
1 
 

Supplementary Information 

 

Chemistry-intuitive explanation of  graph neural networks for 

molecular property prediction with substructure masking 

Zhenxing Wu1,2, Jike Wang1,2,3, Hongyan Du1,2, Dejun Jiang1,2, Yu Kang1, Dan Li1, 

Peichen Pan1, Yafeng Deng2, Dongsheng Cao4,*, Chang-Yu Hsieh1,*, Tingjun Hou1,* 

 

 

1Innovation Institute for Artificial Intelligence in Medicine of  Zhejiang University, 

College of  Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, 

Zhejiang, P. R. China 

2CarbonSilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, P. R. China  

3National Engineering Research Center for Multimedia Software, School of  

Computer Science, Wuhan University, Wuhan 430072, Hubei, P. R. China. 

4Xiangya School of  Pharmaceutical Sciences, Central South University, Changsha 

410004, Hunan, P. R. China 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Supplementary Table 1. The performance of  the consensus models on the test sets. 

Model Type Metric Performance 

BBBP_MW regression R2 0.9906 

BBBP_LogP regression R2 0.9829 

BBBP_TPSA regression R2 0.9997 

BBBP_HBDs regression R2 0.9923 

 

 

Supplementary Table 2. The details of  the four datasets. 

Dataset Type 
Data 

capacity 

Positive sample 

size 

Negative sample 

size 

ESOL regression 1111 ––– ––– 

Mutagenicity classification 7672 Mutagens: 4309 
Nonmutagens: 

3363 

hERG classification 9876 Bloockers: 5090 Nonblockers: 4786 

BBBP classification 1859 BBB+: 1433 BBB-: 426 

 

 

Supplementary Table 3. The detailed information of  different datasets. 

Category Description 
The number 

of  molecules 

ESOL 

Small dataset consisting of  water solubility data for 1111 

compounds1. The duplicated molecules and the molecules 

with conflicting label values are excluded. 

1111 

Mutagenicity 

The training set for model building was collected from four 

papers. The data set for external validation was extracted 

from the Web site of  Lazar toxicity predictions. The entire 

database was prepared as following. First, apart from the four 

false SMILES strings, duplicate molecules were removed from 

the five sources by using canonical SMILES. Second, 

molecules without clear E or Z configuration were removed. 

Third, inorganic compounds were omitted from the data set. 

7672 
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The last step was to eliminate the tautomers and compounds 

with molecular weight less than 40 or more than 800 in the 

data set. When doing the data set curation, we followed one 

principle. For a given compound, if  the experimental 

mutagenicity data varied in different sources, the compound 

was cleared out. For compounds without defined steric 

configuration or tautomers, if  the experimental mutagenicity 

data was alike, then only one structure was kept, and the 

others were deleted.2  

hERG 

The original chemicals with experimental IC50 values are 

collected from a publication3 and CHEMBL database. 

Molecules with IC50 ≤10 μM are classified as hERG blockers, 

and molecules with IC50 > 10μM are classified as hERG 

nonblockers. Inorganic compounds, noncovalent complexes 

and mixtures are removed from the data set. The duplicated 

molecules and the molecules with conflicting label values were 

excluded.  

9876 

BBBP 

The dataset is from ADMET lab 2.0.4 

Category 0: BBB-; Category 1: BBB+; 

The molecules were divided into BBB+ and BBB-classes with 

logBB ≥-1 and logBB < -1, respectively. 

1859 

Supplementary Table 4. The canonical SMILES of  the compounds for analysis. 

Molecule Canonical SMILES 

Compound 1 CC1CCC(C(C1)O)C(C)C 

Compound 2 COc1ccc(C(O)(c2cncnc2)C2CC2)cc1 

Compound 3 Nc1c(C(=O)O)cc([N+](=O)[O-])c2c1C(=O)c1ccccc1C2=O 

Compound 4 Cc1ccc(N)cc1[N+](=O)[O-] 

Compound 5 COc1cc([N+](=O)[O-])ccc1N 
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Compound 6 [N-]=[N+]=Nc1ccc(F)c([N+](=O)[O-])c1 

Compound 7 O=[N+](c1cc2c(cccc2)c2ccccc21)[O-] 

Compound 8 NCc1ccc(F)c(C2CCN(C(=O)c3cccc(-c4nc(-c5cccs5)no4)c3)CC2)c1 

Compound 9 NCc1ccc(F)c(C2CCN(C(=O)c3cc(C(=O)O)cc(-c4nc(-c5cccs5)no4)c3)CC2)c1 

Compound 10 NCc1ccc(F)c(C2CCN(C(=O)c3cc(C(N)=O)cc(-c4nc(-c5cccs5)no4)c3)CC2)c1 

Compound 11 COc1ccc(CCN2CCC(CCc3ccccc3OCCF)CC2)cc1 

Compound 12 FCCOc1ccccc1CCC1CCN(CCc2ccccc2)CC1 

Compound 13 FCCOc1ccccc1CCN1CCN(CCc2ccccc2Cl)CC1 

Compound 14 FCCOc1ccccc1CCN1CCN(CCc2ccccc2)CC1 

Compound 15 CCn1nc(Cc2ccc(C#N)cc2)cc1C1CCN(C[C@H]2CN([C@@H](C(=O)O)C(C)(C)C)

C[C@@H]2c2cccc(F)c2)CC1 

Compound 16 CCn1nc(Cc2ccc(S(C)(=O)=O)cc2)cc1C1CCN(C[C@H]2CN([C@@H](C(=O)O)C(

C)(C)C)C[C@@H]2c2cccc(F)c2)CC1 

Compound 17 Nc1ccc2nc(Cc3ccc(Oc4ccccc4)cc3)[nH]c2c1 

Compound 18 CC(=O)Nc1ccc2nc(Cc3ccc(Oc4ccccc4)cc3)[nH]c2c1 

Supplementary Table 5. The initial node (atom) and edge (bond) information used in 

RGCN. 

Node(atom) feature Size Description 

Atom symbol 16 [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal] (one-hot) 

degree 6 number of  covalent bonds [0,1,2,3,4,5] (one-hot) 

formal charge 1 electrical charge (integer) 

hybridization 6 [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot) 

aromaticity 1 whether the atom is part of  an aromatic system [0/1] (one-hot) 

hydrogens 5 number of  connected hydrogens [0,1,2,3,4] (one-hot) 

chirality 1 whether the atom is chiral center [0/1] (one-hot) 

chirality type 2 [R, S] (one-hot) 
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Edge (bond) feature Size Description 

bond type 4 [single, double, triple, aromatic] 

conjugation 1 whether the bond is conjugated [0/1] 

ring 1 whether the bond is in ring [0/1] 

stereo 4 [StereoNone, StereoAny, StereoZ, StereoE] 

Supplementary Table 6. The hyperparameters of  different models. 

Model Parameters to be optimized Package 

ESOL 

the number of  nodes of  each RGCN hidden layer: [64, 128, 256] 

the number of  RGCN hidden layer: [2, 3] 

the number of  nodes of  each FC hidden layer: [64, 128, 256] 

the dropout rate of  each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 

0.5] 

the dropout rate of  each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 

0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of  epochs: 500 

the patience of  early stop: 30 

DGL 

0.7.1 

Mutagenicity 

the number of  nodes of  each RGCN hidden layer: [64, 128, 256] 

the number of  RGCN hidden layer: [2, 3] 

the number of  nodes of  each FC hidden layer: [64, 128, 256] 

the dropout rate of  each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 

0.4, 0.5] 

the dropout rate of  each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 

0.5] 

DGL 

0.7.1 
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the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of  epochs: 500 

the patience of  early stop: 30 

hERG 

the number of  nodes of  each RGCN hidden layer: [64, 128, 256] 

the number of  RGCN hidden layer: [2, 3] 

the number of  nodes of  each FC hidden layer: [64, 128, 256] 

the dropout rate of  each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 

0.4, 0.5] 

the dropout rate of  each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 

0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of  epochs: 500 

the patience of  early stop: 30 

DGL 

0.7.1 

BBBP 

the number of  nodes of  each RGCN hidden layer: [64, 128, 256] 

the number of  RGCN hidden layer: [2, 3] 

the number of  nodes of  each FC hidden layer: [64, 128, 256] 

the dropout rate of  each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 

0.4, 0.5] 

the dropout rate of  each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 

0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of  epochs: 500 

the patience of  early stop: 30 

DGL 

0.7.1 

Bold hyperparameters represent optimized hyperparameters. 
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Supplementary Figure 1. Some identified toxicophores and detoxifying groups.2, 5-8 

‘Ar’ indicates an aromatic atom, ‘Alk’ indicates an alkyl atom, and ‘Ar.rings’ indicates 

an atom that is part of  multiple aromatic rings. 

Supplementary Figure 2. The attribution visualization and structural 

optimization of  compounds 4, 5 and 6; The toxic functional groups in compounds 4, 

5, and 6 (the amino, nitro and isocyanate groups) are changed to detoxifying 

groups (sulfonyl hydroxide, sulfonamide, and trifluoromethyl). 
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Supplementary Figure 3. Some real-world hERG cliff  molecular pairs of  hERG 

toxicity. 
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