
Supplementary

S9.1 Proofs for Algorithm 2 True Positive Rates and Complexity
Given a HMM P, a set of buckets Vbuckets along with corresponding bucketing functions hx

and hy, let’s define α, β, γx, and γy as :

• α = P (hx
j (X) ∩ hy

j (Y) ̸= ∅ | (X, Y) ∼ P) (31)

• β = P (hx
j (X) ∩ hy

j (Y) ̸= ∅ | (X, Y) ∼ PxPy) (32)

• γx = E|hx
j (X)| (33)

• γy = E|hy
j (X)| (34)

for j ∈ J (we assume that statistics are the same for all j). Moreover, from (8), (9), (10),
and (11) (in main text):

• |hx
j (X) ∩ hy

j (Y)| ≤ 1 (35)

Intuitively, this means that in each band, each pair of data points cannot both appear
in more than one bucket. Using this constraint, we can interpret α, β, γx and γy as true
positive rate, false positive rate, and the expected number of buckets that data points fall
into, in each band:

α =
∑

v∈Vbuckets

P (X ∈ v, Y ∈ v in band j | (X, Y) ∼ P) (36)

= true positive rate in band j (37)

β =
∑

v∈Vbuckets

P (X ∈ v, Y ∈ v in band j | (X, Y) ∼ PxPy) (38)

= false positive rate in band j (39)
γx =E[# buckets that X falls into, in band j | X ∼ Px] (40)
γy =E[# buckets that Y falls into, in band j | Y ∼ Py] (41)

For details of (36) − (41), see Supplementary Note 2. We can now use (36) − (41) to
compute the complexity of Algorithm 1. The complexity of Algorithm 1 can be divided into
three parts: (i) finding the buckets to which X and Y are mapped, (ii) inserting sequences
X and Y into these buckets, and (iii) checking all the pairs (X, Y) that fall into the same
buckets. Using prefix trees for mapping, the complexity is bounded by:

cprefix(M + N) ·MaxDepth (42)

where M is the number of sequences in |X |, N is the number of sequences in |Y|, MaxDepth
is the maximum depth of the prefix tree, and cprefix is the complexity of progressing one
node further in the prefix tree. Inserting sequences into appropriate buckets has expected
complexity

cinsert(Mγx + Nγy) (43)

where cinsert is the computational cost of inserting a single sequence into a bucket. Therefore,
the total expected complexity per band is :

CVIT 2016

cprefixM ·MaxDepth + cprefixN ·MaxDepth +
cinsert(Mγx + Nγy) + ccompute(α#TP + β#FP) (44)

where ccompute denotes complexity of evaluating P(X,Y)
Px(X)Py(Y) via the forward algorithm, #TP

is the number of jointly generated pairs and #FP is the number of independent pairs among
all pairs (#TP +#FP = MN). Here we assume nearly all pairs are false, e.g. #TP ≪ #FP

and #FP ≈ MN . Also note that cinsert, ccompute and cprefix are constants not depending
on M or N . In practice, many of the true pairs are missed if we only use a single band, and
multiple bands are needed to achieve near one true positive rates. Using J bands, the true
positive rate is:

TPR = 1− (1− α)J ≥ 1− e−αJ (45)

This is because the chance of a true pair not being captured in each band is 1− α, and
we further assume the event that true pairs are captured in different bands are independent.
In order to have a nearly one true positive rate, i.e. TPR ≥ 1− ϵ for a small ϵ, using (45)
we can select

J ≥ − ln ϵ

α
, (46)

Thus the overall expected computational complexity of Algorithm 1 is

− ln ϵ

α

(
cprefix(M + N) ·MaxDepth + cinsert(Mγx + Nγy)+

βMNccompute

)
(47)

where cprefix and cinsert are O(1), and ccompute is equal to O(T |H|2), runtime of the forward
algorithm, in case of HMMs. Given that cprefix , cinsert , ccompute and MaxDepth are constants
not growing with M and N , the complexity is:

O(log(ϵ)((Mγx + Nγy) + βMN)/α) (48)

In practice, we observe MaxDepth grows logarithmically with the number of data points.
Here, we assume log(M) and log(N) are small.

S9.2 Supplementary Note 1. String alignment by Maximum Inner
Products Search

Maximum Inner Products Search (MIPS) refers to finding the maximum vector p in a data
collection S such that it maximizes the inner product with a query vector q of the same
dimension. In the case of DNA sequences, we try to find the sequence X in the sequence
collection that maximizes the joint probability of appearing with query sequence Y .

To do this we calculate the joint probability of generating sequence X and sequence Y

given a latent variable sequence h, which is a vector consisting of matches, insertions and
deletions. This probability can be expressed as the sum over all possible latent variables
that could generate the sequence pair (X, Y), and thus can be expressed as an inner product
of two vectors (embeddings of X and Y). Hence, in theory it is possible to use MIPS for
solving our statistical inference problem.

However, the limitation is that we one needs to convert any string to its vector embedding.
Since the latent variable sequences that could generate a sequence have 3n cases for a
string of length n (corresponding to match, insertion, and deletion), the time and space
required to perform the conversion also grow exponentially. Therefore, in practice MIPS is
computationally prohibitive for solving the string alignment problem for strings with length
above ∼ 20.

S9.3 Supplementary Note 2. True Positive and True Negative Rates
The true positive rate of Algorithm 2 in a single band is:

α = P (hx(X) ∩ hy(Y) ̸= ∅ | (X, Y) ∼ P) (49)

=
D∑

i=1
P (i ∈ hx(X), i ∈ hy(Y) | (X, Y) ∼ P) (50)

=
D∑

i=1
P (X ∈ vi, Y ∈ vi | (X, Y) ∼ P) (51)

= fraction of true pairs being called positive (52)
= true positive rate (53)

where (50) holds because of (35). Similarly the false positive rate in a single band is:

β = P (hx(X) ∩ hy(Y) ̸= ∅ | (X, Y) ∼ PxPy) (54)

=
D∑

i=1
P (i ∈ hxX, i ∈ hy(Y) | (X, Y) ∼ PxPy) (55)

=
D∑

i=1
P (X ∈ vi, Y ∈ vi | (X, Y) ∼ PxPy) (56)

= fraction of random pairs being called positive (57)
= false positive rate (58)

where once again (55) holds because of (35). Moreover, note that

γx = E|hx(X)| =
D∑

i=1
P (i ∈ hx(X) | X ∼ Px) (59)

=
D∑

i=1
P (X ∈ vi | X ∼ Px) (60)

= E[number of buckets that X falls into | X ∼ Px] (61)

and similarly

γy = E[number of buckets that X falls into | Y ∼ Py] (62)

CVIT 2016

S9.4 Supplementary Note 3. Dynamic Programming For Sequence
Alignment Model

Φ(S1, S2) = P(S1 Prefix of X, S2 Prefix of Y)

=
T1+T2∑
T3=1

P(S1 Prefix of X, S2 Prefix of Y | hT3 = match)

P(hT3 = match)P(T3)

+
T1+T2∑
T3=1

P(S1 Prefix of X, S2 Prefix of Y | hT3 = insertion)

P(hT3 = insertion)P(T3)

+
T1+T2∑
T3=1

P(S1 Prefix of X, S2 Prefix of Y | hT3 = deletion)

P(hT3 = deletion)P(T3) (63)

=
T1+T2∑
T3=1

P(S1[1 : T1 − 1] Prefix of X, S2[1 : T2 − 1] Prefix of Y)

Pm(S1(T1), S2(T2))P(hT3 = match)P(T3)

+
T1+T2∑
T3=1

P(S1[1 : T1] Prefix of X, S2[1 : T2 − 1] Prefix of Y)

Pi(S2(T2))P(hT3 = insertion)P(T3)

+
T1+T2∑
T3=1

P(S1[1 : T1 − 1] Prefix of X, S2[1 : T2] Prefix of Y)

Pd(S1(T1))P(hT3 = deletion)P(T3) (64)

=
T1+T2∑
T3=1

Φ(S1[1 : T1 − 1], S2[1 : T2 − 1])Pm(S1(T1), S2(T2))

P(hT3 = match)P(T3)

+
T1+T2∑
T3=1

Φ(S1[1 : T1], S2[1 : T2 − 1])Pi(S2(T2))

P(hT3 = insertion)P(T3)

+
T1+T2∑
T3=1

Φ(S1[1 : T1 − 1], S2[1 : T2])Pd(S1(T1))

P(hT3 = deletion)P(T3) (65)
= Φ(S1[1 : T1 − 1], S2[1 : T2 − 1])qmatchPm(S1(T1), S2(T2))
+Φ(S1[1 : T1], S2[1 : T2 − 1])qinsertionPi(S2(T2))
+Φ(S1[1 : T1 − 1], S2[1 : T2])qdeletionPd(S1(T1)) (66)

Similarly, we have

Ψx(S1) = P(S1 Prefix of X)

=
T1+T2∑
T3=1

P(S1 Prefix of X | hT3 = match)qmatchP (T3)

+
T1+T2∑
T3=1

P(S1 Prefix of X | hT3 = insertion)qinsertionP (T3)

+
T1+T2∑
T3=1

P(S1 Prefix of X | hT3 = deletion)qdeletionP (T3) (67)

=
T1+T2∑
T3=1

P(S1[1 : T1 − 1] Prefix of X)qmatchP x
m(S1(T1))P (T3)

+
T1+T2∑
T3=1

P(S1[1 : T1] Prefix of X)qinsertionP (T3)

+
T1+T2∑
T3=1

P(S1[1 : T1 − 1] Prefix of X)qdeletionPd(S1(T1))P (T3) (68)

= Ψx(S1[1 : T1 − 1])qmatchP x
m(S1(T1))

+Ψx(S1[1 : T1])qinsertion

+Ψx(S1[1 : T1 − 1])qdeletionPd(S1(T1)) (69)

Therefore we have

Ψx(S1) = qmatchP x
m(S1(T1)) + qdeletionPd(S1(T1))

1− qinsertion

Ψx(S1[1 : T1 − 1]) (70)

Similarly

Ψy(S2) = qmatchP y
m(S2(T2)) + qinsertionPi(S2(T2))

1− qdeletion

Ψy(S2[1 : T2 − 1]) (71)

Here, P x
m and P y

m denote marginals of Pm. Note that in the special case where P x
m = Pd and

P y
m = Pi

Ψx(S1) =
T1∏

t1=1
P x

m(S1(t1)) (72)

and

Ψy(S2) =
T2∏

t2=1
P y

m(S2(t2)) (73)

CVIT 2016

S9.5 Supplementary Note 4. PBSIM Simulation Details
We use PBSIM to generate reads for Experiment 3 with the following specifications:

data-type: CLR
depth: 10
length-mean: 700
length-sd: 150
length-min: 400
length-max: 1000
accuracy-mean: [ACC]
accuracy-sd: 0.07
accuracy-min: [ACC]− 0.1
accuracy-max: [ACC] + 0.1
difference-ratio: 10:60:30

The depth denotes the depth of coverage. [ACC] denotes the mean accuracy for a condition.
We examine conditions where [ACC] ranges from 0.55 to 0.75 (equivalent to error rates from
0.25 to 0.45). The difference ratio denotes the distribution of substitution/insertion/deletion
in the simulation errors. The value used is the default for CLR data-type.

S9.6 Technical details for Efficient Sequence Alignment by
Sub-quadratic Inference in Sequence Alignment Model.

In the sequence alignment model, X ∈ AT1 and Y ∈ BT2 are dependent on a latent variable
H ∈ HT3 where H = {m, i, d} and max(T1, T2) ≤ T3 ≤ T1 + T2 as follows:

P(X, Y) =
∑
T3

∑
H∈HT3

P(X, Y | H)P (H) (74)

where

P(X, Y | H) = P(X̄H , ȲH | H) =
T3∏

t=1
P (X̄H,t, ȲH,t | ht) (75)

P(H) =
T3∏

T =1
P (ht) (76)

In (75), X̄H ∈ {A ∪ {−}}T3 and ȲH ∈ {B ∪ {−}}T3 , ht is the tth entry in H, and X̄H,t is
the tth entry in X̄H , and:

X̄H,t =
{

xt−i(t), if ht ̸= “i”
−, if ht = “i”

ȲH,t =
{

yt−d(t), if ht ̸= “d”
−, if ht = “d”

where i(t) (resp. d(t)) is the number of insertions (resp. deletions) before s. Moreover,
P (ht = “m”) + P (ht = “i”) + P (ht = “d”) = 1.

We use dynamic programming to compute Φ(S1, S2) for each string S1 ∈ AT1 and
S2 ∈ AT2 . For any string S, let S[1 : t] denote the prefix substring of S of length t. It can be

shown that

Φ(S1, S2) = Φ(S1([1 : T1 − 1], S2[1 : T2])qdeletionPd(S1(T1))+
Φ(S1([1 : T1], S2[1 : T2 − 1])qinsertionPi(S2(T2))+

Φ(S1([1 : T1 − 1], S2[1 : T2 − 1])qmatchPm(S1(T1), S2(T2)) (77)

(See Supplementary Note 3 for proof). For instance:

Φ(AA, CA) =qdeletionΦ(A, CA)Pd(A) + qmatchΦ(A, C)
Pm(A, A) + qinsertionΦ(AA, C)Pi(A) (78)

Similarly, Ψx and Ψy can be computed recursively (See Supplementary Note 3). Note
that in (77), the joint probability Φ at each node depend on three other nodes (referred to
as parents). Thus, as opposed to the decision trees in case of HMMs, our data structure
is a decision graph (i.e. a directed acyclic graph). Moreover, in contrast to the case of
HMMs where the label of edges were limited to |A| × |B|, here the label of edges are from
A× B ∪A× {−} ∪ {−} × B (Figure S4).

Now, similar to the case of standard HMMs, we construct Vbuckets via a directed graph
where we accept a node w if Φ(w.Sx,w.Su)

Ψx(w.Sx)Ψy(w.Sy) is high, and prune it if Φ(w.Sx,w.Su)
Ψx(w.Sx) or

Φ(w.Sx,w.Su)
Ψy(w.Sy) is low.

Algorithm 3 describes a strategy for sub-quadratic sequence alignment given a decision
graph and a set of buckets (analogous to Algorithm 1). Algorithm 5 describes how to
design the decision graph and the set of buckets to minimize the complexity (analogous to
Algorithm 2).

As using a single band usually results in low true positive rates, similar to the case of
HMMs we use multiple bands (Figure S5). However, Algorithm 3 differs from Algorithm 1 in
that we call the pair (X, Y) a positive if both sequences fall into the same bucket in any pair
of bands. In contrast, in Algorithm 1, (X, Y) is called a positive whenever X and Y fall into
the same bucket in the same band. We use this strategy because in contrast to the HMM
problem, in the sequence alignment problem we have data points that are not aligned (i.e.
they could have different lengths).

Selecting Decision Trees.

A naive choice of the decision tree and buckets could lead to high false negative rates or
inefficient runtime of Algorithm 1. Here, we propose an algorithm for constructing the
decision tree and the buckets utilized in Algorithm 1 to minimize the complexity in (14)
while maintaining a near perfect true positive rate. It is clear from (14) that in order to keep
the complexity of the tree low, Vbuckets should be designed in a way that

max
{

MN
β

α
, N

γx

α
, M

γy

α

}
(79)

is small. If we define Φ(S1, S2), Ψx(S1) and Ψy(S2) as:

Φ(S1, S2) =P (S1 is a prefix of X

and S2 is a prefix of Y) (80)
Ψx(S1) =P (S1 is a prefix of X) (81)
Ψy(S2) =P (S2 is a prefix of Y) (82)

CVIT 2016

Then from (36)-(41) (see supplementary materials) we have:

α =
∑

v∈Vbuckets

Φ(v.Sx, v.Sy) (83)

γx =
∑

v∈Vbuckets

Ψx(v.Sx) (84)

γy =
∑

v∈Vbuckets

Ψy(v.Sy) (85)

β =
∑

v∈Vbuckets

Ψx(v.Sx)Ψy(v.Sy) (86)

Thus, the decision of whether to prune a node, add it to Vbuckets, or branch it to more
children is done in the following way (i.e., Algorithm 2):
1. designate a node v as a bucket if Φ(v.Sx,v.Sy)

Ψx(v.Sx)Ψy(v.Sy) ≥ c0NM .
2. prune a node if Φ(v.Sx,v.Sy)

Ψx(v.Sx) ≤ cxN or Φ(v.Sx,v.Sy)
Ψy(v.Sy) ≤ cyM .

3. otherwise (if none of the above holds), branch the node to |A| × |B| children.
where c0, cx and cy are constants. In HMMs, Φ(v.Sx, v.Sy), Ψx(v.Sx) and Ψy(v.Sy) can be
computed via dynamic programming.

S9.7 Supplementary Algorithms

Algorithm 1 Efficient database search for HMMs.

Input:Alphabets A, B, HMM P(x, y), set of buckets Vbuckets, bands J ⊆ {1 . . . J},
X = {X1, ..., XN} ⊆ AT , Y = {Y 1, ..., Y M} ∈ BT , and threshold ∆ ∈ R+.
Output: All pairs of sequences X, Y ∈ X × Y satisfying P(X,Y)

Px(X)Py(Y) > ∆.
Preprocessing: Construct two prefix trees for Vbuckets based on Sx and Sy:
For j ∈ J :

map(X ,Y, j)
Procedure map(X ,Y, j):

For X in X :
For {v ∈ Vbuckets | Prefixx(v, X, j) = 1}:

v.insertx(X).
For Y in Y:

For {v ∈ Vbuckets | Prefixy(v, Y, j) = 1}:
v.inserty(Y).

For v ∈ Vbuckets:
For X ∈ v:

For Y ∈ v:
Compute P(X,Y)

Px(X)Py(Y) by forward algorithm
presented in ALGORITHM 4.

Call (X, Y) a positive and report a pair if
P(X,Y)

Px(X)Py(Y) > ∆.

CVIT 2016

Algorithm 2 Constructing Vbuckets for HMMs.

Input: bucketing and termination thresholds c0, cx and cy.
Output: A decision tree G = (V, E), and buckets Vbuckets.
Step 1: Initialize root node.

Define root.Sx = root.Sy = ∅.
Define Φ(∅, ∅, h) = Ψx(∅, h) = Ψy(∅, h) = 1/|H|

for h ∈ H.
Step 2: ConstructTree(root)
Procedure: ConstructTree(v)

For a ∈ A:
For b ∈ B:

Create a new node w

Set w as the child of v through edge (a, b)
w.Sx = v.sx + a

w.Sy = v.sy + b

For h ∈ H:
Φ(w.Sx, w.Sy, h)←∑

h′∈H Φ(v.Sx, v.Sy, h′)Ptrans(h | h′)
Pemit(a, b | h)
Ψx(w.Sx, h)←∑

h′∈H Ψx(v.Sx, h′)Ptrans(h | h′)
P x

emit(a | h)
Ψy(w.Sy, h)←∑

h′∈H Ψy(v.Sy, h′)Ptrans(h | h′)
P y

emit(b | h)
Φ(w.Sx, w.Sy)←

∑
h∈H Φ(w.Sx, w.Sy, h)

Ψx(w.Sx)←
∑

h∈H Ψx(w.Sx, h)
Ψy(w.Sy)←

∑
h∈H Ψy(w.Sy, h)

If (Φ(w.Sx,w.Sy)
Ψx(w.Sx)Ψy(w.Sy) > c0NM):
then Vbuckets.insert(w) # accept bucket

Else If (Φ(w.Sx,w.Sy)
Ψy(w.Sy) < cyM)

then prune w #do nothing
Else If (Φ(w.Sx,w.Sy)

Ψx(w.Sx) < cxN):
then prune w #do nothing

Else then ConstructTree(w) # spawn

Algorithm 3 Sequence alignment via bucketing

Input: The latent variable model P, threshold ∆, buckets Vbuckets, bands J = {1, · · · , J},
X = {X1, ..., XN} ⊆ AS and Y = {Y 1, ..., Y M} ∈ BS .
Output: All pairs of sequences X, Y ∈ X × Y satisfying P(X,Y)

Px(X)Py(Y) > ∆.
For j ∈ J :

For X in X :
For {v ∈ Vbuckets | Prefixx(v, X, j) = 1}:

v.insertx(X).
For Y in Y:

For {v ∈ Vbuckets | Prefixy(v, Y, j) = 1}:
v.inserty(Y).

For v ∈ Vbuckets:
For X ∈ v:

For Y ∈ v:
Call (X, Y) a positive
Report the pair if P(X,Y)

Px(X)Py(Y) > ∆.

CVIT 2016

Algorithm 4 Brute force solution to inference problem in case of HMMs using forward
algorithm.

Input: A threshold ∆, database X = {X1, . . . , XN} and queries Y = {Y 1, . . . , Y M}.
Output: All pairs (X, Y) ∈ X × Y that are likely to be produced by the HMM.
Step 1: For X ∈ X :

For Y ∈ Y:
Run ForwardAlgorithm(X, Y) to compute
P(X, Y), Px(X), and Py(Y).
Report (X, Y) if P(X,Y)

Px(X)Py(Y) > ∆.

Procedure: ForwardAlgorithm(X, Y)
Step 1: Initialize ρ(X, Y, 0, h)← 1/|H|,

ρx(X, 0, h)← 1/|H|, ρy(Y, 0, h)← 1/|H|
for all h.

Step 2: For t ∈ {1, ..., T}:
For h ∈ H:

ρ(X, Y, t, h)← 0
ρx(X, t, h)← 0
ρy(Y, t, h)← 0
For h′ ∈ H:

ρ(X, Y, t, h)← ρ(X, Y, t, h)
+ρ(X, Y, t− 1, h′) · Ptrans(h | h′)·
Pemit(xt, yt | h)

ρx(X, t, h)← ρx(X, t, h)
+ρx(X, t− 1, h′) · Ptrans(h | h′)·
P x

emit(xt | h)

ρy(Y, t, h)← ρy(Y, t, h)
+ρy(Y, t− 1, h′) · Ptrans(h | h′)·
P y

emit(yt | h)
Step 3: P(X, Y)←

∑
h∈H

ρ(X, Y, T, h)

Px(X)←
∑

h∈H
ρx(X, T, h)

Py(Y)←
∑

h∈H
ρy(Y, T, h)

Algorithm 5 Constructing Vbuckets for sequence alignment model.

Input: bucketing and termination thresholds c0, cx, cy.
Output: A decision graph, along with a subset of leaf nodes Vbuckets.
Step 1: Initialize root node, root.Sx = root.Sy = ∅. Define Φ(∅, ∅) = Ψx(∅) = Ψy(∅) = 1
Step 2: ConstructGraph(root)
Procedure ConstructGraph(v)

For a ∈ A:
For b ∈ B:

If child node corresponding to (a, b) does not already
exist, create node w with w.Sx = v.Sx + a,
w.Sy = v.Sy + b, Φ(w.Sx, w.Sy) = 0

Set w as child of v through edge (a, b)
Φ(w.Sx, w.Sy) = Φ(w.Sx, w.Sy)+

Φ(v.Sx, v.Sy)qmatchPm(a, b)
Ψx(w.Sx) = Ψx(v.Sx)Pm(a)
Ψy(w.Sy) = Ψy(v.Sy)Pm(b)

For a in A:
If child node corresponding to (a,−) does not

exist, create node w with w.Sx = v.Sx + a,
w.Sy = v.Sy and Φ(w.Sx, w.Sy) = 0

Set w as child of v through edge (a,−)
Φ(w.Sx, w.Sy) = Φ(w.Sx, w.Sy)+

Φ(v.Sx, v.Sy)PinsertPi(a)
Ψx(w.Sx) = Ψx(v.Sx)P x

m(a)
For b in B:

If child node corresponding to (−, b) does not
exist, create node w with w.Sx = v.Sx,
w.Sy = v.Sy + b and Φ(w.Sx, w.Sy) = 0

Set w as child of v through edge (−, b)
Φ(w.Sx, w.Sy) = Φ(w.Sx, w.Sy)+

Φ(v.Sx, v.Sy)qdeletionPd(b)
Ψy(w.Sy) = Ψy(v.Sy)P y

m(b)
If (Φ(w.Sx,w.Sy)

Ψx(w.Sx)Ψy(w.Sy) > c0NM):
then Vbuckets.insert(w) #accept bucket

Else If (Φ(w.Sx,w.Sy)
Ψx(w.Sx) < cxN or Φ(w.Sx,w.Sy)

Ψy(w.Sy) < cyM):
then prune w #do nothing

Else:
then ConstructGraph(w) #spawn

CVIT 2016

S9.8 Additional Tables

E. coli reads against E. coli genome

False Negatives True Positive Rate

DSB-SA 2912 0.613
Minimap2 4232 0.439
DALIGNER 3534 0.531
BlasR 3479 0.538
MMSeqs2 2695 0.642
GraphMap 4435 0.412
Winnowmap 4688 0.378

Table S1 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of E. coli to the E. coli genome.

E. coli reads against Citrobacter genome

False Negatives True Positive Rate

DSB-SA 2717 0.534
Minimap2 4150 0.289
DALIGNER 3680 0.369
BlasR 4506 0.228
MMSeqs2 3595 0.383
GraphMap 3811 0.346
Winnowmap 5232 0.103

Table S2 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of E. coli to the Citrobacter genome.

E. coli reads against G. Endobia genome

False Negatives True Positive Rate

DSB-SA 726 0.196
Minimap2 848 0.0609
DALIGNER 843 0.0664
BlasR 823 0.089
MMSeqs2 743 0.177
GraphMap 753 0.166
Winnowmap 874 0.032

Table S3 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of E. coli to the G. Endobia genome.

S. cerevisiae reads against S. cerevisiae genome

False Negatives True Positive Rate

DSB-SA 55 338 0.560
Minimap2 117 281 0.068
DALIGNER 90 055 0.285
BlasR 111 821 0.111
MMSeqs2 49 940 0.603
GraphMap 119 364 0.052
Winnowmap 118 918 0.0555

Table S4 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of S. Cerevisiae to the S. Cerevisiae genome.

CVIT 2016

H. Sapien Chromosome 12 reads against H. Sapien Chromosome 12 genome

False Negatives True Positive Rate

DSB-SA 18 904 0.549
Minimap2 38 439 0.0422
DALIGNER 31 018 0.227
BlasR 39 489 0.0161
MMSeqs2 19 161 0.522
GraphMap 40 091 0.0011
Winnowmap 39 457 0.016 91

Table S5 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of H. Sapien Chromosome 12 to the H. Sapien Chromosome 12 genome.

M. Musculus Chromosome 12 reads against M. Musculus Chromosome 12 genome

False Negatives True Positive Rate

DSB-SA 94 0.824
Minimap2 365 0.3177
DALIGNER 69 0.871
BlasR 326 0.391
MMSeqs2 93 0.826
GraphMap 425 0.206
Winnowmap 399 0.254

Table S6 False Negatives/True Positive Rate analysis of various methods for mapping
PacBio long reads of M. Musculus Chromosome 12 to M. Musculus 12 genome.

S9.9 Additional Figures252

Figure S1 Log of runtime in milliseconds of DSB-HMM and brute force versus log of
number of sequences N for various values of ϵ and δ = 0.05. The parameters are selected in
a way that TP ≥ 99% is maintained.

Figure S2 An illustration of HMM decision tree construction. Examples of accepted,
pruned, and branched nodes are shown. Refer to Algorithm 3 for further details of the tree
construction.

Figure S3 The figure illustrates mapping sequences to buckets through decision trees, and
checking collisions between sequences in each bucket (Algorithm 2). (a) The path for sequences
X1 = 001 and Y1 = 000 are shown in green and orange, respectively. (b) The complexity
of the algorithm involves insertion of sequences X ∈ X (here 8 insertions), insertions of
sequences Y ∈ Y (here 7 insertions) and checking each pair X and Y in each bucket (here
14 checks). Refer to Algorithm 2 for further details.

CVIT 2016

Figure S4 Graph construction for the string alignment problem with alphabet A = {A, C}
(we exclude G and T from the alphabet for simplicity). Each node is either a leaf node, or has
eight children, corresponding to {(A, A), (A, C), (C, A), (C, C), (A,−), (C,−), (−, A), (−, C)}.
Because of insertions and deletions, each node of this graph can have up to three parents,
e.g. node v corresponding to (AA,CA) has parents (A,C), (AA,C), (A,CA). We compute Φ
,Ψx and Ψy on the nodes of the graph recursively, starting from the root. If Φ

ΨxΨy exceed a
threshold, the corresponding node gets accepted as a bucket, while if Φ

Ψx or Φ
Ψy goes below

a threshold, the corresponding node gets pruned. If none of these scenarios holds, the
corresponding node gets spawned. For further details, refer to Algorithm 5.

Figure S5 Running Algorithm 2 on a single band usually results in a large number of false
negatives. To alleviate this, we use multiple bands, where in each band we shift sequences.
We insert the shifted data into the decision tree, and check all collisions in each band. Refer
to Algorithm 4 for further details.

	S9.1 Proofs for Algorithm 2 True Positive Rates and Complexity
	S9.2 Supplementary Note 1. String alignment by Maximum Inner Products Search
	S9.3 Supplementary Note 2. True Positive and True Negative Rates
	S9.4 Supplementary Note 3. Dynamic Programming For Sequence Alignment Model
	S9.5 Supplementary Note 4. PBSIM Simulation Details
	S9.6 Technical details for Efficient Sequence Alignment by Sub-quadratic Inference in Sequence Alignment Model.
	S9.7 Supplementary Algorithms
	S9.8 Additional Tables
	S9.9 Additional Figures

