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Chemistry-intuitive explanation of graph neural networks for

molecular property prediction with substructure masking



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

This paper provides an explanation based XAI method which focuses on GNN models for molecular 

property prediction. The introduction briefly discusses current developments in the field and 

highlights the research problem well. The authors demonstrate advantages and limitations of their 

new SME approach using three examples; one regression task (solubility prediction) and two 

classification tasks (genotoxicity and cardiotoxicity prediction ). A RGCN model architecture is used 

for the evaluation of all three tasks. 

At a high-level, I find this to be a valuable contribution to this emerging area of XAI in chemistry. 

We note there is a similar manuscript to this one from May of this year. 

https://chemrxiv.org/engage/chemrxiv/article-details/633731d1f764e6e535093041 proposing a 

similar substructure attribution method. And of course GNNExplainer is quite similar to the method 

here. The introduction points out that “actionable and insightful” explanations are important. I 

agree that actionable and insightful – meaning it is interpretable for a chemist – are both 

essential. On actionability, I believe the argument is that the structure optimization approach can 

be actionable. However, this kind of strays beyond an “explanation,” since the authors make use 

of a slightly different task of doing molecular optimization. The actual explanation is a weight per 

substructure and the molecular optimization is an extra step. I think it’s fine to do this in the same 

paper, but the authors should make sure to compare with other optimization methods out there – 

especially local ones like STONED or VAEs or GAs etc. If actionability is important to the authors – 

and I agree- then they should also discuss a bit of another popular actionable explanation method 

called counterfactuals (https://pubs.rsc.org/en/content/articlehtml/2022/sc/d1sc05259d) and 

maybe less on contrasting with other feature attribution methods. It is interesting that there 

seems to be some overlap between all these methods: doing substructure explanations and then 

optimization to find a similar but better molecule is quite like the counterfactual and contrastive 

explanations methods. I have some specific comments below: 

The manuscript is relatively long - I wonder if it some content could be streamlined or moved to 

SI. 

Introduction is neatly arranged to identify research gaps and the objectives of this paper. In the 

3rd paragraph it is mentioned that ,“...we argue that a molecular graph offers a more intuitive way 

for molecular representation...”. However, whilst many examples show the usefulness of subgraph 

structures in molecular XAI it is not clear to the reviewer how this argument is supported in the 

paper. There are competing ideas about text, coordinates, SMILES, and it is not quite settled on 

which is best. 

The authors highlight 5 existing XAI categories in the introduction section: gradient/feature based, 

decomposition, surrogate models, generation-based and perturbation based. However, no 

generation-based (GNN-explained?) and perturbation based are only lightly discussed with 

references to current work. 

Table 1 lists the details of the three datasets used in training. However, it was not clear where 

exactly the data is from and if any pre-processing/splits were done. 

The discussion on the RGCN model is well written. However, whilst this section is clear to a reader 

familiar with GNNs, it is not perfectly clear how a molecule is mapped onto a graph (e.g., how are 

bonds represented, how are atoms turned into nodes, and how is stereochemistry treated). The 

range of edges (r ϵ R) in equation 1 is unclear. 

Hyperparameters of the RGCN model are unclear. For example, Figure 1A illustrates 3 fully 

connected layers, however, according to the text only one FC layer is used. 



The section 2.2.4 refers to three substructure labels C31+ C32+ C33. But these labels are not 

shown in Figure 1D. 

In section 3.1.1 it is mentioned that “… solubility is an intuitive concept taught in an introductory 

organic chemistry course ...” – surprisingly humans aren’t that good at predicting solubility: 

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0250-y 

One of the main critiques on the results sections is that, the applicability of SME is highly 

dependent on the performance of the trained model. As SME is suggested not only as an 

interpretation method but also as a structure optimization method, this can be a limitation. As 

shown in the results section, SME’s substructure analysis aligns well with chemical intuition. 

However, it can be argued that how SME can be used in instances where prior chemical knowledge 

is lacking or the model performance is poor – how do we tell if/when it’s working correctly 

Typo in Figure 2 caption: “(A) The attribution visualization of compound 1, (B) The attribution 

visualization of compound 1 compound 2 ” 

Also it is recommended that molecular names are used instead of compound 1 and 2 (or 

something more memorable) 

It is unclear which molecular substructure identification method from BRICS, Murcko and 

functional groups are useful in applications. How do we know which is correct and who is meant to 

consume this information? An organic chemist? An ML expert? 

Structural optimization of molecules is another heavily studied field. References to existing work is 

important such that the readers are aware of the importance and challenges associated with 

structural optimization. The actual method to go from substructures to real molecules figure 3 is 

unclear to me – was it done by hand or was there a substructure library from which to select 

options? 

Citation to the the list of Toxicophores and Detoxifying groups is not given from fig 4. Maybe figure 

4 could be somehow compared more directly to the later results? 

According to the results shown in figure 5 and as discussed by the authors the performance of SME 

in binary classification tasks seem to be poor. This raises the question if the SME is generalizable 

or not. Furthermore, the authors suggest the limitation of SME in such instances can be 

circumvented by considering individual fragments. Again this limits the applicability of the SME 

method. Therefore, the contribution of the method appear to be less impactful. 

Authors mention that SME explanations combined with expert knowledge is needed in better 

structural optimization, specifically in identifying unreliable predictions. It is further mentioned that 

additional data can be used to improve the performance of SME. Therefore, it can be argued that 

the applicability of the SME method is highly limited when data are scarce, which is most 

chemistry related applications and the explanations generated from SME are not complete 

explanations although they are actionable. 

Section 3.3.2 state that three ways of naturally reducing the hERG toxicity of molecules are, 

1. adding a functional group with average attribution < 0 

2. removing a functional group with an average attribution > 0 

3. replacing a functional group with more negative attribution 

The reviewer has the following questions based on the above statement. 

1. How is an “average” attribution is quantified? 

2. What is the threshold for selecting a “more negative” functional group based on the results? 

3. Will simply removing an “average” negative group ensure reduction in toxicity?



Reviewer #2 (Remarks to the Author): 

Reviewer has background in AI and machine learning research, focusing on learning algorithms 

that can capture and explain complex industrial processes, but reviewer also has publications co-

written in the area of cheminformatics. 

The paper presents an ensemble approach for better understanding molecule structure properties 

of solubility, mutagenicity and hERG toxity. These three molecule properties are well understood, 

and are used in the paper to serve as a well-recognizable cases for chemists’ view of 

understanding molecule structures that are drug candidates. The suggested approach matches 

these properties with entire (global) molecule structures based on molecule graphs, as compared 

to alternative approaches that matches only parts of molecules to explain molecule properties. The 

ensemble approach presented is based on three established building blocks of chemists’ domain 

knowledge, including BRICKS substructures and Murcko scaffolds. 

Not being a domain expert, it seems to me that the chosen baselines and related work is 

appropriate, the domain data and knowledge usage is very relevant. Most references to related 

work in the chosen problem area recent, as well as the connection to recent research in graph 

networks. 

The paper is well-written and provides a high degree of completeness, both in positioning the 

content, connection with the domain, and the completeness and validity of the approach. 

Conclusions follow the content well. 

Reviewer has a few remarks: 

- At several instances the text motivates the need for matching global molecule properties, rather 

than using local features only. Consolidating this argumentation to one more powerful and well-

placed instance would serve readability overall. 

- Expand on the ensemble style of using BRICKS, Murcko etc. They are complementary, but how is 

consensus established when using them together. In which way do they complement each other to 

get a better result than otherwise/separate? 

- The paper does not really address the limitations of the approach. The three well-chosen 

evaluation cases (solubility, mutagenicity and hERG toxity) applies well, likely. How about generic 

chemists’ understanding, also outside of these cases? To be able to state that explainability holds 

in general, to explain molecules in a chemist view and understanding, a much stronger validation 

would be needed, I think. Collecting data for validation about how well chemists are helped by the 

explanations for mining structure is a clear need, I think. 

- How about sensitivity to the training data? There is some discussion on the consequence of 

imbalanced data, but very little. 

- The possibility for replication of the work is well-served, with hyper-parameters clearly listed and 

with a Github repository. Still, the motivation for final hyper-parameter settings and choices are 

not well-explained. 



Reviewer #3 (Remarks to the Author): 

Comments to the author according to guideline for referees: 

Key results 

Your overview of the key messages of the study, in your own words, highlighting what you find 

significant or notable. Usually, this can be summarized in a short paragraph: 

The presented approach derives chemically intuitive explanations for predictions of small molecules 

obtained from graph neural networks (and ensembles composed of such models). Deployed 

calculations facilitate a novel modification scheme of the attention layer, masking the contribution 

of meaningful substructures. Recorded difference between the prediction with the original and 

masked attention layer represent the feature importance. Utilized substructures can be freely 

chosen, but exemplary calculations for solubility, toxicity, and hERG activity were carried out using 

BRICS, Murcko scaffolds and the corresponding functional groups. 

Validity 

Your evaluation of the validity and robustness of the data interpretation and conclusions. If you 

feel there are flaws that prohibit the manuscript’s publication, please describe them in detail: 

Overall, conclusions drawn from the presented results are meaningful and correct, however I 

disagree that masking nodes reveals the importance of corresponding atoms, as after the message 

passing steps, nodes do not represent atoms, but molecular environments centered at the nodes. 

For example, masking a node originating from an amine group does not remove the information 

from a connected node, that it is adjacent to a nitrogen atom. Keeping this in mind, the 

explanations are still meaningful for the user, but it should be clarified in the text. 

Significance 

Your view on the potential significance of the conclusions for the field and related fields. If you 

think that other findings in the published literature compromise the manuscript’s significance, 

please provide relevant references: 

Presented work adds value to the understanding of molecular predictions, however due to the 

abundance of existing and established explanatory approaches, it will not revolutionize the field of 

XAI, but represent a useful tool for the cheminformatics community. 

The strength of proposed method also poses its greatest limitation: As chemically intuitive 

explanations are enforced, patterns learned from data-artifacts, which are intrinsically not 

chemically meaningful, may remain concealed. Hence SME, which excels in communicating results 

with non-ML-experts, and structure agnostic models for the validation of models are 

complementary in nature. 

Data and methodology 

Your assessment of the validity of the approach, the quality of the data, and the quality of 

presentation. We ask reviewers to assess all data, including those provided as supplementary 

information. If any aspect of the data is outside the scope of your expertise, please note this in 

your report or in the comments to the editor. We may, on a case-by-case basis, ask reviewers to 

check code provided by the authors (see this Nature editorial for more information). 

Reviewers have the right to view the data and code that underlie the work if it would help in the 

evaluation, even if these have not been provided with the submission (see this Nature editorial). If 

essential data are not available, please contact the editor to obtain them before submitting the 

report. 

The overall methodology is valid, but as the authors already mentioned, explaining molecules split 

into multiple fragments may yield unexpected results. The rationale behind this issue is that 

calculating the importance as difference to the complete molecule violates criteria from the 

Shapley formalism, which ensure a fair attribution to each player (or feature). While the 

consequences are sufficiently discussed, it would be worth mentioning the origin of this issue. 



Analytical approach 

Your assessment of the strength of the analytical approach, including the validity and 

comprehensiveness of any statistical tests. If any aspect of the analytical approach is outside the 

scope of your expertise, please note this in your report or in the comments to the editor: 

Statistical tests carried out in this study (correlation of average attribution and change of 

prediction) are meaningful and valid. However, the assessment of the explanation values should 

be carried out in a more systematic and objective manner (See suggested improvements). 

Suggested improvements 

Your suggestions for additional experiments or data that could help strengthen the work and make 

it suitable for publication in the journal. Suggestions should be limited to the present scope of the 

manuscript; that is, they should only include what can be reasonably addressed in a revision and 

exclude what would significantly change the scope of the work. The editor will assess all the 

suggestions received and provide additional guidance to the authors. 

Major: 

Comparing atom highlighting with substructure highlighting, where each atom is colored according 

to the total contribution of the substructure overstates the clear contrast between positive and 

negative contributions, as the absolute values are greater and therefore more dominant in their 

coloring. (Also, attributions from the atom mask are assumingly not derived according to the 

Shapley formalism, and hence are limited in their interpretability.) While this could be mentioned, 

a more subjective method to evaluate the explanatory power could be deployed, as presented by 

Rao et al. (https://doi.org/10.48550/arXiv.2107.04119). This would also address the more 

common use-case, where predictive performances of assessed models are mediocre. 

Minor: 

• Colored substructure highlighting should not have colored atom labels. 

• Red/Green color-grading not accessible for visually impaired readers. 

• Distributions of attributions should be represented in a more established depiction, such as a 

box- or violin-plot. 

• Ln 450. [...] 0.003 to the amino group. 

• Ln 492. You mean the mutagenicity dataset? 

• Ln 625/646/653. Figure 12x? 

Optional: 

Substructure highlighting may benefit from using code presented at: 

http://rdkit.blogspot.com/2020/10/molecule-highlighting-and-r-group.html 

Clarity and context 

Your view on the clarity and accessibility of the text, and whether the results have been provided 

with sufficient context and consideration of previous work. Note that we are not asking for you to 

comment on language issues such as spelling or grammatical mistakes. 

The manuscript is well written and easy to access. 

References 

Your view on whether the manuscript references previous literature appropriately. 

Ref 24: The only source I found (openreview.net) marked this work as rejected. It should be 

removed. 

In the listing of explanatory approaches “Improving Molecular Graph Neural Network Explainability 

with Orthonormalization and Induced Sparsity” from Henderson et al. could be mentioned.



Reviewer 1: 

Comments: 

This paper provides an explanation based XAI method which focuses on GNN models for molecular 

property prediction. The introduction briefly discusses current developments in the field and highlights 

the research problem well. The authors demonstrate advantages and limitations of their new SME 

approach using three examples; one regression task (solubility prediction) and two classification tasks 

(genotoxicity and cardiotoxicity prediction). A RGCN model architecture is used for the evaluation of 

all three tasks. 

At a high-level, I find this to be a valuable contribution to this emerging area of XAI in chemistry. We 

note there is a similar manuscript to this one from May of this 

year. https://chemrxiv.org/engage/chemrxiv/article-details/633731d1f764e6e535093041 proposing a 

similar substructure attribution method. And of course GNNExplainer is quite similar to the method here. 

The introduction points out that “actionable and insightful” explanations are important. I agree that 

actionable and insightful – meaning it is interpretable for a chemist – are both essential. On actionability, 

I believe the argument is that the structure optimization approach can be actionable. However, this kind 

of strays beyond an “explanation,” since the authors make use of a slightly different task of doing 

molecular optimization. The actual explanation is a weight per substructure and the molecular 

optimization is an extra step. I think it’s fine to do this in the same paper, but the authors should make 

sure to compare with other optimization methods out there – especially local ones like STONED or VAEs 

or GAs etc. If actionability is important to the authors – and I agree- then they should also discuss a bit 

of another popular actionable explanation method called counterfactuals 

(https://pubs.rsc.org/en/content/articlehtml/2022/sc/d1sc05259d) and maybe less on contrasting with 

other feature attribution methods. It is interesting that there seems to be some overlap between all these 

methods: doing substructure explanations and then optimization to find a similar but better molecule is 

quite like the counterfactual and contrastive explanations methods. 

 

Reply:  

We thank the reviewer for encouraging and helpful comments. All the three recommended articles are 

examples of excellent work on XAI in cheminformatics. For simplicity, we shall refer to these two 



additional works: (https://pubs.rsc.org/en/content/articlehtml/2022/sc/d1sc05259d) as STONED-

Counterfactuals, and (https://chemrxiv.org/engage/chemrxiv/article-

details/633731d1f764e6e535093041) as STONED-Lime in the rest of this response. Indeed, we already 

cited ‘GNNExplainer’ and STONED-Counterfactuals in our original manuscript and acknowledged it. 

We also thank the reviewer for pointing out the comparison to the other references based on STONED. 

We have now cited the new references (STONED-Lime) in the revised manuscript. 

Note, STONED-Counterfactual belongs to the XAI category of ‘perturbation-based methods’ while 

STONED-Lime belong to the category of ‘surrogate methods’. 

GNNExplainer can combine edges to form subgraph to obtain subgraph-level explanations in a 

post-processing manner. However, the important edges in their explanations are not guaranteed to be 

connected and hence the formed subgraph (for XAI purpose) is not guaranteed to be chemically 

meaningful. We added this description to the Introduction as follows: 

“GNNExplainer and PGExplainer provide subgraph-level explanations by combining nodes or 

edges to form subgraphs through post-processing, but the important nodes or edges highlighted by these 

methods are not guaranteed to be connected as one fragment. SubgraphX can identify connected 

subgraphs with Monte Carlo tree search. However, due to the complexity of chemical rules, the fragments 

uncovered by these perturbative methods are often not chemically meaningful and prone to generating 

confusing or even frustrating interpretations for chemists.” 

Next, we briefly compare STONED to the proposed SME. STONED is a novel method that can 

quickly generate a series of highly similar molecules with respect to a reference molecule. Hence, 

STONED-Counterfactuals and STONED-Limed both exploit STONED to enumerate many similar 

molecules and attempt to uncover ‘counter examples’ with respect to the given molecule of interest. 

Analyzing the SAR on these molecules allow chemists to arrive at an attribution of the key changed 

substructure in counter examples.  

Conceptually, SME works differently. SME obtains the attribution value of a substructure by 

masking the substructure in the molecule, so the way SME obtains the attribution value does not need to 

generate a bunch of similar molecules for the molecule. However, we believe that both SME and 

STONED could be useful for the purpose of molecular optimizations. Hence, we thank the reviewer once 

again to bring up STONED which further inspires us that we can actually combine STONED and (SME 

attributed) functional groups to either generate or optimize molecules for specific properties. In the 



revised manuscript, we added a description about STONED and how STONED-based interpretation 

methods can guide structure optimization as follows: 

“Since the Superfast Traversal, Optimization, Novelty, Exploration and Discovery (STONED) 

method enables rapid exploration of chemical space without a pre-trained generative model, some 

interpretability methods combined with STONED can guide structure optimization.” 

 

Comment 1: The manuscript is relatively long - I wonder if it some content could be streamlined or 

moved to SI. 

Reply:  

We thank the reviewer for the advice. We have re-organized the content as suggested. 

 

Comment 2: Introduction is neatly arranged to identify research gaps and the objectives of this paper. 

In the 3rd paragraph it is mentioned that, “...we argue that a molecular graph offers a more intuitive 

way for molecular representation...”. However, whilst many examples show the usefulness of subgraph 

structures in molecular XAI it is not clear to the reviewer how this argument is supported in the paper. 

There are competing ideas about text, coordinates, SMILES, and it is not quite settled on which is best. 

Reply:  

The rationale behind our argument is that many chemists tend to reason about molecular and chemical 

properties in terms of simple molecular graphs and associated substructures as an intuitive crutch. 

Nevertheless, we agree that other competing molecular representation, such as SMILES, could serve 

exactly the same purpose very well; although we do believe most chemists (especially experimentalists) 

should be more comfortable with 2D molecular graphs but, obviously, we do not have hard evidence. 

For non-deep-learning methods, we often rely on handcrafted physiochemical descriptors as molecular 

features. For these cases (which we implicitly neglected in our original manuscript), it is also possible 

that other attribution analyses may derive an intuitive explanation that is complementary and equally 

competitive to that offered by molecular graph approach, a more popular featurization in the era of deep 

learning. In light of this thoughtful comment by the reviewer, we decide to modify the message as follows 

(in the revised manuscript): 

“A common choice is molecular graphs, which intuitively correspond to chemical structures (nodes 

correspond to atoms, edges correspond to chemical bonds, and subgraphs correspond to substructures). 



This observation indicates molecular graph as a suitable representation with great potential for clear 

interpretability.” 

 

Comment 3: The authors highlight 5 existing XAI categories in the introduction section: 

gradient/feature based, decomposition, surrogate models, generation-based and perturbation based. 

However, no generation-based (GNN-explained?) and perturbation based are only lightly discussed with 

references to current work. 

Reply:  

Compared with other methods, generation-based approach is still less explored. To the best of our 

knowledge, XGNN was the only existing generation-based method. Hence, we added this as follows: 

“To the best of our knowledge, XGNN is the only generation-based method that renders high-level 

explanations of GNNs by generating graph patterns to maximize a certain prediction.” 

We point out the main idea of the permutation method: identify key features by monitoring the 

degrees of changes in the predictions through perturbing different input features. Due to the length 

restriction on the article, we only list some representative works here (GNNExplainer, PGExplainaer and 

SubgraphX) and discuss the work, SubgraphX, most related to our work in detail. And we added a 

comment as follows: 

“As summarized above, all existing methods could potentially be improved to better suit the needs 

of chemistry community, and a more detailed account on all these methods can be found in reference 14.” 

 

Comment 4: Table 1 lists the details of the three datasets used in training. However, it was not clear 

where exactly the data is from and if any pre-processing/splits were done. 

Reply:  

Detail on the datasets can be found in Table S1. And we have stated this in the paper: “The detail on 

these 4 datasets is summarized in Table 1 and further detail on the data curation can be found in Table 

S1.” Every dataset is randomly split into the training set, validation set, and test set by a ratio of 8:1:1. 

And we have stated this in 2.3 Model Construction and Evaluation: “Each dataset is randomly split into 

the training set, validation set, and test set by a ratio of 8:1:1.” 

Table S1 is shown below, and the source literature of the dataset is also added. 



Table S1. The detailed information of different datasets. 

Category Description 
The number of 

molecules 

ESOL 

Small dataset consisting of water solubility data for 1111 

compounds1. The duplicated molecules and the molecules with 

conflicting label values are excluded. 

1111 

Mutagenicity 

The training set for model building was collected from four 

papers. The data set for external validation was extracted from the 

Web site of Lazar toxicity predictions. The entire database was 

prepared as following. First, apart from the four false SMILES 

strings, duplicate molecules were removed from the five sources 

by using canonical SMILES. Second, molecules without clear E 

or Z configuration were removed. Third, inorganic compounds 

were omitted from the data set. The last step was to eliminate the 

tautomers and compounds with molecular weight less than 40 or 

more than 800 in the data set. When doing the data set curation, 

we followed one principle. For a given compound, if the 

experimental mutagenicity data varied in different sources, the 

compound was cleared out. For compounds without defined steric 

configuration or tautomers, if the experimental mutagenicity data 

was alike, then only one structure was kept, and the others were 

deleted.2  

7672 

hERG 

The original chemicals with experimental IC50 values are 

collected from a publication3 and CHEMBL database. Molecules 

with IC50 ≤10 μM are classified as hERG blockers, and molecules 

with IC50 > 10μM are classified as hERG nonblockers. Inorganic 

compounds, noncovalent complexes and mixtures are removed 

from the data set. The duplicated molecules and the molecules 

with conflicting label values were excluded.  

9876 



BBBP 

The dataset is from ADMET lab 2.0.4 

Category 0: BBB-; Category 1: BBB+; 

The molecules were divided into BBB+ and BBB−classes with 

logBB ≥ − 1 and logBB < − 1, respectively. 

1859 

 

Comment 5: The discussion on the RGCN model is well written. However, whilst this section is clear to 

a reader familiar with GNNs, it is not perfectly clear how a molecule is mapped onto a graph (e.g., how 

are bonds represented, how are atoms turned into nodes, and how is stereochemistry treated). The range 

of edges (r ϵ R) in equation 1 is unclear.  

Reply:  

We thank reviewer for the detailed comment. We have now added information on initial node and edge 

(atom and bond) representation in Table S2. R here represents the set of edge types, and we added the 

corresponding description as follows: 

“R denotes the set of edge types” 

“The initial node and edge representation can be found in Table S2” 

Table S2. The initial node (atom) and edge (bond) information used in RGCN. 

Node feature Size Description 

Atom symbol 16 [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal] (one-hot) 

degree 6 number of covalent bonds [0,1,2,3,4,5] (one-hot) 

formal charge 1 electrical charge (integer) 

hybridization 6 [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot) 

aromaticity 1 whether the atom is part of an aromatic system [0/1] (one-hot) 

hydrogens 5 number of connected hydrogens [0,1,2,3,4] (one-hot) 

chirality 1 whether the atom is chiral center [0/1] (one-hot) 

chirality type 2 [R, S] (one-hot) 

Edge feature Size Description 

bond type 4 [single, double, triple, aromatic] 

conjugation 1 whether the bond is conjugated [0/1]  

ring 1 whether the bond is in ring [0/1] 



stereo 4 [StereoNone, StereoAny, StereoZ, StereoE]  

 

Comment 6: Hyperparameters of the RGCN model are unclear. For example, Figure 1A illustrates 3 

fully connected layers, however, according to the text only one FC layer is used. 

Reply:  

We thank the reviewer pointing out this point, and the text is now corrected as follows: 

“By aggregating the information from each node through attention pooling, the embedding of a molecule 

can be obtained, and the molecular properties can be predicted by feeding the molecular embedding 

through three fully connected (FC) layers.” 

In addition, we have added more detailed information about hyperparameters of RGCN in Table S3. 

And we added a description as follows: 

“And the Tree Parzen Estimator (TPE) algorithm in Hyperopt (version 0.2.7) is used for the 

hyperparameter optimization in this study.” 

Table S3 is as follows: 

Table S3. The hyperparameters of different models. 

Model Parameters to be optimized Package 

ESOL 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

DGL 0.7.1 

Mutagenicity 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

DGL 0.7.1 



the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

hERG 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

DGL 0.7.1 

BBBP 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

DGL 0.7.1 

Bold hyperparameters represent optimized hyperparameters. 

 

Comment 7: The section 2.2.4 refers to three substructure labels C31+ C32+ C33. But these labels are 

not shown in Figure 1D. 

Reply:  

We thank review for pointing this out. C31+ C32+ C33 are actually not substructure labels, and they 

refer to the conventional mathematic notation 𝐶!" (of choosing k combinations out of n choices). In this 

case, we look at all combinations of choosing from 3 Murcko substructures. For example, C32 means 

that there are 3 combinations where two of the three fragments are randomly selected for combination, 

and C32 = 3. We apologize that we simplify the notation here, and cause confusions. Since the number 



of combinations has been shown in Figure 1D, in order to avoid misunderstandings, we now delete the 

unconventional notation C31+ C32+ C33 from the text as follows: 

“Some representative combinations of the Murcko substructures of Aspirin are provided in Figure 

1D, and there are 7 combinations based on 3 substructures.” 

 

Comment 8: In section 3.1.1 it is mentioned that “… solubility is an intuitive concept taught in an 

introductory organic chemistry course ...” – surprisingly humans aren’t that good at predicting solubility: 

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0250-y 

Reply: 

We fully agree with the reviewer that predicting solubility remains a challenge, but chemists have 

explored and broadly understood the effect of different functional groups on water solubility (although 

the substructure-level understanding may not always translate into a successful global prediction.) To be 

more precise about what we imply, let us given an example. For most cases, the hydroxyl group generally 

makes a molecule more soluble than the methyl group. Nevertheless, we agree with the review that we 

should be more cautious with our wordings. We have modified the description and cited the above work 

as follows: 

“Although accurate prediction of water solubility remains a difficult problem, chemists have 

explored and broadly understood the effect of a large number of functional groups on water solubility. 

Hence, solubility is often used to validate model explanation methods and it provides a good setting for 

testing SME.” 

 

Comment 9: The Typo in Figure 2 caption: “(A) The attribution visualization of compound 1, (B) The 

attribution visualization of compound 1 compound 2” 

Reply:  

We thank the reviewer, and have corrected the typo. 

 

Comment 10: Also it is recommended that molecular names are used instead of compound 1 and 2 (or 

something more memorable) 

Reply:  



We thank the review for a great advice, and we have added canonical SMILES for molecules in Table 2, 

where all compounds appearing in the main text are carefully numbered. Considering that readers can 

easily identify the corresponding molecule by looking up Table 2, we still use “compound + number” to 

denote the compound. The description and Table 2 are added in section 2.1 Datasets as follows: 

“In addition, the canonical SMILES of the compounds for analysis are shown in Table 2.” 

 

Table 2. The canonical SMILES of the compounds. 

Molecule Canonical SMILES 

Compound 1 CC1CCC(C(C)C)C(O)C1 

Compound 2 COc1ccc(C(O)(c2cncnc2)C2CC2)cc1 

Compound 3 Nc1c(C(=O)O)cc([N+](=O)[O-])c2c1C(=O)c1ccccc1C2=O 

Compound 4 Cc1ccc(N)cc1[N+](=O)[O-] 

Compound 5 COc1cc([N+](=O)[O-])ccc1N 

Compound 6 [N-]=[N+]=Nc1ccc(F)c([N+](=O)[O-])c1 

Compound 7 [N-]=[N+]=Nc1ccc(F)c([N+](=O)[O-])c1 

Compound 8 O=[N+]([O-])c1ccc2c3ccccc3c3cccc4ccc1c2c43 

Compound 9 NCc1ccc(F)c(C2CCN(C(=O)c3cccc(-c4nc(-c5cccs5)no4)c3)CC2)c1 

Compound 10 NCc1ccc(F)c(C2CCN(C(=O)c3cc(C(=O)O)cc(-c4nc(-c5cccs5)no4)c3)CC2)c1 

Compound 11 NCc1ccc(F)c(C2CCN(C(=O)c3cc(C(N)=O)cc(-c4nc(-c5cccs5)no4)c3)CC2)c1 

Compound 12 COc1ccc(CCN2CCC(CCc3ccccc3OCCF)CC2)cc1 

Compound 13 FCCOc1ccccc1CCC1CCN(CCc2ccccc2)CC1 

Compound 14 FCCOc1ccccc1CCN1CCN(CCc2ccccc2Cl)CC1 

Compound 15 FCCOc1ccccc1CCN1CCN(CCc2ccccc2)CC1 

Compound 16 CCn1nc(Cc2ccc(C#N)cc2)cc1C1CCN(C[C@H]2CN([C@@H](C(=O)O)C(C)(C

)C)C[C@@H]2c2cccc(F)c2)CC1 

Compound 17 CCn1nc(Cc2ccc(S(C)(=O)=O)cc2)cc1C1CCN(C[C@H]2CN([C@@H](C(=O)O

)C(C)(C)C)C[C@@H]2c2cccc(F)c2)CC1 

Compound 18 Nc1ccc2nc(Cc3ccc(Oc4ccccc4)cc3)[nH]c2c1 

Compound 19 CC(=O)Nc1ccc2nc(Cc3ccc(Oc4ccccc4)cc3)[nH]c2c1 



 

Comment 11: It is unclear which molecular substructure identification method from BRICS, Murcko 

and functional groups are useful in applications. How do we know which is correct and who is meant to 

consume this information? An organic chemist? An ML expert? 

Reply:  

We appreciate this question, which helps us to shape a more comprehensive introduction of SME to 

potential users. In short, our response goes as follows.  

Different schemes of fragmenting substructures may be suitable for different application scenarios. 

Users (we envision many of they would be chemists with some experiences using ML for their 

investigations) can make their own decisions about which method is more suitable in their case. In order 

to give less experienced users some suggestions, we now offer a more detailed description on various 

scenarios in which we believe a particular approach of fragmentation with SME can offer the most 

valuable insights in the revised manuscript. The details are as follows:   

“Under each scenario, we recommend different fragmentation scheme to go along with SME for 

analysis. A succinct overview is provided below. 

Scenarios 1. Mine the SAR for a specific molecule (local explanation): analyze the attributions of  

different substructures in a molecule, it would be good to consider all fragmentation schemes (i.e., a 

combination of  BRICS substructures, Murcko substructures and functional groups); 

Scenarios 2. Identify the most positive/negative components of  a specific molecule: obtain the 

combined fragments with the most positive/negative attribution through the combination of  BRICS 

substructures and Murcko substructures; 

Scenarios 3. Mine the SAR for the desired properties (global explanation) on a statistical basis: 

analyze the functional group attributions on the whole dataset; 

Scenarios 4. Provide guidance for structural optimization: compare the average attributions of  

different functional groups. 

Scenarios 5. Molecule generation for desired properties: recombination of  BRICS substructures 

with SME attribution scores.” 

 

Comment 12: Structural optimization of molecules is another heavily studied field. References to 

existing work is important such that the readers are aware of the importance and challenges associated 



with structural optimization. The actual method to go from substructures to real molecules figure 3 is 

unclear to me – was it done by hand or was there a substructure library from which to select options? 

Reply:  

We thank the reviewer for this useful question and we have clarified this part in the revised manuscript. 

In principle, there is a substructure library comprising all the fragmentations that are derived from the 

molecules in the training set with the appropriate attribution scores assigned by SME. Therefore, the 

structural optimization can be performed via replacing suitable fragments. In Fig. 3, though, we just 

change the methyl group to one of the functional groups in Figure 2C by hand as an illustration. We now 

add details to clarify potential misunderstandings like this, and also cited the STONED-based method 

that could combine with SME for structural optimization. Revised excerpts from the manuscript are as 

follows: 

“Since the Superfast Traversal, Optimization, Novelty, Exploration and Discovery (STONED) 

method enables rapid exploration of chemical space without a pre-trained generative model, some 

interpretability methods combined with STONED can guide structure optimization.” 

“To structurally optimize compound 1 to change its water solubility, we can manually change the 

methyl group to a functional group in Figure 2C.” 

 

Comment 13: Citation to the list of Toxicophores and Detoxifying groups is not given from fig 4. Maybe 

figure 4 could be somehow compared more directly to the later results?  

Reply:   

We thank the reviewer for this useful reminder, and we have now cited the reference for the list 

Toxicophores and Detoxifying groups. Moreover, we have also taken the advices seriously and made the 

suggested comparisons to the later results in the revised manuscript. We added the corresponding 

toxicophores and detoxifying in Figure 5 and Figure 6 as follows:  



 

Figure 5. The attribution visualization of compound 3. 

 

 

Figure 6. The attribution visualization and structural optimization of compounds 4, 5 and 6. 

 

Comment 14: According to the results shown in figure 5 and as discussed by the authors the performance 

of SME in binary classification tasks seem to be poor. This raises the question if the SME is generalizable 

or not. Furthermore, the authors suggest the limitation of SME in such instances can be circumvented by 

considering individual fragments. Again this limits the applicability of the SME method. Therefore, the 

contribution of the method appears to be less impactful. 

Reply:  

We appreciate this question, and we understand the reviewer’s concern. In fact, we actually investigated 

and briefly discussed it in the original manuscript. As demonstrated in 3.2.2, SME can be easily extended 



to estimate not only the attribution scores for individual fragments but also the scores for the combination 

of substructures. And as shown in Figure 6, though SME may underestimate the attributions of 

toxicophores in molecules when there are multiple (more than 1) toxicophores in the molecules. However, 

through analyzing the interplay of different substructures in a molecule, SME can still automatically 

mine and identify all essential toxicophores as shown in Figure 6 (compounds 4, 5 and 6). Although, to 

do this consistently for larger molecules in a high-throughput manner, more advanced searching 

algorithm should be used in conjunction with SME. Moreover, the functional groups attribution analysis 

demonstrated that SME can indeed extract a reasonable structure-activity relationship from the model. 

For example, as to Mutagenicity, the functional groups with the positive attributions are often the 

components of the identified toxic groups (-N=O, -NO2 and -N), while those with the negative 

attributions (-SO3H, and-CF3) are identified to be detoxifying groups. The above results demonstrated 

that SME can handle binary classification problems with some calculation overhead. Moreover, the case 

study of hERG is also a classification problem in this study, and SME has also shown good performance 

in uncovering optimization strategies. To validate that SME can handle a variety of classification 

problems, we conducted one more experiment (in this revision) by applying SME to analyze and explain 

the GNN prediction of another property of great interest to medicinal chemists, the blood-brain barrier 

penetration (also a binary classification task). In our revised manuscript, we show that SME can also 

extract reasonable structure-activity relationship for BBBP, which further demonstrated that SME can 

generally handle classification problems with one additional example sufficiently distinct from the cases 

of Mutagenicity and hERG in our original study. 

 

Comment 15: Authors mention that SME explanations combined with expert knowledge is needed in 

better structural optimization, specifically in identifying unreliable predictions. It is further mentioned 

that additional data can be used to improve the performance of SME. Therefore, it can be argued that 

the applicability of the SME method is highly limited when data are scarce, which is most chemistry 

related applications and the explanations generated from SME are not complete explanations although 

they are actionable.  

Reply:  

There are two parts in this question. First, is SME applicable when data are scarce? Since SME (and 

other explanation methods) are meant to explain what a GNN model learns from data. Therefore, the 



sensibility of any explanation method critically depends on the reliability of the GNN model to be 

explained. Unfortunately, it is challenging for ML models to learn the true or complete causality when 

data are scarce. This challenge renders a model either making many unreliable predictions or only 

trustworthy in a limited context (i.e. not generalizable as it has not been trained on a representative set 

of molecules). This is a difficulty beyond the scope of this work. However, we stress again that this is a 

more fundamental limitation on machine learning itself rather than a metrics one should use to compare 

various explanation methods (SME or other competing approaches). Furthermore, we apologize that our 

remark “additional data can be used to improve the performance of SME” led to the misconception that 

SME is more data hungry than other alternative explanation methods. Rather, our intension was to say 

that all explanation methods could benefit from the availability of more data (which cover all the essential 

SARs in the training set and allows us to train a high-quality GNN model that any explanation method 

will have an easier time to yield sensible interpretations). 

   The second question regards whether SME (or, for the sac of this discussion, any explanation methods) 

would be useful to study chemistry related applications in which data scarcity is a common problem. Our 

response is that if one chooses to rely on a ML model to make predictions in this difficult scenario, then 

SME definitely helps experts to more quickly spot the unreliable parts of the ML model by analyzing the 

extracted SARs. For example, one can see conflicting assignments of attribution scores to the same 

fragments and a more detailed understanding on which of the extracted SARs (or attributed fragments) 

could be unreliable. When expert decides to perform structural optimizations then they can judiciously 

ignore certain SARs or fragment replacements to ensure they avoid unreliable information / predictions 

from the underlying GNN models. 

  In short, we summarize by stating that data scarcity poses a challenge for all explanation methods as 

this is a limitation on the underlying ML models to be explained. However, SME is not more data hungry 

than other competing approaches, and provides a transparent inspection that allows us to identify the 

source of unreliability of ML models in some cases (requiring expert’s own judgements at this point). 

Finally, we remind that we have tested SME on ESOL (1111), BBBP (1859), hERG (9876) and 

Mutagenicity datasets (7672) datasets and achieved good performance (ESOL with R2=0.927, 

Mutagenicity with ROC-AUC=0.901, hERG with ROC-AUC=0.862, BBBP with ROC-AUC=0.919), 

which demonstrated the generalization of the SME. 

 



Comment 16:  

Section 3.3.2 state that three ways of naturally reducing the hERG toxicity of molecules are, 

1. adding a functional group with average attribution < 0 

2. removing a functional group with an average attribution > 0 

3. replacing a functional group with more negative attribution 

The reviewer has the following questions based on the above statement. 

1. How is an “average” attribution is quantified? 

2. What is the threshold for selecting a “more negative” functional group based on the results? 

3. Will simply removing an “average” negative group ensure reduction in toxicity? 

Reply:  

We thank reviewer for these thoughtful questions. After reading the reviewer’s question, we realized that 

there was some ambiguity in the way we wrote the message. Our original intention is that SME can 

naturally provide three structural optimization strategies, but it does not necessarily imply an 100% 

certainty that every adopted optimization (based on SME) would surely reduce the toxicity of hERG. 

However, we hope the reviewer may agree that there is no 100% guarantee with anything derived from 

ML (especially for chemistry and related fields) most of the time if not all the time. 

  Therefore, we change the original expression "the hERG toxicity of a compound can be naturally 

reduced in the following three ways" to "SME can naturally provide three structural optimization 

strategies to reduce hERR toxicity as follows" 

1. The “average” attribution is calculated based on the whole datasets. First, we calculated the 

attribution of functional groups in different molecules in the whole dataset. And the average 

attribution is then determined based on the attribution of functional groups in the whole dataset. For 

example, if the functional group appears 100 times in the molecules of the training set, then there 

will be 100 attributions, and the mean of the 100 attributions is the “average” attribution. 

2. A “more negative” functional group is a group with a more negative average attribution. Since the 

average attribution is based on all data in the entire training set, molecules with an average score of 

0.1 will be less likely to exhibit hERG toxicity in most cases than molecules with an average score 

of 0.3. For a substructure to be optimized, we may have multiple substructures that are more negative 

than it, and we should first try the more negative substructures among these negative substructures. 



Therefore, we first use the average attribution as the threshold, and then we can preferentially select 

more negative fragments among the compatible fragments for structural optimization. 

3. As mentioned above, the strategies mentioned are only guidelines for structural optimization based 

on the performance of the model on the entire dataset, and may not be completely accurate or optimal.  

 

Reviewer 2: 

Comments: 

Reviewer has background in AI and machine learning research, focusing on learning algorithms that 

can capture and explain complex industrial processes, but reviewer also has publications co-written in 

the area of cheminformatics. 

The paper presents an ensemble approach for better understanding molecule structure properties of 

solubility, mutagenicity and hERG toxity. These three molecule properties are well understood, and are 

used in the paper to serve as a well-recognizable cases for chemists’ view of understanding molecule 

structures that are drug candidates. The suggested approach matches these properties with entire (global) 

molecule structures based on molecule graphs, as compared to alternative approaches that matches only 

parts of molecules to explain molecule properties. The ensemble approach presented is based on three 

established building blocks of chemists’ domain knowledge, including BRICKS substructures and 

Murcko scaffolds. 

Not being a domain expert, it seems to me that the chosen baselines and related work is appropriate, the 

domain data and knowledge usage is very relevant. Most references to related work in the chosen 

problem area recent, as well as the connection to recent research in graph networks. 

The paper is well-written and provides a high degree of completeness, both in positioning the content, 

connection with the domain, and the completeness and validity of the approach. Conclusions follow the 

content well. 

Reply:  

We gratefully appreciate your encouraging and helpful comments. 

 

Comment 1: At several instances the text motivates the need for matching global molecule properties, 

rather than using local features only. Consolidating this argumentation to one more powerful and well-



placed instance would serve readability overall.  

Reply:  

We thank reviewer for the thoughtful suggestion, and we now provide a clear global use suggestion for 

SME. Moreover, we now summarize the scenarios that SME can be applied and offer some suggestions 

on which fragmentation strategy should be used in each case. We believe these suggestions will improve 

the overall readability and understanding the impact of SME. Our experimental design is based on the 

following scenarios, and the results illustrate the practicability of SME in these application scenarios. 

The section s3.1.1 and 3.2.1 show the application examples of SME in scenarios 1 and 2. The sections 

3.1.2, 3.2.2&3.2.3 and 3.3 show the application examples of SME in scenarios 3 and 4. And the section 

3.4 shows the application examples of SME in scenarios 5. 

The suggestions are as follows: 

“Under each scenario, we recommend different fragmentation scheme to go along with SME for 

analysis. A succinct overview is provided below. 

Scenarios 1. Mine the SAR for a specific molecule (local explanation): analyze the attributions of 

different substructures in a molecule, it would be good to consider all fragmentation schemes (i.e., a 

combination of BRICS substructures, Murcko substructures and functional groups); 

Scenarios 2. Identify the most positive/negative components of a specific molecule: obtain the 

combined fragments with the most positive/negative attribution through the combination of BRICS 

substructures and Murcko substructures; 

Scenarios 3. Mine the SAR for the desired properties (global explanation) on a statistical basis: 

analyze the functional group attributions on the whole dataset; 

Scenarios 4. Provide guidance for structural optimization: compare the average attributions of 

different functional groups. 

Scenarios 5. Molecule generation for desired properties: recombination of BRICS substructures 

with SME attribution scores. 

” 

 

Comment 2: - Expand on the ensemble style of using BRICKS, Murcko etc. They are complementary, 

but how is consensus established when using them together. In which way do they complement each 

other to get a better result than otherwise/separate? 



Reply:  

We thank reviewer for raising this point. BRICS and Murcko are different schemes that can split 

molecules into chemically meaningful molecular substructures, and SME consolidates different 

fragments by comparing the attribution scores, and an immediate benefit of this consolidation is that 

SME may determine the most positive/negative and chemically meaningful components in molecules.  

Let us give an example to illustrate this point. As shown in Figure 2.1 below, the most hydrophobic 

component in the molecule comes from Murcko fragments but the most hydrophilic component comes 

from BRICS fragments. Therefore, Murcko and BRICS can complement each other, enabling chemists 

to quickly focus on the key fragments with well-defined chemical implications.  

 
Figure 2.1 

 

Comment 3: The paper does not really address the limitations of the approach. The three well-chosen 

evaluation cases (solubility, mutagenicity and hERG toxity) applies well, likely. How about generic 

chemists’ understanding, also outside of these cases? To be able to state that explainability holds in 

general, to explain molecules in a chemist view and understanding, a much stronger validation would be 

needed, I think. Collecting data for validation about how well chemists are helped by the explanations 

for mining structure is a clear need, I think. 

Reply:  

We thank reviewer for pointing out this issue. Despite possessing multiple advantages and potential 

towards mining SAR information, structural optimization and de novo design, SME also has limitations 

like all previous methods. First, since SME (and other GNN-based interpretation methods) aims to 

explain what the GNN model has learned from the data, it’s difficult for SME to mine reliable SAR 



information when the GNN model has not learned the true or complete causality due to data paucity or 

data bias. Second, as chemically intuitive explanations are enforced by design, some subtle errors learned 

from data artifacts may remain concealed. Lastly, the current version of SME only supports the three 

substructures of BRICS, Murcko and functional groups, and does not allow the assessment of some other 

substructures such as bioisosteres etc. 

In short, these limitations are either fundamental to all methods or a tradeoff between a structure 

agnostic approach and chemical-structure-dependent explanation method like SME as also briefly 

commented by Reviewer #3. Nevertheless, we stress that SME brings a fresh and complementary view 

on the interpretation methods (currently, dominated by structure agnostic approaches) on graph neural 

networks in the chemistry community. We advocate the benefits of SME outweigh its limitations as 

illustrated by many examples in our manuscript. For example, we show that SME could be applied to 4 

key druggability properties tasks (ESOL, Mutagenicity, hERG and BBBP), which demonstrates that 

SME is a tool with great potential to assist medicinal chemists to mine SAR information for structure 

optimization and de novo design. We have added the above limitations in the Conclusions section as 

follows: 

“Just like all other explanation methods for deep learning methods, SME also possesses several 

limitations. First, since SME (and other GNN-based interpretation methods) aims to explain what the 

GNN model has learned from the data, it is difficult for SME to mine reasonable SAR information when 

the GNN model has not learned the true or complete causality due to data paucity or data bias. Second, 

as chemically intuitive explanations are enforced, intrinsically chemically meaningless patterns learned 

from data artifacts may remain concealed. Lastly, the current version of SME only supports the three 

substructures of BRICS, Murcko and functional groups, and does not allow the assessment of some other 

substructures such as bioisosteres. Irrespective of these limitations (some can be easily overcome such 

as the last point mentioned above), SME provides intuitive and insightful interpretability for medicinal 

chemists based on chemically meaningful substructures. As most existing attribution methods for 

molecular GNNs in chemistry are directly borrowed from other fields and lacks the kind of chemical 

intuition that SME insists by design, we believe its benefits outweigh its drawbacks. Particularly, we 

demonstrate how SME help chemists in 4 key druggability properties tasks (ESOL, Mutagenicity, hERG 

and BBBP). In sum, SME is a tool with great potential to assist chemists to gain an appropriate 

understanding of why a GNN model makes certain prediction, and mine SAR information for structure 



optimization and de novo design.” 

“How about generic chemists’ understanding, also outside of these cases? To be able to state that 

explainability holds in general, to explain molecules in a chemist view and understanding, a much 

stronger validation would be needed, I think. Collecting data for validation about how well chemists are 

helped by the explanations for mining structure is a clear need, I think.” 

It is difficult to make a very definite statement about how chemists can be helped by SME or other 

explanation methods for GNNs in a broad sense. Since there is no definite ‘metrics’ or ‘common 

benchmarks’ for evaluating interpreting methods for GNN property prediction models, we think 

collecting data for validation is difficult. Nevertheless, we believe our illustrative examples already cover 

many realistic scenarios in typical drug discovery projects. But we acknowledge that there are certainly 

more scenarios than what we had outlined in the previous manuscript. Hence, to more thoroughly address 

this comment, we decided to conduct one more experiment which illustrates how SME could help 

chemists in a way that is different from what we had done with all examples in the previous manuscript 

and we hope this could really illustrate the versatility of SME. 

In this new example, we discuss how to use the structure-activity relationship derived from SME to 

develop further interpretation beyond SARs. By analyzing how models predict blood–brain barrier 

permeation (BBBP) task as an extra example, we show how chemists can mine SAR information through 

SME and use this valuable information to further expose favorable physiochemical properties these 

molecules must possess. Converting information on favorable molecular substructures to favorable 

physiochemical properties is an abstraction that may actually inspire further understanding of complex 

phenomena such as BBBP. We hope this example gives a new perspective on SME’s versatility. The 

details of this new experiment are further described below. 

 
Figure 3.1 

 



Through the analysis of functional group attribution generated by SME, we can construct a desired 

relationship between molecular functional groups and the BBBP as shown in above Figure SME 3.1. 

Similarly, by constructing different prediction models for characteristic physicochemical properties (such 

as LogP and TPSA in the figure), we can construct another desired relationship linking molecular 

functional groups and physicochemical properties. Subsequently, we then establish the relationship 

between BBBP and the basic physicochemical properties, providing a deeper understanding on what 

molecular properties (substructure or its effects on physiochemical attributes) hold the key to having the 

desired properties.   

The section about BBBP is as follows: 

“3.5 How can SME establish SAR information with deeper explanations 

In this section, we show that SME (with its enforced attribution to chemically meaningful fragments) 

allows one to more easily establish a deeper understanding on why certain fragments make the molecule 

more ideal for the target property.  This deeper understanding is achieved by connecting fragments 

and some characteristic physiochemical properties that is conceptually known to be relevant to the 

property of  interest, for instance, BBBP in this case. 

 Through the analysis of  functional group attribution generated by SME, we can construct the 

desired relationship between molecular functional groups and the BBBP as shown in above Figure 13A. 

Similarly, by constructing different prediction models for fundamental physicochemical properties, we 

can construct the desired relationship between molecular functional groups and the fundamental 

physicochemical properties. Subsequently, we then establish the relationship between BBBP and the 

fundamental physicochemical properties, providing a complementary perspective on what molecular 

properties (substructure or physiochemical attributions) hold the key to having the desired properties. 

Four fundamental physicochemical properties include molecular weight (MW), topological polar 

surface area (TPSA), lipid solubility (LogP) and the number of  hydrogen bond donor (HBDs) calculated 

by RDKIT package are used as labels to construct different prediction models in this case. The overall 

process is shown in Figure 13A and the detailed result can be seen in Figure 13 B-E. As shown in 

Figure 13 B-E, SME does not find a clear correlation between BBBP and MW.  Moreover, SME finds 

that BBBP is positively correlated with LogP and negatively correlated with HBDs and TPSA, which 

is consistent with the results reported in previous studies. The above results demonstrate that chemists 

can mine SAR information through SME and use this valuable information to further expose favorable 



physiochemical properties these molecules must possess. Furthermore, converting information from 

favorable molecular substructures to favorable physiochemical/biochemical properties by SME is an 

abstraction that may actually inspire further understanding of  complex phenomena as done by Mittal, 

A. et al.65 

 

 

Figure 13. (A). The flow chart of using SME to mine SAR information; (B). The correlation of the 

average attributions between BBBP and BBBP_MW’s functional groups. (C). The correlation of the 

average attributions between BBBP and BBBP_LogP’s functional groups. (D). The correlation of the 

average attributions between BBBP and BBBP_HBDs’ functional groups. (E). The correlation of the 

average attributions between BBBP and BBBP_TPSA’s functional groups. 

 

Comment 4: How about sensitivity to the training data? There is some discussion on the consequence 



of imbalanced data, but very little. 

Reply:  

We can think of two characteristics of a dataset that may impact the performance of SME: small dataset 

and highly imbalanced dataset. In this study, we note that SME has actually delivered satisfactory results 

on four different examples, all with relatively small data volumes: (ESOL (1111), BBBP (1859), hERG 

(9876) and Mutagenicity datasets (7672)), indicating that SME can be rather robust as long as the 

underlying GNN delivers a reasonable accuracy, such as a good F1 score on an imbalanced dataset. Of 

course, whether SME can uncover all essential SARs is questionable when the training dataset is way 

too small to give a reasonably representative picture of the prediction task at hand. In this case, we believe 

the underlying GNN predictive model is already not reliable, and some experts’ judgments can easily 

expose potential problems: such as inconsistent interpretations (i.e. conflicting assignments of attribution 

scores to the same molecules fragments with high frequency) may be derived from SME. In short, SME’s 

performance is directedly tied to the ‘coverage’ of the training dataset. Potentially, a pre-trained GNN 

with other data sources could help alleviate the problem to some extent. Similarly, the issue with 

imbalance dataset if handled appropriately could also be partially mitigated. For instance, when training 

the model, we assign different weights (pos_weight) to the loss of positive samples to alleviate the 

problem of data imbalance. 

 

Comment 5: The possibility for replication of the work is well-served, with hyper-parameters clearly 

listed and with a Github repository. Still, the motivation for final hyper-parameter settings and choices 

are not well-explained. 

Reply:  

Thanks for pointing this problem. The Tree Parzen Estimator (TPE) algorithm in Hyperopt is used for 

the hyperparameter optimization in this study. And we added the more detailed information about 

hyperparameters (The range of hyperparameters and the final optimized parameters) of RGCN in Table 

S3. Moreover, we added a description in section 2.3 (Model Construction and Evaluation) as follows: 

“And the Tree Parzen Estimator (TPE) algorithm in Hyperopt (version 0.2.7) is used for the 

hyperparameter optimization in this study.” 

Table S3 is as follows: 



Table S3. The hyperparameters of different models. 

Model Parameters to be optimized Package 

ESOL 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

DGL 0.7.1 

Mutagenicity 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

DGL 0.7.1 

hERG 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

DGL 0.7.1 

BBBP 

the number of nodes of each RGCN hidden layer: [64, 128, 256] 

the number of RGCN hidden layer: [2, 3] 

the number of nodes of each FC hidden layer: [64, 128, 256] 

DGL 0.7.1 



the dropout rate of each RGCN hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the dropout rate of each FC hidden layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 

the learning rate: [0.003, 0.001, 0.0003, 0.0001] 

the number of epochs: 500 

the patience of early stop: 30 

Bold hyperparameters represent optimized hyperparameters. 

 

Reviewer 3: 

Key results 

The presented approach derives chemically intuitive explanations for predictions of small molecules 

obtained from graph neural networks (and ensembles composed of such models). Deployed calculations 

facilitate a novel modification scheme of the attention layer, masking the contribution of meaningful 

substructures. Recorded difference between the prediction with the original and masked attention layer 

represent the feature importance. Utilized substructures can be freely chosen, but exemplary calculations 

for solubility, toxicity, and hERG activity were carried out using BRICS, Murcko scaffolds and the 

corresponding functional groups. 

 

Comment 1: 

Validity 

Overall, conclusions drawn from the presented results are meaningful and correct, however I disagree 

that masking nodes reveals the importance of corresponding atoms, as after the message passing steps, 

nodes do not represent atoms, but molecular environments centered at the nodes. For example, masking 

a node originating from an amine group does not remove the information from a connected node, that it 

is adjacent to a nitrogen atom. Keeping this in mind, the explanations are still meaningful for the user, 

but it should be clarified in the text. 

 

Reply:  

We thank the reviewer for pointing out this very useful distinction. We fully agree with you on this point, 

masking a node can be considered as masking the molecular enviroments centered at the nodes (masking 



main information of the central atom, and also masking part of the information of the adjacent 

atoms/bonds). For ease of understanding, in this article, the mask node is simply considered as masking 

the central atom. 

And we have also discussed this perspective in a previous work 

(https://doi.org/10.1021/acs.jmedchem.1c00421). As shown in Figure A, we change the adjacent 

atom/bond, and then calculate the similarity of the node’s (N atom here) embedding. The result 

demonstrated that the adjacent atom/bond will affect the embedding of the center node. And as the path 

grows, the affection of adjacent atoms/bond gradually weakens, which demonstrated that the chemical 

environment contains the information of adjacent atoms/bond, which gradually weakens as the path 

grows. Therefore, masking a node can be considered as masking the main information of the central atom, 

and also masking part of the information of the adjacent atoms/bonds. 

 

Figure A. Similarity of the N’s embedding (after message passing) with the changes in the surrounding 

substructures 

As mentioned by the reviewer, the aforementioned observation does not affect the way we currently 

design SME, but these conceptual subtleties need to be clarified in the article. We added a description 

about this in the section 2.2.3. (Substructure Mask) as follows: 

“After message passing, a node’s hidden state gets updated by the information conveyed by adjacent 

atoms/bonds. Therefore, when we mask a node, it is not just about masking an atom but about masking 



the chemical environment centered on that atom. And the chemical environment contains information of 

adjacent atoms, while the information of the adjacent atoms weakens as the path to the central atom 

grows. Therefore, masking a node can be considered as masking the main information of the central 

atom, and also masking part of the information of the adjacent atoms/bonds. For ease of understanding, 

in this article, the masking of a node is simply viewed as masking just the node itself.” 

 

Comment 2: 

Significance 

Presented work adds value to the understanding of molecular predictions, however due to the abundance 

of existing and established explanatory approaches, it will not revolutionize the field of XAI, but represent 

a useful tool for the cheminformatics community. 

The strength of proposed method also poses its greatest limitation: As chemically intuitive explanations 

are enforced, patterns learned from data-artifacts, which are intrinsically not chemically meaningful, 

may remain concealed. Hence SME, which excels in communicating results with non-ML-experts, and 

structure agnostic models for the validation of models are complementary in nature. 

Reply:  

We agree with the comment that “As chemically intuitive explanations are enforced, patterns learned 

from data-artifacts, which are intrinsically not chemically meaningful, may remain concealed.” This is 

indeed a possible limitation. Therefore, we also agree with the Reviewer’s comment that both approaches 

(chemically intuitive methods and structure agnostic methods) may be complementary. However, the 

structure agonistic methods dominate in the era of deep learning; we believe it is a good time to advocate 

chemically intuitive method like SME which enables chemists to appreciate more about deep-learning-

based tools and to unleash their fullest potentials. Particularly, in this revised manuscript, we added one 

extra example on using SME to explain how a GNN predicts BBBP for molecules. We show that SME 

can even provide deeper understanding of how a model makes it prediction linking chemically 

meaningful substructures and physiochemical properties of molecules. Please see our response to the 

second part of comment 3 by Reviewer #2 for details. 

  In this sense, we argue the benefits of introducing SME to the chemists outweigh its potential 

drawbacks. Finally, while we repeatedly emphasize the benefits of SME in the manuscript, we did not 

want to dismiss existing structure agnostic methods. We thank the Reviewer to make this thoughtful 



comment, and we have now made some clarifications in the Conclusion of the revised manuscript: 

“Just like all other explanation methods for deep learning methods, SME also possesses several 

limitations. First, since SME (and other GNN-based interpretation methods) aims to explain what the 

GNN model has learned from the data, it is difficult for SME to mine reasonable SAR information when 

the GNN model has not learned the true or complete causality due to data paucity or data bias. Second, 

as chemically intuitive explanations are enforced, intrinsically chemically meaningless patterns learned 

from data artifacts may remain concealed. Lastly, the current version of SME only supports the three 

substructures of BRICS, Murcko and functional groups, and does not allow the assessment of some other 

substructures such as bioisosteres. Irrespective of these limitations (some can be easily overcome such 

as the last point mentioned above), SME provides intuitive and insightful interpretability for medicinal 

chemists based on chemically meaningful substructures. As most existing attribution methods for 

molecular GNNs in chemistry are directly borrowed from other fields and lacks the kind of chemical 

intuition that SME insists by design, we believe its benefits outweigh its drawbacks. Particularly, we 

demonstrate how SME help chemists in 4 key druggability properties tasks (ESOL, Mutagenicity, hERG 

and BBBP). In sum, SME is a tool with great potential to assist chemists to gain an appropriate 

understanding of why a GNN model makes certain prediction, and mine SAR information for structure 

optimization and de novo design.” 

 

Comment 3: 

Data and methodology 

3.1 The overall methodology is valid, but as the authors already mentioned, explaining molecules split 

into multiple fragments may yield unexpected results. The rationale behind this issue is that calculating 

the importance as difference to the complete molecule violates criteria from the Shapley formalism, which 

ensure a fair attribution to each player (or feature). While the consequences are sufficiently discussed, it 

would be worth mentioning the origin of this issue.  

Reply 3.1 

Thanks for your suggestion. The Shapley value is assigned by beautiful and rigorous mathematical theory 

that the difference between the prediction and the average prediction is fairly distributed among the 

feature values (node or subgraph in GNN) of the instance. Since the graph data are complex, attribution 

calculation following the Shapley formalism are often time consuming. Furthermore, many works in 



cheminformatics adopt an alternative approach for attribution: comparing the substructure differences 

between molecules in order to determine the attribution score of various substructures for the target 

property. This is a much faster and often satisfactory attribution method when there is only one dominant 

fragment responsible for the property of interest. This alternative attribution approach is not only widely 

adopted by traditional methods in cheminformatics but also often adopted to explain GNN models. Some 

representative works in this camp include: 1. Matched molecular pair analysis (MMPA) is a method in 

cheminformatics that compares the properties of two molecules that differ only by a single chemical 

transformation, such as the substitution of a hydrogen atom by a chlorine one. 2. Yurii Sushko et al 

combined the Matched molecular pair (MMP) and QSAR models to find MMP transformations based on 

QSAR predictions, and used the chemical interpretation of these transformations to give medicinal 

chemists useful hints for the hit-to-lead optimization process.6 3. STONED-Counterfactuals 

(https://pubs.rsc.org/en/content/articlehtml/2022/sc/d1sc05259d) recommended by reviewer 1, it 

exploits STONED to enumerate many similar molecules and attempt to uncover ‘counter examples’ with 

respect to the given molecule of interest. Analyzing the SAR on these molecules allow chemists to arrive 

at an attribution of the key changed substructure in counter examples.  

In view of the computational efficiency, SME is designed following this alternative approach. We 

choose to directly compare the difference between molecules and molecules with some substructures 

masked in order to determine the attribution. While this alternative approach will suffer issues like what 

we observed and commented in the paper, we also proposed a potential fix (in the original manuscript) 

that assigns a collective attribution score to combinations of fragments. Of course, the complexity of 

calculating attribution scores for fragment combinations quickly grows with system size. Hence, the idea 

of using Shapley values combining with our proposed fragmentation scheme in SME is a noteworthy 

approach. We thank Reviewer for bringing up this discussion, and we added the following comments (as 

advised) in the revised sec 2.2.4: 

“For the sac of ensuring calculation efficiency, SME does not adopt Shapley values to fairly assign 

attribute values to different substructures, but only calculates attribute values based on the changes 

between predicted values, which may overlook contribution by some substructures. In order to solve the 

above problems, we adopt a compensation strategy: find the most positive/negative substructures 

through the combination of substructures to avoid overlooking some important substructures, and thus 

explore the SAR more comprehensively.” 



 

3.2 Analytical approach& Suggested improvements 

Statistical tests carried out in this study (correlation of average attribution and change of prediction) are 

meaningful and valid. However, the assessment of the explanation values should be carried out in a more 

systematic and objective manner (See suggested improvements).  

Comparing atom highlighting with substructure highlighting, where each atom is colored according to 

the total contribution of the substructure overstates the clear contrast between positive and negative 

contributions, as the absolute values are greater and therefore more dominant in their coloring. 

 

Reply 3.2: 

In SME, we interpret the model based on the substructure, so SME highlights the entire substructure as 

the basic unit. This provides more intuitive information that is easier for chemists to understand. Our 

previous visualization method was not suitable enough, and it may be easy for people to misunderstand 

that we are still based on atoms, rather than looking at problems in fragments. Thank you very much for 

the visualization method you recommend. At the same time, using the visualization method you 

recommend can better understand our idea of taking fragments as the basic unit. Some examples are as 

follows: 

 

 

3.3 (Also, attributions from the atom mask are assumingly not derived according to the Shapley 

formalism, and hence are limited in their interpretability.)  

Reply 3.3: 

As shown in the following figure, though the attributions from the atom mask are not derived according 



to the Shapley formalism, this alternative approach (as stated earlier) is still widely accepted by the 

chemistry community and, empirically, enables chemists to establish useful SARs for explanations and 

structural optimizations. Let us briefly look at the example below. SME can capture and reflect which 

atoms are favorable for hydrophilicity. What we want to illustrate here is that the fragment-based 

interpretability of SME can provide a more intuitive and chemistry-compatible interpretation . Finally, 

we note that one may address the inadequacy of the atom-masking approach by deriving collective 

attribution scores that may expose further delicate interplay between the presence of various fragments 

in a molecule. However, we agree that Shapley formalism is definitely a very important and 

complementary approach. We have also more explicitly stated this possibility to replace the simplest 

atom-masking approach with Shapley if the computational cost is not a concern. 

 

 

3.4 While this could be mentioned, a more subjective method to evaluate the explanatory power could be 

deployed, as presented by Rao et al. (https://doi.org/10.48550/arXiv.2107.04119). This would also 

address the more common use-case, where predictive performances of assessed models are mediocre. 

Reply 

Thanks for your suggestion. Quantitatively evaluating the explanatory power of interpretable models is 



desirable, but it still faces enormous challenges. Rao et al. have made a good attempt in the fields and 

they defined a series of ground truths and used them to qualitatively evaluate the explanatory power of 

different interpretability methods. We have now cited the recommend work.  

In our study, SME does not pursue the only absolute ground truth, but mining the corresponding SAR 

information by analyzing different molecular structure attribution. Moreover, SME is based on 

substructures while the quantitative evaluation methods provided by Rao’s are based on atoms. Hence, 

Rao’s method (as given) is not exactly compatible with SME. But it is indeed an alternative method that 

could work under the circumstances suggested by the Reviewer. We find Rao’s work also discuss hERG 

cliffs, relevant to our work. Therefore, we added some hERG cliffs provided in the Rao’s work as 

structural optimization examples in Figure S1 to further validate SME. In the revised manuscript, we 

add the following comments and cite Rao’s work: 

“In addition, Rao et al. proposed a subjective method to evaluate the explanatory power of different 

interpretability methods and provide some hERG cliff molecular pairs. Some hERG cliff molecular pairs 

that did not appear in our training set also verify the effectiveness of SME in guiding structural 

optimization, and these results are shown in Figure S1.” 

 

Figure S1. Some real-world hERG cliff molecular pairs of hERG toxicity. 



 

Comment 4: Colored substructure highlighting should not have colored atom labels. 

Reply: Thanks for pointing this problem, and we remove the color of atom labels in the paper, and some 

examples are as follows. 

 

 

Comment 5: Red/Green color-grading not accessible for visually impaired readers. 

Reply: Thanks for pointing this problem, and we changed the color to a blue-red color scheme instead. 

In addition, our released codes provide options for different visual colors, and users can choose the color 

scheme they prefer according to their needs. 

 

Comment 6: Distributions of attributions should be represented in a more established depiction, such 

as a box- or violin-plot. 

Reply: Thanks for your valuable suggestion, and we change the figure to violin-plot, and the violin-plot 

makes the distributions of attributions clearer. 

 

Comment 7: Ln 450. [...] 0.003 to the amino group. 

Reply: Thank you and we already correct this minor mistake. 

 

Comment 8: Ln 492. You mean the mutagenicity dataset? 

Reply: We thank the reviewer and have corrected the mistake. 

 



Comment 9: Ln 625/646/653. Figure 12x? 

Reply: We thank the reviewer and have corrected the mistake. 

 

Comment 10:  

Optional: 

Substructure highlighting may benefit from using code presented at: 

http://rdkit.blogspot.com/2020/10/molecule-highlighting-and-r-group.html 

Reply: Thanks for your valuable suggestion, and we used the substructure highlighting methods you 

recommend above, and it makes our visualizations more intuitive. Once again, we thank you again for 

your constructive comments on substructure highlighting and figures, and we expressed in 

acknowledgements as follows: 

“The authors are grateful to the anonymous reviewer for his/her helpful suggestions for 

substructure highlighting and figures in this paper.” 

 

Comment 11:  

Optional: 

Clarity and context 

Your view on the clarity and accessibility of the text, and whether the results have been provided with 

sufficient context and consideration of previous work. Note that we are not asking for you to comment 

on language issues such as spelling or grammatical mistakes. 

The manuscript is well written and easy to access. 

References 

Your view on whether the manuscript references previous literature appropriately. 

Ref 24: The only source I found (openreview.net) marked this work as rejected. It should be removed. 

In the listing of explanatory approaches “Improving Molecular Graph Neural Network Explainability 

with Orthonormalization and Induced Sparsity” from Henderson et al. could be mentioned. 

Reply: Thanks for pointing this problem, and we remove the Ref 24. In addition, “Improving Molecular 

Graph Neural Network Explainability with Orthonormalization and Induced Sparsity” is an excellent 

work and we cite it. 
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author):

In general all my comments are satisfied. One minor comment is the treatment of tautomers. I 

think they are removed from the datasets and may not work well with the method. I think this 

should be made more explicit - clearly tautomers are trouble with GNNs and not anything unique 

to the interpretation - but it would be good to mention as a challenge for the future. 

Reviewer #2 (Remarks to the Author):

Thank you very much for very clear notation and explanations of your updates to this work. I 

appreciate the work done in considering my remarks on the submitted paper: 

An extensive discussion about validity and generalizability of the approach was developed. An 

additional experiment, for blood-brain barrier permeation, was added that complements the three 

specific molecular (druggability) properties (solubility, mutagenicity and hERG toxity). 

The argumentation about generic chemists’ understanding is elaborated and argues well about the 

value of the proposed method. I agree that full validation of generic chemists’ understanding is 

very difficult, but I also think that some benchmarking would be useful. It is however not 

reasonable to develop that within the work of this paper, I think. 

The rebuttal text elaborates well on the hyperparameter selections made. 

The Conclusions section has been expanded to cover a thorough discussion covering possible 

limitations of the approach. The arguments are well elaborated and convincing. This discussion 

further mitigates common issues for criticism of studies like this, in both the machine learning and 

cheminformatics areas, I think. 

I have no further remarks on this publication. 

Reviewer #3 (Remarks to the Author):

The revised manuscript as well as the comments of the author fulfill my expectations.



Reviewer 1: 

Comments:

In general all my comments are satisfied. One minor comment is the treatment of tautomers. I think they 

are removed from the datasets and may not work well with the method. I think this should be made more 

explicit - clearly tautomers are trouble with GNNs and not anything unique to the interpretation - but it 

would be good to mention as a challenge for the future.

Reply:

We thank the reviewer for encouraging and helpful comments. The absence of tautomers structures in 

the training set can impact the model's prediction accuracy, thus hindering the application of the SME 

method. This aligns with our first identified limitation, as SME can’t  mine reasonable SAR information 

when the underlying GNN model has not learned the true or complete causality due to data paucity or 

bias. Therefore, we have added the following remark in the article. “As a noteworthy example, tautomers 

present a challenge in the pursuit of accurate molecular property predictions and, accordingly, has 

implications for the effectiveness of SME.”
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