Supplementary Information

Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking

Zhenxing Wu^{1,2}, Jike Wang^{1,2,3}, Hongyan Du^{1,2}, Dejun Jiang^{1,2}, Yu Kang¹, Dan Li¹, Peichen Pan¹, Yafeng Deng², Dongsheng Cao^{4,*}, Chang-Yu Hsieh^{1,*}, Tingjun Hou^{1,*}

¹Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China ²CarbonSilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, P. R. China ³National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan 430072, Hubei, P. R. China. ⁴Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, P. R. China

Model	Туре	Metric	Performance
BBBP_MW	regression	R^2	0.9906
BBBP_LogP	regression	${ m R}^2$	0.9829
BBBP_TPSA	regression	\mathbf{R}^2	0.9997
BBBP_HBDs	regression	\mathbf{R}^2	0.9923

Supplementary Table 1. The performance of the consensus models on the test sets.

Supplementary Table 2. The details of the four datasets.

Detect	Tumo	Data	Positive sample	Negative sample
Dataset	1 ype	capacity	size	size
ESOL	regression	1111		
Mutagenicity	classification	7672	Mutagens: 4309	Nonmutagens: 3363
hERG	classification	9876	Bloockers: 5090	Nonblockers: 4786
BBBP	classification	1859	BBB+: 1433	BBB-: 426

Supplementary Table 3. The detailed information of different datasets.

		The number	
Category	Description	of molecules	
	Small dataset consisting of water solubility data for 1111		
ESOL	compounds ¹ . The duplicated molecules and the molecules	1111	
	with conflicting label values are excluded.		
Mutagenicity	The training set for model building was collected from four		
	papers. The data set for external validation was extracted		
	from the Web site of Lazar toxicity predictions. The entire		
	database was prepared as following. First, apart from the four		
	false SMILES strings, duplicate molecules were removed from	7672	
	the five sources by using canonical SMILES. Second,		
	molecules without clear E or Z configuration were removed.		
	Third, inorganic compounds were omitted from the data set.		

	The last step was to eliminate the tautomers and compounds	
	with molecular weight less than 40 or more than 800 in the	
	data set. When doing the data set curation, we followed one	
	principle. For a given compound, if the experimental	
	mutagenicity data varied in different sources, the compound	
	was cleared out. For compounds without defined steric	
	configuration or tautomers, if the experimental mutagenicity	
	data was alike, then only one structure was kept, and the	
	others were deleted. ²	
	The original chemicals with experimental IC50 values are	
	collected from a publication ³ and CHEMBL database.	
	Molecules with IC50 ${\leq}10\mu\text{M}$ are classified as hERG blockers,	
LEDC	and molecules with IC50 $>$ 10 μM are classified as hERG	0050
nerg	nonblockers. Inorganic compounds, noncovalent complexes	9876
	and mixtures are removed from the data set. The duplicated	
	molecules and the molecules with conflicting label values were	
	excluded.	
BBBP	The dataset is from ADMET lab 2.0.4	
	Category 0: BBB-; Category 1: BBB+;	1850
	The molecules were divided into BBB+ and BBB-classes with	1009
	$\log BB \ge -1$ and $\log BB < -1$, respectively.	

Supplementary	y Table 4.	. The canonical	SMILES of	the com	pounds for a	analysis.

Canonical SMILES
CC1CCC(C(C1)O)C(C)C
COc1ccc(C(O)(c2cncnc2)C2CC2)cc1
Nc1c(C(=O)O)cc([N+](=O)[O-])c2c1C(=O)c1ccccc1C2=O
$\operatorname{Cclccc}(N)\operatorname{ccl}[N+](=O)[O-]$
$\operatorname{COclcc}([N+](=O)[O-])\operatorname{cclN}$

Compound 6	[N-]=[N+]=Nc1ccc(F)c([N+](=O)[O-])c1
Compound 7	O = [N+](c1cc2c(cccc2)c2ccccc21)[O-]
Compound 8	NCc1ccc(F)c(C2CCN(C(=O)c3cccc(-c4nc(-c5cccs5)no4)c3)CC2)c1
Compound 9	NCc1ccc(F)c(C2CCN(C(=O)c3cc(C(=O)O)cc(-c4nc(-c5cccs5)no4)c3)CC2)c1
Compound 10	NCc1ccc(F)c(C2CCN(C(=O)c3cc(C(N)=O)cc(-c4nc(-c5cccs5)no4)c3)CC2)c1
Compound 11	COc1ccc(CCN2CCC(CCc3ccccc3OCCF)CC2)cc1
Compound 12	FCCOc1ccccc1CCC1CCN(CCc2ccccc2)CC1
Compound 13	FCCOc1ccccc1CCN1CCN(CCc2ccccc2Cl)CC1
Compound 14	FCCOc1ccccc1CCN1CCN(CCc2ccccc2)CC1
Compound 15	CCn1nc(Cc2ccc(C#N)cc2)cc1C1CCN(C[C@H]2CN([C@@H](C(=O)O)C(C)(C)C))
	C[C@@H]2c2cccc(F)c2)CC1
Compound 16	CCn1nc(Cc2ccc(S(C)(=O)=O)cc2)cc1C1CCN(C[C@H]2CN([C@@H](C(=O)O)C(C))))
	C)(C)C)C[C@@H]2c2cccc(F)c2)CC1
Compound 17	Nc1ccc2nc(Cc3ccc(Oc4ccccc4)cc3)[nH]c2c1
Compound 18	CC(=O)Nc1ccc2nc(Cc3ccc(Oc4ccccc4)cc3)[nH]c2c1

Supplementary Table 5. The initial node (atom) and edge (bond) information used in RGCN.

Node(atom) feature	Size	Description
Atom symbol	16	[B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal] (one-hot)
degree	6	number of covalent bonds [0,1,2,3,4,5] (one-hot)
formal charge	1	electrical charge (integer)
hybridization	6	∑sp, sp2, sp3, sp3d, sp3d2, other] (one-hot)
aromaticity	1	whether the atom is part of an aromatic system $\lfloor 0/1 \rfloor$ (one-hot)
hydrogens	5	number of connected hydrogens [0,1,2,3,4] (one-hot)
chirality	1	whether the atom is chiral center $[0/1]$ (one-hot)
chirality type	2	[R, S] (one-hot)

Edge (bond) feature	Size	Description
bond type	4	[single, double, triple, aromatic]
conjugation	1	whether the bond is conjugated $\lfloor 0/1 \rfloor$
ring	1	whether the bond is in ring $[0/1]$
stereo	4	∑StereoNone, StereoAny, StereoZ, StereoE]

Supplementary Table 6. The hyperparameters of different models.

Model	Parameters to be optimized	Package
	the number of nodes of each RGCN hidden layer: [64, 128, 256]	
	the number of RGCN hidden layer: [2 , 3]	
	the number of nodes of each FC hidden layer: [64 , 128, 256]	
	the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4,	
ESOL	0.5]	DGL
ESOL	the dropout rate of each FC hidden layer: [0, 0.1 , 0.2, 0.3, 0.4,	0.7.1
	0.5]	
	the learning rate: [0.003 , 0.001, 0.0003, 0.0001]	
	the number of epochs: 500	
	the patience of early stop: 30	
	the number of nodes of each RGCN hidden layer: [64, 128, 256]	
	the number of RGCN hidden layer: [2, 3]	
	the number of nodes of each FC hidden layer: [64, 128 , 256]	DOI
Mutagenicity	the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3,	
	0.4 , 0.5]	
	the dropout rate of each FC hidden layer: [0 , 0.1, 0.2, 0.3, 0.4,	
	0.5]	

	the learning rate: [0.003, 0.001 , 0.0003, 0.0001]			
	the number of epochs: 500			
	the patience of early stop: 30			
	the number of nodes of each RGCN hidden layer: [64, 128, 256]			
	the number of RGCN hidden layer: $[2, 3]$			
	the number of nodes of each FC hidden layer: [64, 128 , 256]			
	the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3,			
	0.4, 0.5]	DGL		
hERG	the dropout rate of each FC hidden layer: [0, 0.1 , 0.2, 0.3, 0.4,	0.7.1		
	0.5]			
	the learning rate: [0.003, 0.001, 0.0003 , 0.0001]			
	the number of epochs: 500			
	the patience of early stop: 30			
	the number of nodes of each RGCN hidden layer: [64, 128, 256]			
	the number of RGCN hidden layer: [2 , 3]			
	the number of nodes of each FC hidden layer: [64, 128 , 256]			
	the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3,			
DDDD	0.4, 0.5]	DGL		
RRRA	the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4 ,	0.7.1		
	0.5]			
	the learning rate: [0.003, 0.001 , 0.0003, 0.0001]			
	the number of epochs: 500			
	the patience of early stop: 30			

 $Bold \ hyperparameters \ represent \ optimized \ hyperparameters.$

Supplementary Figure 1. Some identified toxicophores and detoxifying groups.^{2, 5-8} 'Ar' indicates an aromatic atom, 'Alk' indicates an alkyl atom, and 'Ar.rings' indicates an atom that is part of multiple aromatic rings.

Supplementary Figure 2. The attribution visualization and structural optimization of **compounds 4**, **5** and **6**; The toxic functional groups in **compounds 4**, **5**, and **6** (the amino, nitro and isocyanate groups) are changed to detoxifying groups (sulfonyl hydroxide, sulfonamide, and trifluoromethyl).

Supplementary Figure 3. Some real-world hERG cliff molecular pairs of hERG toxicity.

Supplementary References

1. Mobley, D. L.; Guthrie, J. P., FreeSolv: a database of experimental and calculated hydration free energies, with input files. *Journal of computer-aided molecular design* **2014**, *28* (7), 711-720.

2. Xu, C.; Cheng, F.; Chen, L.; Du, Z.; Li, W.; Liu, G.; Lee, P. W.; Tang, Y., In silico prediction of chemical Ames mutagenicity. *Journal of Chemical Information and Modeling* **2012**, *52* (11), 2840-2847.

3. Zhang, C.; Zhou, Y.; Gu, S.; Wu, Z.; Wu, W.; Liu, C.; Wang, K.; Liu, G.; Li, W.; Lee, P. W., In silico prediction of hERG potassium channel blockage by chemical category approaches. *Toxicology research* **2016**, *5* (2), 570-582.

4. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A., ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. *Nucleic Acids Research* **2021**, *49* (W1), W5-W14.

5. Wu, Z.; Jiang, D.; Wang, J.; Hsieh, C.-Y.; Cao, D.; Hou, T., Mining toxicity information from large amounts of toxicity data. *Journal of Medicinal Chemistry* **2021**, *64* (10), 6924-6936.

6. Bakhtyari, N. G.; Raitano, G.; Benfenati, E.; Martin, T.; Young, D., Comparison of in silico models for prediction of mutagenicity. *Journal of Environmental Science and Health, Part C* **2013**, *31* (1), 45-66.

7. Hansen, K.; Mika, S.; Schroeter, T.; Sutter, A.; Ter Laak, A.; Steger-Hartmann, T.; Heinrich, N.; Muller, K.-R., Benchmark data set for in silico prediction of Ames mutagenicity. *Journal of chemical information and modeling* **2009**, *49* (9), 2077-2081.

8. Polishchuk, P. G.; Kuz'min, V. E.; Artemenko, A. G.; Muratov, E. N., Universal approach for structural interpretation of QSAR/QSPR models. *Molecular Informatics* **2013**, *32* (9 - 10), 843-853.