptrans(h ‘ h/)'
Pemit(xtayt \ h)

p*(X,t,h) « p™(X,t, h)
+p$(X7t - Lh/) : Ptrans(h I h,)
Pemmit(xt | h)

pY(Y,t,h) «— p¥(Y,t, h)
+p¥(Y,t = 1,1') - Pirans(h | B')-
Step 3: P(X,Y) « Y p(X,Y,T,h)
heH
P*(X) + > p*(X,T,h)
heH
PY(Y)+ > p¥(Y,T,h)
heH

Algorithm 5 Constructing Viycrers for sequence alignment model.

Input: bucketing and termination thresholds cg, ¢z, ¢y.
Output: A decision graph, along with a subset of leaf nodes Vyyckets-
Step 1: Initialize root node, root.S, = root.S, = 0. Define ®(0,0) = ¥*(0) = V¥()) =1
Step 2: ConstructGraph(root)
Procedure ConstructGraph(v)
For a € A:
For b € B:
If child node corresponding to (a,b) does not already
exist, create node w with w.S, = v.5; + a,
w.Sy = v.8y + b, ®(w.S, w.Sy) =0
Set w as child of v through edge (a,b)
O (w.Sy,w.Sy) = ®(w.Sy, w.Sy)+
D (v.5;,v.5y)dmateh P (a, b)
U?(w.Sy) = U (v.S;) P (a)
Y (w.Sy) = VY (v.Sy) P (D)
For a in A:
If child node corresponding to (a,—) does not
exist, create node w with w.S; = v.S; + a,
w.Sy = 0.5, and ®(w.S, w.Sy) =0
Set w as child of v through edge (a, —)
O (w.Sy,w.Sy) = ®(w.Sy, w.Sy)+
O (v.55,v.5y) Pinsert Pi(a)
U (w.Sy) = U (v.5;) P~ (a)
For b in B5:
If child node corresponding to (—, b) does not
exist, create node w with w.S, = v.5,,
w.Sy = 0.8y + b and &(w.S;,w.S,) =0
Set w as child of v through edge (—,b)
O (w.Sz,w.Sy) = ®(w.S, w.Sy)+
(I)(U~S:L’7 U‘Sy)qdeletionpd(b)
VY (w.Sy) = ¥¥(v.Sy,)PY (b)
If (% > coNM):
then Viycrets-insert(w) #accept bucket
Else If (W < ¢z N or %ﬁjy) < ecyM):
then prune w #do nothing
Else:

then ConstructGraph(w) #spawn

CVIT 2016

S9.8 Additional Tables

E. coli reads against E. coli genome

False Negatives True Positive Rate

DSB-SA 2912 0.613
Minimap2 4232 0.439
DALIGNER 3534 0.531
BlasR 3479 0.538
MMSeqs2 2695 0.642
GraphMap 4435 0.412
Winnowmap 4688 0.378

Table S1 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of E. coli to the E. coli genome.

E. coli reads against Citrobacter genome

False Negatives True Positive Rate

DSB-SA 2717 0.534
Minimap2 4150 0.289
DALIGNER 3680 0.369
BlasR 4506 0.228
MMSeqs2 3595 0.383
GraphMap 3811 0.346
Winnowmap 5232 0.103

Table S2 Fulse Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of E. coli to the Citrobacter genome.

E. coli reads against G. Endobia genome

False Negatives

True Positive Rate

DSB-SA
Minimap?2
DALIGNER
BlasR
MMSeqs2
GraphMap

Winnowmap

726
848
843
823
743
753
874

0.196
0.0609
0.0664
0.089
0.177
0.166
0.032

Table S3 Fulse Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of E. coli to the G. Endobia genome.

S. cerevisiae reads against S. cerevisiae genome

False Negatives

True Positive Rate

DSB-SA
Minimap?2
DALIGNER
BlasR
MMSeqs2
GraphMap

Winnowmap

55338
117281
90055
111821
49940
119 364
118918

0.560
0.068
0.285
0.111
0.603
0.052
0.0555

Table S4 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of S. Cerevisiae to the S. Cerevisiae genome.

CVIT 2016

H. Sapien Chromosome 12 reads against H. Sapien Chromosome 12 genome

False Negatives True Positive Rate

DSB-SA 18904 0.549
Minimap?2 38439 0.0422
DALIGNER 31018 0.227
BlasR 39489 0.0161
MMSeqs2 19161 0.522
GraphMap 40091 0.0011
Winnowmap 39457 0.01691

Table S5 Fulse Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of H. Sapien Chromosome 12 to the H. Sapien Chromosome 12 genome.

M. Musculus Chromosome 12 reads against M. Musculus Chromosome 12 genome

False Negatives True Positive Rate

DSB-SA 94 0.824
Minimap?2 365 0.3177
DALIGNER 69 0.871
BlasR 326 0.391
MMSeqs2 93 0.826
GraphMap 425 0.206
Winnowmap 399 0.254

Table S6 Fulse Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of M. Musculus Chromosome 12 to M. Musculus 12 genome.

» S$9.9 Additional Figures

18 4 — brute force
— &=0.01, 8=0.05
— £=0.05, 6=0.05
— &=0.1,8=0.05

log runtime(ms)
I~}
L

log N

Figure S1 Log of runtime in milliseconds of DSB-HMM and brute force versus log of
number of sequences N for various values of € and 6 = 0.05. The parameters are selected in
a way that TP > 99% is maintained.

A={0,1} Root B={0,1}

O Expanding Branch

U o]_l’ ‘LJ’ @ Buckets

/ /S/—OO\I\ @ Pruned Branch
[ox)
+| \\Sy:009/

F(001,000, kg = 1) = F(00,00, hy = 0)P.(1,0|hg = 1)P;(hg = 1|hy = 0)
+ F(O0,00, h2 = 1)P,3(1,0|}L3 = 1)B(h; = 1|h2 = 1)

Figure S2 An illustration of HMM decision tree construction. FExamples of accepted,
pruned, and branched nodes are shown. Refer to Algorithm 3 for further details of the tree
construction.

A={Oall} B—{Oall}
X ,= 00 Y,= 00
Xo= . .. Root Y= ..
X.=

@
/’ . O Expanding Branch
XY I’SX=001 XY, Xl Ys @ Buckets
1
i \§y:000))%:i Xy 2 @ Pruned Branch
\\ /
__,’/(a)
X,lY XY X, Y5 X,lY
i X X} Y, X:|v:
X! Ys |
1x1 3x1 2x3 2x2

Number of X insertions: 14+3+2+2=8 =~ Nx} B*=Ny*
Number of Y insertions: 1+1+3+2=7 = Mx} B*=My*
Number of positives considered: 1+3+6+4=14 =~ NxMx} B*B*=NMf

(b)

Figure S3 The figure illustrates mapping sequences to buckets through decision trees, and
checking collisions between sequences in each bucket (Algorithm 2). (a) The path for sequences
X1 =001 and Y1 = 000 are shown in green and orange, respectively. (b) The complexity
of the algorithm involves insertion of sequences X € X (here 8 insertions), insertions of
sequences Y € Y (here 7 insertions) and checking each pair X andY in each bucket (here
14 checks). Refer to Algorithm 2 for further details.

CVIT 2016

QO Expanding Branch
. @ Buckets
@ Pruned Branch

P®(AA, CA) = quctetion®(A, CA) Py(A)
+ Gmaten®(4, C) P (4, A) 1
+ GinsertionP(AA, C)Fi(A) I

U (A4) = U7 (A) B (4), T(CA) = T (C) Pu(4))

@ ‘/[\ |

Sy If &/9* % > ¢,NM,| (If ®/¥*<¢,N, Otherwise

S=CA " " " "
y then "accept spawn

ord /¥ < ¢, M,
then "prune"
(b)

Figure S4 Graph construction for the string alignment problem with alphabet A = {A,C}
(we exclude G and T from the alphabet for simplicity). Each node is either a leaf node, or has
eight children, corresponding to {(A, A), (A,C),(C, A),(C,C),(A,-),(C,-),(—,A), (-, C)}.
Because of insertions and deletions, each node of this graph can have up to three parents,
e.g. node v corresponding to (AA,CA) has parents (A,C), (AA,C), (A,CA). We compute
,U% and WY on the nodes of the graph recursively, starting from the root. If % exceed a
threshold, the corresponding node gets accepted as a bucket, while if % or fy goes below
a threshold, the corresponding node gets pruned. If mone of these scenarios holds, the
corresponding node gets spawned. For further details, refer to Algorithm 5.

X,=AACAA shift,(X,)=ACAA shifty(X,)=CAA

X,=ACCCC shift,(X,)=CCCC shift,(X,)=CCC

X,;=CACCA shift,(X;)=ACCA shifty(X;)=CCA
— -

Root

=) : Pt
. @ Pruncd Branch
Figure S5 Running Algorithm 2 on a single band usually results in a large number of false
negatives. To alleviate this, we use multiple bands, where in each band we shift sequences.
We insert the shifted data into the decision tree, and check all collisions in each band. Refer
to Algorithm 4 for further details.

	S9.1 Proofs for Algorithm 2 True Positive Rates and Complexity
	S9.2 Supplementary Note 1. String alignment by Maximum Inner Products Search
	S9.3 Supplementary Note 2. True Positive and True Negative Rates
	S9.4 Supplementary Note 3. Dynamic Programming For Sequence Alignment Model
	S9.5 Supplementary Note 4. PBSIM Simulation Details
	S9.6 Technical details for Efficient Sequence Alignment by Sub-quadratic Inference in Sequence Alignment Model.
	S9.7 Supplementary Algorithms
	S9.8 Additional Tables
	S9.9 Additional Figures

