
 

Supplement to “Correcting for verbal autopsy misclassification bias in 
cause-specific mortality estimates of children and neonates in 
Mozambique” 
 
S1. Technical details of the calibration 

 
Let M denotes the mis-classification rate matrix of a CCVA algorithm, and p denote the vector 
of true CSMF that would be obtained by back-solving. The law of total probability postulates 
that the raw (uncalibrated) CSMF from the CCVA algorithm is given by q=M’p. Thus, the CCVA-
predicted COD counts from the COMSA data can be modeled as Multinomial draws with 
probability q.  This helps to estimate q. Similarly, the CCVA-predicted COD counts for the 
CHAMPS cases with MITS underlying cause i can be modeled as Multinomial draws with 
probability Mi*, the ith row of M. This allows estimation of M using the CHAMPS data. As q=M’p, 
the two pieces (estimates of q and M) are then combined to back-calculate and calibrate to 
obtain the true CSMF p. This is done jointly in a Bayesian framework that allows propagation of 
uncertainty of each of the estimate steps into the final estimates of p and ensures that p lies 
between 0 to 100%. The Bayesian implementation also offers the convenience of using 
shrinkage priors to stabilize the estimates. Shrinkage priors are important especially for low 
sample sizes of the paired data used to estimate the misclassification, as they help to stabilize 
(improve precision of) the estimates unlike direct back-solve. As recommended in [1], we use 
priors that shrink the calibrated estimate of p towards the uncalibrated estimate of p if there is 
not enough data to confidently estimate the misclassification rates. 
 

S2. Model comparison using the WAIC 

We have two collected sources and types of data which need to be modeled differently. The 
COMSA data correspond to a marginal multinomial likelihood for the CCVA predicted COD, and 
the CHAMPS data correspond to a conditional multinomial likelihood of the CCVA predicted 
COD given the MITS COD. If we just used the COMSA data, which has no other COD information 
(like MITS-COD), to evaluate the WAIC, the CCVA algorithms would not be penalized for their 
high degree of misclassification, as evidenced in the CHAMPS cases, and the best WAIC would 
be obtained from the uncalibrated model for the CSMF which is the best fit to the COMSA VA 
data if we ignore misclassification.  

However, the uncalibrated CSMF assumes that the models have perfect sensitivity and the 
CHAMPS data testifies for or against this assumption. Hence, the misclassification rates are 
critical to understand the relationship between the VA-COD and the MITS-COD, and the WAIC 
calculation needs to include the CHAMPS data as well. Thus in our case, the future data for 
WAIC are twofold – VA-COD predictions for nationally representative community deaths 



 

(COMSA data), which are modeled using both the true CSMF and misclassification rates, and 
VA-COD predictions for the CHAMPS data with MITS-COD provided, which are modeled using 
just the misclassification rates. If the CHAMPS data demonstrate large misclassification rates, 
the WAIC will be large thereby rightfully penalize the uncalibrated CSMF for the wrong 
assumption of perfect sensitivity. 
 

To estimate the WAIC from the calibrated models, we use the MCMC draws of the CSMF and 
the misclassification rates to obtain the posterior distribution of the log-likelihood for every 
death in both sources of data.  

To estimate the WAIC for the uncalibrated models, we first obtain draws from the posterior 
distribution of the CSMF by assuming perfect sensitivity. The posterior mean of this distribution 
is nearly exactly that of the uncalibrated CSMF estimate. The prefect sensitivity assumption for 
the uncalibrated model, ideally translates to all posterior draws of the misclassification matrix 
being the identity matrix. This however produces a WAIC of infinity immediately ruling out the 
uncalibrated model. To make the WAIC of the uncalibrated model more competitive to that of 
the calibrated model, we compute the former assuming model sensitivities of 95%, under the 
assumption that with sufficiently high (but not perfect) sensitivity, one would still be willing to 
accept the uncalibrated CSMF estimates.  
 
S3. Implementation of CCVA algorithms 

To run InSilicoVA, the data variables and values are converted from the VA questionnaire 
format to the openVA R package format. For example, the variable Id10019, which is sex in the 
VA questionnaire, is recoded i019a and i019b and response values for i019a are “Y” if male and 
“N” if female, and vice-versa for i019b. Missing, don’t know, and refusal are coded “.” This 
mapping process, for each of the hundreds of VA questionnaire variables, must be done 
manually and checked separately, for each data source. For InSilicoVA inputs we assume the 
prevalence of HIV and malaria to be high in Mozambique. To run EAVA, the VA questionnaire 
variables and responses remain in the same format as they were collected. The EAVA CCVA 
creates a database indicating a diagnosis is either present or absent, based on reported 
symptoms. Causes are then assigned for each age group based on a hierarchy.  
 
 
 
 
 
 
 
 
 
 



 

S4. Uncalibrated and calibrated CSMFs 
 
Table S1: Raw (uncalibrated) and calibrated CSMF estimates (along with 95% confidence 
intervals) for children (1-59 months) from the 3 VA methods. 

 

    Malaria Pneumonia Diarrhea Severe 

malnutrition 

HIV Other Other 

infections 

InSilicoVA Uncalibrated 19% 16% 25% 5% 4% 8% 24% 

Calibrated 28% 

(22% - 

34%) 

7% (3% - 

12%) 

26% 

(19% - 

33%) 

6% (1% - 

16%) 

6% 

(1% - 

12%) 

8% 

(2% - 

14%) 

19% (10% 

- 31%) 

EAVA Uncalibrated 8% 22% 19% 6% 8% 6% 30% 

Calibrated 19% (5% 

- 36%) 

9% (5% - 

16%) 

12% (6% 

- 19%) 

4% (1% - 9%) 2% 

(0% - 

4%) 

3% 

(1% - 

7%) 

51% (33% 

- 67%) 

 

 

Ensemble 

Uncalibrated 14% 19% 22% 5% 6% 7% 27% 

Calibrated 27% 

(19% - 

33%) 

8% (5% - 

12%) 

19% 

(14% - 

25%) 

4% (1% - 8%) 2% 

(1% - 

4%) 

4% 

(2% - 

8%) 

36% (27% 

- 46%) 

 



 

 

 

 

Table S2: Raw (uncalibrated) and calibrated CSMF estimates (along with 95% confidence 
intervals) for neonates from the 3 VA methods. 

 

  
  Congenital 

malformation 

Infection IPRE Other Prematurity 

InSilicoVA Uncalibrated 0% 46% 25% 2% 27% 

Calibrated 1% (0% - 5%) 63% (53% - 

72%) 

21% 

(12% - 

30%) 

6% (2% - 

14%) 

9% (5% - 14%) 

EAVA Uncalibrated 4% 53% 21% 3% 19% 

Calibrated 4% (1% - 10%) 58% (42% - 

72%) 

26% 

(13% - 

42%) 

4% (1% - 

11%) 

8% (4% - 13%) 

Ensemble Uncalibrated 2% 49% 23% 3% 23% 

Calibrated 3% (1% - 6%) 62% (54% - 

69%) 

22% 

(15% - 

30%) 

5% (2% - 

10%) 

8% (6% - 12%) 
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