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Supplementary Discussion 

 

MMODS Motivation 

To support sound, evidence-based decision making, we believe it is critical to develop an 

efficient framework for collaborative modeling and for synthesizing results and 

recommendations from ensemble modeling efforts (1, 2).  

As with well-designed expert elicitations, using multiple models produces a more complete 

description of uncertainty and provides more robust projections to decision makers. Our 

approach can be applied to any decision that involves multiple models, and is designed to 

encourage full expression of scientific uncertainty while reducing extraneous uncertainty and 

minimizing biases common in elicitations from groups of experts. Many such decisions are 

being made worldwide in the context of COVID-19, for example. 

Our approach is designed to reduce unwanted cognitive biases and linguistic uncertainty (e.g., 

about the interpretation of the problem setting), while characterizing and preserving genuine 
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scientific uncertainty (e.g., about epidemiological processes or parameters, or intervention 

efficacy, given limited data) that is relevant to policy development and decision making. In this 

framework, insights can be shared across modeling groups to inform the collective projections, 

while retaining the perspective of individual groups. 

 

Sources of cognitive bias are many (3–6), but three main biases our process guards against 

include: dominance or authority effects (where there is a tendency to agree with field “leaders”); 

starting-point bias or anchoring (focusing on suggestions raised early in the process to the 

detriment of other ideas); and groupthink (when a desire for cohesiveness causes collaborators to 

minimize conflict and reach consensus without sufficient critical evaluation).   

 

The process involves multiple steps (Fig. S1), including two rounds of modeling with an 

intervening structured discussion to eliminate unwanted biases and uncertainty (including 

semantic or linguistic uncertainty), increase consistency in modeling of interventions, share 

critical insights, and generate a comprehensive picture of relevant uncertainty. The projections 

from the second round of modeling are then used to generate aggregate results under different 

interventions that encapsulate scientific uncertainty about epidemiological processes and 

management interventions (7). We stress that this process is designed primarily to inform 

decision making, rather than to provide quantitative projections of epidemic trajectory (as in 

ongoing forecasting challenges (8)), though such results are also obtained. The multi-model, 

multi-step process is expected to generate better calibrated projections than individual models. 

That is, the aggregate distributional forecast will be more consistent with future observations 

than individual forecasts. More importantly, this process is also expected to produce more robust 

insights about the ranking of intervention options that improve management outcomes. In short, 

we use multiple models to generate better expressions of uncertainty while guarding against 

cognitive biases to provide decision support. The COVID-19 pandemic offers a unique 

opportunity to apply this structured framework.  

 

We also stress that our approach encourages an integration of science and policy-making – 

efforts that are often separated to the detriment of public health, economic, and environmental 

outcomes when semantic uncertainties cannot be clarified and may thus interfere with success. 

Modelers intend their forecasts to ‘inform management decisions,’ yet the common separation of 

model outputs from the decision context increases the chance of misunderstandings and errors. 

Continued efforts to foster collaboration and streamline communication between modelers and 

decision makers, as well as to shift the focus from solely providing projections to evaluating 

proposed interventions, are essential steps towards effectively leveraging modeling efforts to 

inform decisions. 

 

Resolution of linguistic uncertainty in structured discussion between rounds 1 and 2 

The group discussion between modeling rounds identified numerous sources of linguistic 

uncertainty arising from different interpretations of the objectives and the nature of interventions 

from the problem setting. For example, the wording on reopening ‘2 weeks after peak’ 

engendered considerable confusion in the first round of modeling. How is a peak defined? Is it in 

reported deaths or cases? Is it measured on a daily or a moving-average basis? Likewise, how 
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should a model determine whether 2 weeks have passed since the peak? A continuous monotonic 

decline was never seen; should a moving average be used? And, if so, for 7 or 14 days? 

As well as allowing a common definition of “peak” and other terms, other sources of 

unanticipated uncertainty were resolved. For example, one modeling group asked for 

clarification on the definition of ‘death.’ There was a thorough discussion of the options that 

different groups had considered or used (reported only; reported plus probable; reported, 

probable and co-morbidities; or, also indirect deaths, such as those from unrelated causes in 

patients choosing not to go to the ER during a pandemic). We agreed as a group to use all deaths 

due to COVID-19 disease-induced mortality, regardless of reporting. This way of counting 

deaths is based on infection status, not testing status, and can include comorbidities but not 

indirect deaths, as we are only focusing on people who have been infected with SARS-CoV-2 

and died from their infection.  

The first round also provided some important checks and balances on the consistency of 

objective and intervention interpretations across groups, i.e., were the same definitions of 

workplace closures used?  In the first round, some groups used the May 15 to November 15 

timeframe, others based start dates on declarations of a State of Emergency or stay-at-home 

orders, and one group implemented a weighting for essential and non-essential business closures 

and associated compliance issues explicitly (Fig. S11). Including a metric that should be 

consistent across models allowed us to check for and remove linguistic uncertainty in round 2 

submissions that would have limited our ability to compare the rankings of interventions 

between models and objectives. Clear guidelines developed during and after the group meeting 

removed this uncertainty from round 2 projections, improving the comparability of intervention 

rankings across models.  Even so, there was still considerable variation across modeling groups 

in how these openings were triggered, in part because the triggering events were sensitive to how 

daily variation in the projections was handled (Fig. S12B). The MMODS Process is deliberate in 

explicitly planning for and appropriately managing this process, so that all groups are equally 

informed and use the same interpretations. Formally building the discussion phase into the 

modeling and decision-making process manages decision-maker expectations. Modeling teams 

also commented that they found the well-defined structure in Fig. S1 to be valuable. 

 

In addition to resolving linguistic uncertainty, the first round provided information on the 

utility of the interventions themselves. We initially requested results for reopening after 

declining to 1% of peak. Round 1 results suggested this condition would rarely, if ever, be met, 

so that results for this intervention were not meaningfully different from those of the closed 

intervention, and thus we altered the intervention to trigger at 5% of peak instead.  Typically, 

such changes in interventions would be made in consultation with decision makers (as part of 

Fig. S1, loop A). 

 

Deliberately, consensus on scientific uncertainty was not required. In fact, model results 

were presented anonymously to reduce the pressure to conform to other groups’ expectations and 

hence to avoid ‘groupthink,’ and other cognitive biases, engendering a more comprehensive 

expression of legitimate scientific uncertainty. We thus encouraged modeling groups to adjust 

their models to reflect unknown aspects of the transmission and intervention implementation 

process to more fully express genuine scientific and logistical uncertainty. A fuller expression of 

uncertainty, captured in individual models and the aggregate, allows for more robust risk 
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quantification. If for example, a local official or hospital administrator had to rely on only a 

single model to estimate the exceedance risk for hospital bed capacity, they might mis-estimate 

the risk and possibly over- or under-prepare. 

 

Due to the opposing effects of decreasing linguistic uncertainty and maintaining or 

increasing expression of scientific uncertainty, it was difficult to draw conclusions about the 

source of model-level changes in expressions of uncertainty between rounds 1 and 2. To begin to 

assess model-level changes, we compared the lengths of inter-quartile ranges (IQRs) (Figs. S13-

S15) within groups by round as well as the ratio of IQR length between each model and the 

corresponding aggregate distribution. The clearest examples of model incorporation of additional 

scientific uncertainty in round 2 were the models that provided point estimates in round 1 (length 

of IQR = 0) that subsequently expanded these estimates to distributions in round 2. Requiring 

distributions rather than point estimates necessarily increased the degree of expressed 

uncertainty. However, even in these models, we observed decreases in uncertainty (presumably 

in linguistic uncertainty) as the point estimates account for the majority of outliers in round 1 

(Fig. S13). 

 

For each objective-intervention pair considered in both rounds, the length of the aggregate 

IQR was greater than the median length of the corresponding model IQRs (Fig. S14).  The 

degree of uncertainty (as measured by IQR lengths) for the majority of models increased towards 

that of the corresponding objective-intervention aggregate distribution from round 1 to round 2 

(see the clustering of points near the orange dashed line in Fig. S14 round 2). 

Implementation of the open and closed interventions did not rely on a definition of “peak”. In 

Fig. S15, we observed that the ratio of IQRs (IQR(model)/IQR(aggregate)) between rounds 

tended to be closer to one than the 2-week intervention, which required a definition of peak (Fig. 

S15). We also note that decreases in the IQR length for the aggregate distribution were observed 

for all objectives in the 2-week scenario (i.e. aggregate ratio of IQRR2/IQRR1 <1). Changes 

observed in the open scenario (cumulative infections, cumulative deaths, and peak 

hospitalization ratios observed are 1.20, 1.02, and 0.949 respectively) were moderate compared 

to those in the closed scenario (cumulative infections, cumulative deaths, and peak 

hospitalization ratios observed are 1.93, 1.92, and 1.54 respectively). Note that an analogous 

comparison for the alternative peak intervention was not possible, given the change from 1-

percent of the peak to 5-percent of the peak between rounds.   

 

Tradeoff between public health and economic objectives 

 

Balancing public health outcomes and economic considerations is an important aspect of 

pandemic decision making, but needs a more nuanced treatment, particularly on the economic 

side. If we compare each of our four interventions to a hypothetical “no disease” scenario, we 

can identify four broad groups of costs from multiple perspectives:  

(a) financial costs caused by the disease itself (e.g., reduced economic output due to absence 

from work due either to illness or voluntary isolation, lower productivity at work or when 
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working from home, direct and indirect costs of medical treatment, or costs associated with 

funerals);  

(b) non-financial costs caused by the disease itself (e.g., mortality, morbidity, long-term 

health impacts);  

c) financial costs caused by the strategic response to the disease (e.g., reduced economic 

output due to a lockdown, costs of monitoring and enforcing a lockdown or of quarantining 

incoming travelers) or by individual responses that go beyond local policy; and  

(d) non-financial costs caused by strategic or personal responses (e.g., mental health 

challenges due to isolation and stress, relationship stressors and breakdowns, family violence, 

reduced access to opportunities for recreation).  

The magnitudes of these costs will depend on a wealth of factors, potentially including 

behavioral factors (e.g., forgoing preventive medical care such as routine childhood 

vaccinations), economic factors (e.g., poverty causing a need to work despite disease risks), and 

policy factors (e.g., constraints such as lockdowns). There may also be direct or indirect 

economic benefits associated with mitigation activities. For example, some firms have found that 

having staff work from home can increase efficiency and reduce operational costs (9), which 

could have ongoing benefits. Air pollution was reduced by reduced transport during lockdowns. 

The successful use of online video software to hold meetings including people from different 

locations is likely to result in a greater reliance on that approach post-pandemic, leading to 

reduced costs of travel, accommodation and lost work time and reduced emissions of greenhouse 

gases. The likelihood that people will adapt creatively to the constraints imposed by a pandemic 

or by a management strategy increases the difficulty of estimating the costs, because the nature 

and success of such adaptations are somewhat unpredictable. 

There may be important dynamic trade-offs in the benefits and costs that arise. For example, 

in some circumstances it may be worth incurring higher financial costs in the short term (a more 

extreme lockdown) in order to achieve a more rapid opening up of the economy following 

successful containment of the disease. New Zealand provides an example where this strategy 

was successfully followed.  

In principle, the optimal strategy would be that which minimizes the sum of all these costs, 

less any benefits. Our analysis does not quantify all of these costs and benefits but does provide 

evidence that could be used as key inputs to a comprehensive economic analysis. This analysis 

also starkly illustrates the tensions between economic and public health goals seen worldwide 

and suggests that strategies that only consider the timing of re-opening, or focus on a single type 

of intervention, may not be nuanced enough to manage these trade-offs. Feedback to decision 

makers from this process may lead to refined, possibly multi-criteria, objectives (via loop A in 

Fig. S1). 

 

 

Insights from individual models 

  The median probability of an outbreak increased to 100% for all intervention scenarios 

other than closed. Even relatively stringent re-opening guidelines were insufficient to guarantee 

success; complete cessation of community spread of the virus was unlikely even with long-term 

non-essential workplace closure, i.e., non-essential workplace closures alone would be 

insufficient to manage COVID-19 at a county- level). Either additional stay-at-home orders 

would be required, or other non-pharmaceutical interventions (e.g., testing, contact tracing and 
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isolation, or wearing masks) or pharmaceutical interventions (e.g., vaccination) would be needed 

to stop transmission while allowing workplace re-opening. 

 

Three models ranked the closed and 5-percent interventions as identical for several metrics; 6 

groups reported that for at least some simulations the 5-percent reopening criterion was never 

met in the 6-month period. Two models ranked the 5-percent intervention as better than the 

closed intervention based on the medians of health outcomes; both models had wide priors on 

parameters governing compliance with interventions. Three of the 17 models ranked the 5-

percent intervention worse than the 2-week intervention for public health measures (Fig. S12A), 

a result that was driven by different timing in the triggering of re-opening (Fig. S5). Another 

notable result is that the ranking of the 2-week intervention for the peak hospitalization metric 

spanned the gamut from worst rank (in submission M) to first-tied rank (in submission A) (Fig. 

1). Otherwise, rankings were remarkably consistent overall. 

 

Disagreements between models, or between models and the aggregate, were examined 

retrospectively, and include a range of reasons: genuine scientific disagreement about processes 

to include in the model given the massive uncertainty about SARS-CoV-2 at the time; 

stochasticity (especially in the case of very close or “tied” results); differences in calibration 

approaches; residual linguistic uncertainty (language uncertainty was drastically reduced but not 

completely eliminated by group discussions); inclusion of assumptions groups would later 

choose to revise if more time was available (especially with the benefit of hindsight).   

 

Comparison of county death and case data with aggregate model results 

The modeling exercise was motivated by a U.S. county representative of mid-sized counties 

with populations of approximately 100,000 people, with limited mobility and stay at home 

orders in place until at least May 15, 2020. Here, we compare aggregate model results with 

reported data from U.S. counties meeting the target county description. 

We first selected the 98 U.S. counties with population sizes between 90,000 and 110,000 

using data from the Johns Hopkins University COVID-19 dashboard (9). From this subset, we 

then selected counties with stay at home orders in place until at least May 15, 2020 (data from 

(10–12)), and changes in mobility in line with stay at home orders, i.e., less than 50% increase 

from baseline retail mobility, less than 25% increase in baseline work mobility, and less than 5% 

decline from baseline residential mobility (data from (13)). This resulted in a subset of 85 

counties. Finally, from this subset, we identified 18 counties implementing a fully ‘closed’ 

intervention (with stay at home orders in place and unmodified from May 15, 2020 to November 

15, 2020 and mobility patterns suggesting those orders were followed). Relaxing the definition 

of ‘closed’ to counties with any stay at home orders in place (including unmodified, modified, 

partial or stay safe at home orders) from May 15, 2020 to November 15, 2020, the subset of 

counties considered to be ‘closed’ increases to 84 (data from (14)). One county was found to be 

fully open during this period, and it was not possible to determine if any counties implemented 

the ‘2-week’ or ‘5-percent’ interventions. We compared aggregate cumulative reported deaths 

and cases with modeled cumulative deaths and infections (all COVID-19 deaths and infections, 

both reported and undetected) under the closed intervention for the 18 counties following the 
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‘closed’ intervention according to the strict definition of closed (including only full stay at home 

orders) and the 84 counties following the ‘closed’ intervention according to the relaxed 

definition of closed (including full and partial stay at home orders). Cumulative reported deaths 

and cases for the two groups of counties under the closed intervention were summarized in 100 

quantiles, the same format requested from model groups (See Figs. S16 - S17, below).  

Note that we are comparing reported deaths and cases (from data) with all COVID-19 deaths 

and cases from model results (which captures reported and undetected infections).  We did not 

assume a reporting or detection rate, but perforce expect a higher number of model-predicted 

cumulative deaths and cases. Crucially, our results represent the realization of one pandemic 

across multiple counties in comparison to multiple model realizations across a wide range of 

uncertainty. Thus, the model uncertainty will necessarily be higher than the observed 

uncertainty.  The model mean will likely also be higher, as the right-skewed uncertainty will 

increase the mean. 

 

 

Fig. S1: Multiple Models for Outbreak Decision Support (MMODS) framework, 

specifically for the elicitation in this project. The Problem is the decision context faced by state 

and local officials regarding local guidance and regulations concerning the operation of non-

essential workplaces, in the face of the COVID-19 pandemic during the period May 15 to 

November 15, 2020. The 5 Objectives addressed were to minimize: (1) cumulative infected 

individuals, (2) cumulative COVID-related deaths, (3) peak hospitalizations, (4) probability of a 

new local outbreak (more than 10 new reported cases/day), and (5) total days workplaces closed, 

all over the period May 15 to November 15. The four Interventions focused on strategies for re-

opening non-essential workplaces, while assuming all schools remaining closed, between May 

15 and November 15, 2020: (1) continue with current non-essential workplace closures, (2) open 

non-essential workplaces when the number of new daily cases is at 5% of peak, (3) open non-

Problem

Projections

Objectives

Interventions

Decision analysis

Implementation

Loop B

Loop A

Loop C
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essential workplaces 2 weeks after peak, and (4) immediately relax all current restrictions on 

non-essential workplaces. Loop B coordinates modeling groups to reduce bias and linguistic 

uncertainty. First, loop B involves independent (round 1) model Projections of all objective-

interaction combinations. A structured, facilitated group discussion reduces unwanted 

uncertainty and also prompts information on additional sources of data used, methods used to 

incorporate uncertainty, and assumptions made by individual groups, so that the whole 

collaborative can improve their models. Retention of the remaining model differences allows for 

a more comprehensive expression of legitimate scientific uncertainty; consensus is not required. 

Modelling groups then provide updated (round 2) model projections. Loop A provides an 

opportunity for model groups to interact with decision makers to clarify or update objectives or 

interventions, i.e., to reduce linguistic uncertainty. Decision Analysis is used to aggregate and 

analyze the model outputs to rank interventions. If decisions are implemented, then there is also 

an opportunity for modeling teams to learn from Implementation data and results (loop C)
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Fig. S2: Model results for each target objective and intervention scenario pair organized by 

model. Medians, 50% prediction intervals (PIs), and 90% PIs are indicated as points, thick lines, 

and thin lines, respectively. Colors denote ranking of each intervention by model for a single 

objective, where dark blue signifies the lowest value (best performance) and dark red signifies 

the highest value (worst performance). Ties in ranks are colored as intermediate values. A tie 

between ranks 1 and 2 and ranks 3 and 4 are shown as an intermediate blue and red, respectively; 

yellow indicates a tie in ranks across all interventions. Each group is assigned a random, unique 

identification letter that is specified on the vertical axis. 
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Fig. S3: Cumulative infections. Medians (points) and 50% PIs (lines) displayed pairwise by 

intervention scenario. Each point represents one model.  
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Fig. S4: Cumulative deaths. Medians (points) and 50% PIs (lines) displayed pairwise by 

intervention scenario. Each point represents one model.  
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Fig. S5: Days closed for non-essential workplaces. Medians (points) and 50% PIs (lines) 

displayed pairwise by intervention scenario. Each point represents one model. 
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Fig. S6: Peak number of hospitalized cases. Medians (points) and 50% PIs (lines) displayed 

pairwise by intervention scenario. Each point represents one model. 
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Fig. S7: Probability of outbreak. Median (points) and 50% PI (lines) displayed pairwise by 

intervention scenario. Each point represents one model. 
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Fig. S8: Cumulative distribution functions (CDFs) across models and for the aggregate. 

Each colored line shows the quantile distribution for a single model. Each aggregate CDF is 

shown in black with medians, 50% PIs, and 90% PIs indicated as red points, thick lines, and thin 

lines respectively.  
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Fig. S9: Scatter plots of intervention ranks for a given pair of objectives. Rank ties are 

shown as intermediate numerical values (e.g. a tie between 1 and 2 is shown as 1.5). For visual 

clarity, shaded points are jittered around the discrete rank values.  

 



 

17 
 

 

Fig. S10. Comparison of individual model results to aggregate results. The y-axis shows the 

relative interquartile range (IQR)—the ratio of an individual model’s IQR to the aggregate IQR. 

The x-axis shows the ratio of an individual model’s median to the aggregate median. Both axes 

are presented on a log scale. Colors denote ranking of each intervention by models, where dark 

blue signifies the lowest value (best performance) and dark red signifies the highest value (worst 

performance). Ties between ranks 1 and 2 and ranks 3 and 4 are shown as an intermediate blue 

and red, respectively; yellow indicates a tie in ranks across all interventions.   
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Fig. S11: Resolution of linguistic uncertainty in the discussion following round 1 of 

modeling (note that model IDs changed between rounds). Presentation slide from the group 

discussion after round 1 demonstrating linguistic uncertainty about the number of days non-

essential workplaces are closed.  Ovals highlight points of discussion about different ways of 

capturing uncertainty for days workplaces are closed and unusual results about intermediate 

interventions. See main text Fig. 2 for days of non-essential workplace closure results from 

round 1 versus round 2.  
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Fig. S12. Comparison between the 2-week and 5-percent interventions. A) Medians (points) 

and 50% PIs (lines) displayed pairwise by intervention and for the following objectives:  i) 

cumulative infections, ii) cumulative deaths, iii) peak hospitalizations, and iv) days closed for 

each model. B) Comparison of intervention start dates for 2-week (grey) vs. 5-percent (black) 

interventions for each model, where the start date is computed as the number of days from May 

15 until the intervention is enacted. Intervention start times of 184 days indicate that the 

intervention was never triggered in that model. All plots display median (points) and 5th to 

95th quantiles (lines) for each intervention. The 2-week intervention trigger to open is the first 

day for which the 7-day trailing moving average of the number of new daily reported cases has 

been lower than the maximum for at least 14 days, and has shown a day-to-day decline in 

smoothed case data for at least 10 of the last 14 days (or, there have been 7 days without any 

new cases). The 5-percent intervention trigger to open is the first day for which the 7-day trailing 

moving average of the number of new daily reported cases drops below 5% of the maximum. 
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Fig. S13: Team and aggregate values for each intervention and objective pair. Round 1 and 

round 2 results displayed in red and blue respectively. Since the 1-percent intervention from 

round 1 was updated to a 5-percent intervention in round 2, results for these interventions have 

been omitted from this comparison. Also note that two models were excluded from this analysis, 

as they submitted incomplete results in round 1. After the discussion between rounds 1 and 2, 

these groups were able to provide complete and comparable results. Additionally, in at least one 

case, some of the differences can be attributed to model error fixes between rounds.  
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Fig. S14: Comparison between model-specific IQR lengths and the length of the IQR for the 

aggregate distribution (i.e. length(IQR_team)/length(IQR_aggregate)) shown on a logarithmic 

scale. Results are grouped by round, intervention, and objective. Round is indicated on the left 

axis.  Columns indicate the objective and rows indicate the intervention. The dashed orange line 

highlights the point at which there is no difference between the model-specific IQR lengths 

between rounds 1 and 2 (points to the left indicate a model IQR less than that of the 

corresponding aggregate and vice versa for points to the right).  
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Fig. S15: Round comparison of IQR length by team, calculated as the ratio of the length of IQRs 

between rounds 1 and 2 (i.e. length(IQRR2) / length(IQRR1)) shown on a logarithmic scale. Note 

that in the first round, two models (G.1 and G.2) submitted point estimates for each intervention 

and metric. Since point estimates are such that length(IQR) = 0, the relative IQR (compared to 

round 1) is infinity and thus not shown here. Similarly, there is not a point representing 

cumulative deaths in the closed scenario for group K since the corresponding length(IQR) = 0. 

Because the 1-percent intervention from round 1 was changed to a 5-percent intervention in 

round 2, the corresponding results have been omitted from this comparison. The dashed orange 

line highlights the point at which there is no difference between the model-specific IQR lengths 

between rounds 1 and 2 (points to the left indicate a lower R2 IQR than that of the corresponding 

group’s R1 submission, and vice versa for points to the right). 
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Fig. S16: Summary of cumulative reported deaths (top) and cases (bottom) for counties 

similar to the model context and following the closed intervention i.e., with full stay at 

home orders in place (left) or full and partial stay at home orders in place (right). Median 

reported cumulative deaths (solid line), 50% IQR (darker shaded area), and 90% IQR (lighter 

shaded area) for the subset of 18 counties with full stay at home orders in place and the subset of 

84 counties with full or partial stay at home orders in place from May 15 to November 15, 2020. 
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Fig. S17: Comparison of aggregate reported county death and case data to modeled deaths 

and infections for the closed intervention according to two definitions of closed (full stay at 

home orders in place or full and partial stay at home orders in place). Top: Boxplot of 
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cumulative reported deaths from 18 and 84 U.S. counties with full or full and partial stay at 

home orders in place, respectively from May 15 to November 15 (median deaths for full orders 

in place: 36; 50% IQR: 13, 59; median deaths for full and partial orders in place: 48; 50% IQR: 

27, 71) and model results for cumulative deaths from May 15 to November 15 under the closed 

intervention (median deaths: 73; 50% IQR: 12, 228). Vertical line shows median value, box 

shows IQR (Q25-Q75, and whiskers show Q5-Q95.  Inset shows overlap of box area for the 

plots. Bottom: Cumulative reported cases from 18 and 84 U.S. counties with full or full and 

partial stay at home orders in place, respectively from May 15 to November 15 (median cases for 

full orders in place: 3374; 50% IQR: 1070, 5047; median cases for full and partial orders in 

place: 2964; 50% IQR: 2044, 4108) and model results for cumulative cases from May 15 to 

November 15 under the closed intervention (median infections: 8527; 50% IQR: 2351, 26988). 

Vertical line shows median value, box shows IQR (Q25-Q75, and whiskers show Q5-Q95. Inset 

shows overlap for the two plots. 
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Fig. S18: Description of model components and structure by model. Participants were asked 

to indicate which model components were included in their model (from a given set) and 

whether any component was structured by age and/or gender and/or sex as part of the submission 

checklist. No model included any components structure by gender and/or sex. Twelve of the 17 

included at least one component structured by age.  
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Fig. S19: Data sources used for each model.  Participants were asked to indicate which of the 

provided datasets were used for any part of the model (e.g., for calibration, training, fitting etc.) 

as part of the submission checklist. All but one model used at least two of the provided data. 

Model F used only external data sources (provided data was used solely to better understand the 

intent of the exercise). 
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Fig. S20: Projected number of deaths, people who are susceptible, and new infections 

under each scenario for the final day of the forecast. Participants reported the 5th, 25th, 50th, 

75th, and 95th quantiles for the number of deaths, susceptibles, and new infections on the final 

day (November 15, 2020) under each scenario. All models started with similar initial 

susceptibles. 
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Supplementary Tables 

Table S1: Contributed model descriptions. Name, description (including links to model code where available), diagram, calibration 

method, other non-pharmaceutical interventions (NPIs) included in the model, additional data sources used, previous use cases for the 

model (both for COVID-19 in other settings and other disease systems) and references for each of the 17 models. Categories which 

were not relevant were excluded. 

CoMo Collaborative COVID-19 Model 

Description 
Age-structured, SEIR compartmental model with infected compartments stratified by symptoms, severity and treatment seeking 
and access. Code available: https://github.com/ocelhay/como   

Additional NPIs included Social distancing, Isolation (post infection), Stay-at-home (voluntary), Handwashing, Travel ban 

Additional data sources 
used 

National data on hospital, ICU, and ventilator availability; Data on U.S. household size from the American Community Survey; Data 
from China and New York City for healthcare parameterization; Age-structure mixing matrices for Work, School, and Home from 
Prem, Cook, and Jit (2017); Vital surveillances from The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team 
(2020); NYS Governor Cuomo Daily presentation (April 23, 2020); List of countries by hospital beds (Wikipedia) 

Previous use cases RSV in Thailand 

References (15) 

Co-authors Ricardo Agus, Lisa White, Nathaniel Hupert (PI) 

Acknowledgements Wirichida Pan-Ngun, PhD, Olivier Celhay, Vruj Patel, Lior Shtayer 

Covasim 

Description 

Stochastic agent-based model, including age-structured mixing, susceptibility to infection and health outcomes; transmission 
networks in different social layers; variable intrahost viral dynamics; presymptomatic, symptomatic, and asymptomatic 
transmission; hospitalizations (regular and intensive care); and multiple non-pharmaceutical and testing interventions. Code 
available: https://github.com/institutefordiseasemodeling/covasim 

Diagram See (16), Fig. 1 

Calibration 
Parameters were calibrated by optimizing the L1 relative error norm of positive diagnoses, number of deaths, and number of tests 
using global optimization package, Optuna 

Additional NPIs 
included 

Social distancing, Isolation (post infection), and school, workplace, and community closures based on stay-at-home and state-of-
emergency orders. 

Previous use cases COVID-19 in Africa, Europe, Oceania, and North America 

References (16) 

Co-authors Rafael C. Nez, Katherine Rosenfeld, Gregory R. Hart, Daniel Klein, Cliff C. Kerr (PI) 

Acknowledgements Dina Mistry, Prashanth Selvaraj, Jamie A. Cohen, Michael Famulare, Robyn M. Stuart, Romesh Abeysuriya 

EvoNet SARS2 

Description 
Stochastic, place-based model in which agents travel to different locations within the community.  Agents can infect others within 
homes, schools, workplaces and other regular gathering spots, as well as during random walks within the community.  
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Calibration 
Created ~1000 parameter sets each with 52 uniformly distributed parameters.  For each parameter set, we considered a range of 
transmission probabilities.  Interventions were simulated for parameter sets for which case and death counts came within range 
of the county data up to May 15th. 

Additional NPIs 
included 

Social distancing, Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Age-specific interventions (e.g., 
isolation of elderly) 

Previous use cases HIV 

Co-authors John Mittler (PI) 

Acknowledgements Joshua Herbeck, James Murphy, Neil Abernethy, Sarah Stansfield, Molly Reid, Steven Goodreau 

Funding NIH grants R01AI108490 and R01 GM125440 

JHU-CDDEP Bayesian Three-stage ODE Model 

Description 
Bayesian, mechanistic ODE-based compartmental model composed of three transmission stages with varied force of infection 
pre-lockdown, lockdown, post-lockdown. Each stage corresponds with lockdown phases and social distancing measures that 
might be imposed by public health policymakers. 

Calibration 
Bayesian inference was conducted using MCMC-based method was used to fit the model to confirmed cases and deaths. 
Parameter ranges were estimated form the posterior distribution. Prior distribution was assumed to be uniformly distributed 

References  (17) 

Co-authors Gary Lin, Yupeng Yang, Eili Klein 

Acknowledgements 
Anindya Bhaduri, Max Pinz, and the U.S. Centers for Disease Control and Prevention (CDC) Modeling in Infectious Diseases 
Network 

LANL1-EpiCast 

Description Agent based model with communities, households, and workplaces 

Calibration 

Transmission rates were varied in burn in period (March to May) to try to model actual county statistics. Burn in transmission 
rates calculated by parameter testing the model were much higher than previous experience fitting COVID-19 (0.43), and were 
thus scaled down to an assumptive 0.2. This is potentially due to very low testing rates in initial stages and the existence of many 
more cases than were validated, thus explaining apparent excessively rapid growth in case numbers.  

Additional NPIs 
included 

Social distancing, Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., 
government-ordered) 

Additional data sources 
used 

CDC disease statistics; past model calibration experience for COVID 

Previous use cases Flu and smallpox in the U.S. 

References (18–20) 

Co-authors Chrysm Watson Ross, Tim Germann, Geoffrey Fairchild, Sara Del Valle (PI) 

Funding 

The LANL team was partially funded by the Laboratory Directed Research Development Program at Los Alamos National 
Laboratory (20200698ER and 20200697ER) and was supported by the DOE Office of Science through the National Virtual 
Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by 
the Coronavirus CARES Act. Los Alamos National Laboratory is operated by Triad National Security, LLC under Contract No. 
89233218CNA000001 with the U.S. Department of Energy. The content is solely the responsibility of the authors and does not 
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necessarily represent the official views of the sponsors. The funders had no role in study design, data collection, analysis, decision 
to publish, or preparation of manuscript. 

LANL2-Age Structured ODE 

Description 
Age-structured compartmental ODE model. Stochasticity is incorporated by selecting parameters randomly from uniform 
distributions for each run, where the parameter ranges are determined from literature. 

Diagram See (21) 

Previous use cases COVID-19 in New Mexico 

References (21, 22) 

Co-authors Rosalyn Cherie Rael, Julie Spencer, Isabel Crooker, Carrie Manore (PI) 

Funding 

The LANL team was partially funded by the Laboratory Directed Research Development Program at Los Alamos National 
Laboratory (20200698ER and 20200697ER) and was supported by the DOE Office of Science through the National Virtual 
Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by 
the Coronavirus CARES Act. Los Alamos National Laboratory is operated by Triad National Security, LLC under Contract No. 
89233218CNA000001 with the U.S. Department of Energy. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the sponsors. The funders had no role in study design, data collection, analysis, decision 
to publish, or preparation of manuscript. The publication is approved for release LA-UR-20-27777. 

MESALab-FOSP 

Description Integer order generalized SEIR compartmental models with power law infection rates and age structure 

References (23) 

Co-authors Lihong Guo, Yanting Zhao, YangQuan Chen (PI) 

MESALab-FOSP2 

Description Fractional order generalized SEIR compartmental models with power law infection rates 

References (23) 

Co-authors Lihong Guo, Yanting Zhao, YangQuan Chen (PI) 

NEU-MOBS 

Description 
Stochastic, age-structured, compartmental model, including symptomatic and asymptomatic transmissions, as well as 
hospitalizations. 

Calibration Calibration of R0 and initial date performed using reported deaths 

Additional NPIs 
included 

Social distancing, Stay-at-home (mandatory, e.g., government-ordered) 

Additional data sources 
used 

Age structure contact patterns from highly detailed macro (census) and micro (survey) data on key socio-demographic features 

References (24) 

Co-authors Kunpeng Mu, Ana Pastore y Piontti, Alessandro Vespignani (PI) 

Acknowledgements Matteo Chinazzi, Jessica T. Davis, Xinyue Xiong 

Funding AV, APyP, KM acknowledge the support of the McGovern Foundation,  Google Cloud and Google Cloud Research Credits program. 

NIH-FDA SICR 
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Description 

Compartmental model with compartments for Susceptible, Infected, Case (C), case Recovered (R), and case Dead (D). The mean 
dynamics of the compartments are governed by an ODE system. The likelihood for the rate of appearance of C, R, and D are given 
by a negative binomial distribution where the dispersion parameter is a fitted parameter. Code available: 
https://github.com/ccc1685/covid-19 

Diagram See Fig. 1 in Chow et al.48 

Calibration Priors were obtained from posteriors of fits to New York and Maryland 

Previous use cases COVID-19 globally, data permitting 

References (25) 

Co-authors Joshua C Chang, Richard C Gerkin, Shashaank Vattikuti, Artur Belov, Osman Yogurtcu, Carson C Chow (PI) 

Acknowledgements Hong Yang 

Funding 
CCC and SV were supported by the Intramural Program of the NIH, NIDDK. RCG was supported by NIDCD, NINDS, and NSF. This 
work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

Notre Dame-FRED 

Description 

Agent-based model, FRED (Framework for Reconstructing Epidemic Dynamics), with updated epidemiological parameters based 
on studies to date. FRED explicitly models transmission dynamics of a pathogen in a realistic population, and allows for the 
impacts of NPIs to be modeled explicitly (e.g., school closure results in agents representing children staying home). Code 
available: https://github.com/confunguido/covid19_ND_forecasting 

Calibration 

Disease specific parameters were calibrated to the number of daily deaths in PA. Adams County was then simulated to estimate 
the rate of importations from the state incidence and a scaling factor to google mobility trends. Parameters were uniformly 
sampled for each step of the calibration using a sobol design sequence (pomp package in R). Then, the likelihood based on the 
daily number of deaths was calculated. 

Additional NPIs 
included 

Isolation (post infection) 

Additional data sources 
used 

NY times data to match the daily deaths of the state of PA as a pre-fitting step (https://github.com/nytimes/covid-19-data); 
Google mobility trends 

Previous use cases Several diseases; originally developed by University of Pittsburgh to model the 2009 influenza pandemic 

References (26) 

Co-authors Guido España, Sean Cavany, Rachel Oidtman, T. Alex Perkins (PI) 

Acknowledgements Alan Costello, Annaliese Wieler, Anita Lerch, Carly Barbera, Marya Poterek, Quan Tran 

Funding 
This work was supported by an NSF RAPID grant to TAP (DEB 2027718), an Arthur J. Schmitt Fellowship and Eck Institute for 
Global Health Fellowship to RJO. We thank the University of Notre Dame Center for Research Computing for computing 
resources. 

UCLA-SuEIR 

Description 
New epidemic compartmental model (SuEIR) based on the standard SEIR model that also takes into account untested/unreported 
cases. The model is trained by machine learning algorithms based on reported historical data. Project website: 
https://covid19.uclaml.org/ 

Diagram See Fig. 1 in (27) 

https://github.com/ccc1685/covid-19
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Additional NPIs included 
Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., government-
ordered), Age-specific interventions (e.g., isolation of elderly) 

References (27) 

Co-authors Difan Zou, Weitong Zhang, Lingxiao Wang, Pan Xu, Jinghui Chen, Quanquan Gu (PI) 

UF COVID-ABM 

Description 

Spatially explicit, agent-based model simulating a community of individuals based on census, workplace, and school data. The 
movement of each person during a simulated day takes place among a set of pre-assigned local places. Pathogen exposure events 
occur probabilistically when a susceptible person co-localizes with an infectious person and exposures can be resisted, or result in 
asymptomatic, mild, severe and/or critical infection 

Additional NPIs included Social distancing, Stay-at-home (voluntary), School closures 

Additional data sources 
used 

The American Community Survey 5-year dataset; geographical coordinates and the business type from the National Corporation 
Directory;  North American Industry Classification System to identify essential vs non-essential businesses; University of Florida 
GeoPlan Center shapefile and data from the National Center for Education Statistics to locate schools 

Previous use cases Dengue in Yucatan, Mexico 

References (28–30) 

Co-authors Kok Ben Toh, Arlin Stoltzfus, Carl Pearson, Dianela Perdomo, Alexander Pillai, Sanjana Bhargava, Thomas Hladish (PI) 

 
CP acknowledges the Bill & Melinda Gates Foundation (OPP1184344) and the UK Foreign, Commonwealth and Development 
Office (FCDO)/Wellcome Trust Epidemic Preparedness Coronavirus research programme (ref.  221303/Z/20/Z) 

UNCC LSTM 

Description 
Data-driven, stochastic SI model utilizing a deep learning recurrent neural network with multivariate LSTM architecture. The 
model was calibrated using COVID-19 epidemic data in another region with ending of the epidemic to guide the model to learn 
how the epidemic could eventually phase out. 

Calibration 
Transfer learning was used to let the LSTM learn how the epidemic would eventually end from another region, explore the RNN 
structure and hyperparameters, and apply them to tune the model for the modeled region 

Additional data sources 
used 

COVID-19 data from another region where the epidemic has (presumably) ended. 

Co-authors Daniel Janies, Rajib Paul, Shi Chen (PI) 

Acknowledgements Tinghao Feng 

UT-SEPAYHR 

Description 
Stochastic, age- and risk-structured compartmental model that includes susceptible, exposed, presymptomatic, asymptomatic, 
symptomatic, hospitalized, and recovered states (SEPAYHR). The model is simulated using a hybrid approach with a deterministic 
initial phase (up to 20 total symptomatic cases) followed by a stochastic phase.  

Diagram See Fig. A1 in (31) 

Calibration 
Basic reproductive number (Rt) was estimated using provided and transmission probability was estimated using a next-generation 
matrix approach based on the model structure and Rt. Epidemic start date was based on the time to first death implied by the 
estimated Rt and transmission probability. Transmission reduction due to social distancing was estimated with a nonlinear least 
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squares fitting procedure in the SciPy/Python package. Detection rate was estimated using the provided data and published 
estimates of age-structured infection fatality ratios. 

Additional NPIs 
included 

Social distancing, Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., government-ordered) 

References (31) 

Co-authors Kelly Pierce, Remy Pasco, Lauren Ancel Meyers (PI) 

Acknowledgements Spencer Fox, Zhanwei Du, Ethan Ho, Greg Zynda, Jawon Song 

Funding CDC contract 75D-301-19-C-05930, and NIH grant 3R01AI151176-01S1 

UW-THINKLAB-SEIQRD 

Description 
Compartmental model, consisting of 6 compartments: Susceptible (S), Exposed (E), Infectious (I), Quarantined (Q), Recovered (R) 
and Dead (D). Transitions between compartments are formulated using deterministic functions in discrete time steps and 
parameters governing transitions are assumed to change stochastically on a daily basis (except for predetermined parameters). 

Calibration 
Particle filtering is used to update the distribution of parameter estimates on a daily basis while case and death data is available 
(i.e. by May 15). 

Additional data sources 
used 

National average hospital beds per capita from World Health Organization 
(https://www.who.int/data/gho/data/indicators/indicator-details/GHO/hospital-beds-(per-10-000-population) 

Co-authors Xiangyang Guan, Cynthia Chen (PI) 

VT Childs Lab 

Description 
Deterministic, compartmental ODE system. Parameter sets are chosen using Latin Hypercube Sampling and refined based on 
comparison to data. 

Calibration Parameters were chosen from given ranges via Latin Hypercube Sampling (LHS) 

Additional NPIs included Social distancing, Isolation (post hospitalization) 

Co-authors Lauren M Childs (PI) 

Acknowledgements Kate Langwig, Leah Johnson, Eyvindur Ari Palsson, Julie Blackwood 

Funding LMC acknowledges support from National Science Foundation grant No. 2029262. 
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Table S2. Importation rate. Most models did not include an importation rate after any initial 

seeding. Models that did maintained a relatively small importation rate, per the elicitation setting. 

Model ID Importation rate (or None) 

A None 

B None 

C None 

D None 

E 0.14 cases / day 

F 1 exposure / day (with a probability of resistance) 

G.1 None 

G.2 None 

H None 

I None (after initial seeding) 

J None (after initial seeding) 

K None 

L 0 – 0.5 cases / day 

M None 

N None 

O Varied 

P None 
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The original project description and request for contributions to MMODS Elicitation 1 is 

appended to this supplement. The request includes a detailed description of the MMODS process 

as well as information on the setting, interventions, and objectives to be considered during the 

first MMODS collaboration exercise. 

 

The submission form and checklist of data required for round 2 models is appended to this 

supplement.  It comprised a detailed web form requiring the reporting of information 

characterizing the model being submitted. This form was hosted behind a login portal for 

participating model groups on the MIDAS website.  

 

Movie S1. MMODS_Elicitation1_InterventionRankResults.mp4 

Model-specific intervention rank results evaluated for each objective in round 2 of the MMODS 

process. Results are displayed in video format by quantile (1 through 100). Colors indicating 

ranks and rank-ties are as specified for the median rank result figures in main text and range 

from single best intervention (dark blue) to single worst intervention (dark red). 

 

Data S1. MMODS_Elicitation1-ProvidedData.xlsx 

Data for a generic U.S. county were provided to modeling groups to inform their model 

specifications. Provided data include: epidemiological data on daily and cumulative cases and 

deaths from January 22 to May 15, 2020; demographic information on age- and sex-distribution; 

testing and mobility; timing on the release of a stay-at-home order and a State of Emergency 

declaration. Data adapted from (9–11, 13, 32, 33).  

 

Data S2. MMODS_Elicitation1-OutputData. xlsx 

Anonymized results for individual models and the aggregate. Results are provided in a standard 

format, including 100 quantiles for each model-objective-intervention (or aggregate-objective-

intervention) combination (i.e., the probability distribution for each outcome for each 

intervention, via the cumulative distribution function (CDF) in 100 quantiles). 
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Harnessing Multiple Models for Outbreak Management 

 Exercise I.  Relaxation of social distancing  

 

 

The Problem 

The profusion of models for COVID-19, with differing structures, varied epidemiological 

scenarios, parameters and presentation, and sometimes conflicting projections, is a challenge for 

decision-makers. In a recent paper, we proposed a method for harnessing the power of multiple 

models by drawing from tools in decision analysis, expert judgment, and model aggregation 

(Shea et al. 2020). This project is meant to implement that proposal in the context of COVID-19. 

We aim to generate unbiased and well-calibrated aggregate projections under different 

interventions, that encapsulate scientific and logistical uncertainty, to better inform management 

decisions. In this framework, insights can be shared across groups to inform the same decision, 

while retaining the perspective of individual groups as part of the full expression of uncertainty. 

 

The overall goals of this project are to implement these procedures for a series of COVID-19 

decisions; engage a diverse set of modeling groups with expertise in structured, collaborative, 

ensemble projections; and develop efficient logistical processes for managing our broad 

communal effort. This is a complementary effort to the COVID-19 forecasting hub developed by 

Nick Reich and colleagues, with an explicit focus on interventions and decisions. 

 

Specifically, we will run multiple projection exercises to address key decisions facing managers 

of COVID-19, including when and how to relax key social distancing interventions (exercise I).  

In later exercises, we will use model assemblages to assess more nuanced partial reopening 

strategies, intervention decisions at state and country levels, where best to trial vaccines and 

drugs, how to prioritize testing and how to optimize the roll-out of medical interventions.  We 

will request, from each participating group, one or more models that encapsulate their group’s 

best understanding of the current pandemic (that is, we will treat each model as an hypothesis 

about the current outbreak).  All participants will be invited as co-authors on resultant 

publications.  Results will be kept confidential within the group until presentation to decision-

makers or in publication(s).  When presented outside the group, only model participation will be 

disclosed (individual model results will be anonymized). 

 

Procedure 

We will use principles of decision analysis to help structure model projections and analysis, and 

adopt well-established methods from the expert judgment literature so that the results from 

multiple modeling groups can all contribute to insights about the same decision context and 

contribute to a synthetic and long term resolution to the current pandemic.  

 

For each exercise, we will take the following steps: 

 

1. Setting. We will present a decision setting, specifying the background epidemiology 

(location, outbreak trajectory), the targets of the decision maker (e.g., minimizing deaths, 

epidemic duration, etc.), and the intervention(s) to examine. Relevant epidemiologic and 

demographic data will be shared. 

2. Individual Projections 1. We will ask each modeling group to independently estimate the 

https://science.sciencemag.org/content/368/6491/577.abstract


desired outcomes under the alternative interventions, with particular attention to expressing 

uncertainty. We will ask for probability distributions for each outcome and intervention 

scenario. 

3. Group Discussion. We will compile the results from the multiple modeling groups and 

display them (anonymously) in a format that permits ready comparison. We will convene 

a group discussion with all the modeling groups to explore the commonalities and 

differences, to share insights, and to discuss sources of uncertainty. 

4. Individual Projections 2. We will then ask each modeling group to independently project 

the same targets under the alternative interventions again, taking into account the insights 

from the group discussion to the extent they find them compelling. We will again ask for 

probability distributions. 

5. Aggregation and Analysis. We will then aggregate the second round of results into a set of 

ensemble projections that captures the uncertainty within and across modeling groups. We 

will also conduct a value-of-information analysis to identify sources of uncertainty that 

most affect the choice of an intervention. The summary of this work should be an analysis 

that conveys to the decision maker the expected performance of each of the interventions, 

using the ensemble projections, with an understanding of the role of uncertainty. 

 

Exercise I of the elicitation: post-lockdown strategies 

 

Setting and initial conditions: 

We ask that you consider the setting of a US county of 100,000 people, with an age structure 

typical of the age structure across the US, that pre-emptively initiated, and adhered to, stringent 

social distancing guidelines (i.e., full lockdown with workplace and school closures) until May 

15th, 2020. As of 15th May 2020, the town has recorded 180 confirmed cumulative cases and 6 

total deaths (time series for both provided).  Please assume current (i.e., partial) travel 

restrictions remain in place throughout the exercise, so that no international importation is 

allowed and domestic importations are limited. 

 

The decision maker is the county executive, who has authority to specify guidance for opening 

workplaces. The focus is on decisions regarding social distancing and re-opening over the next 

few months, prior to the onset of the influenza season. 

 

Projection outcomes/objectives: 

The county executive has indicated they are interested in weighing the trade-offs among a 

number of outcomes, including the impact of the disease on public health, hospital resources, and 

the local economy. To reflect these objectives, we ask participating modeling groups to address 5 

outcomes (metrics): 

1) cumulative number of infected individuals through November 15 

2) cumulative number of deaths through November 15 

3) peak hospitalizations through November 15 

4) probability of a new local outbreak (more than 10 new cases/day) before November 15 

5) total number of days workplaces closed through November 15 

 

  



Interventions 

In this first exercise, we will only consider relaxation related to workplaces. We request that you 

provide model projections for the following 4 intervention scenarios:  

 

 1) continue with current workplace and school closures until November 15  

(baseline full control scenario) 

 

2) relax current social distancing 2 weeks after peak: 

▪ open workplaces only (schools remain closed through November 15) 

 

3) relax social distancing when the number of new daily cases is at 1% of peak 

▪ open workplaces only (schools remain closed through November 15) 

 

4) immediately relax all current restrictions on workplaces 

 (schools remain closed through November 15) 

 

For now, please assume no local testing/contact tracing and isolation of infected individuals; we 

will return to evaluate this in a future elicitation. You are however free to define and present 

results for any other relaxation process you feel is relevant or interesting. 

 

Models should provide a full probability distribution of outcomes for each intervention, such that 

tail probabilities for the 2nd and 98th quantiles are relatively stable. Specifically, we want the 

probability distribution for each outcome for each intervention, by specifying the cumulative 

distribution function (i.e., with 100 quantiles). We will provide a submission template. 

 

We request submissions by 9 June 2020. Please provide your contact information in the Google 

Spreadsheet if you plan to participate, and we will give you more detailed submission 

information. In case of questions, email Dr. Katriona Shea (k-shea@psu.edu). 

 

Background information on your model:  Please provide a short write up of your model, 

including assumptions made about key epidemiological parameters, with parametric uncertainty 

(e.g., transmission, recovery, R0, serial interval).  Please document all sources of variation in 

your model using the checklist provided.  We are looking for full expression of uncertainty in 

these projections.  For example, uncertainty may be structural (e.g., should asymptomatic 

carriers be modeled explicitly?), or parametric with respect to the biology (e.g., what is the 

expected time between sequential cases in a chain of transmission?), the setting (what is the 

assumed rate of domestic importations?) or the interventions (e.g., what is the expected impact of 

social distancing?) or there may be other sources of stochasticity.  Other key uncertainties you 

might scan across might include: controllability of social distancing, probability of novel 

incursions that might lead to a second wave of local infections, etc.  Details of any model 

calibration or inference framework used should be provided (checklist will be provided).  If we 

do not specify something, please use your best judgment and include that in your modeling of 

uncertainty (and please let us know in your short model description and in the checklist).  Do not 

hesitate to send questions, and please provide any other information you feel is pertinent so we 

can update our checklist for future exercises.  

https://docs.google.com/spreadsheets/d/162qHmitydxXawR46xZGsTQMXWq3p7fBJIPkq1tdUxFk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/162qHmitydxXawR46xZGsTQMXWq3p7fBJIPkq1tdUxFk/edit?usp=sharing


Multi-Model Outbreak Decision Support (MMODS)
Submission Form

You are submitting as:
rborchering@psu.edu

MMODS Homepage

Change Password

Logout

Models you’ve submitted already:
None.

Save your work, or load work that you've saved!
Load answers from a previously saved or submitted model:

  Load  Clear Answers  

Save Progress  Note: Submission Files aren't saved as they shouldn't be re-used. 

Please be sure to save your work by clicking the "Save Progress" button. Any unsaved work will be lost if you refresh or
leave this page. Submissions will be automatically saved upon successful submission.

All 2elds marked * are required for submission.

Please be sure that your submission 1le meets the requirements speci1ed in the submission template, and upload your 1le here. In
order for your submission to be considered, please 1ll out the form below and then click the submit button when 1nished (allowed
1letypes are csv, xlsx, and xls):

no 1le selectedChoose File

Model Short Name (please limit to 15 characters or fewer):*

Model Description (please be sure to tick all that apply):*

 Deterministic  Individual-based (agent-based) model  Spatially explicit  Stochastic
 Compartmental Model  Other

Please provide a brief model description, including an explanation of the ways in which the above selected description(s) are
applicable (e.g., to different parts or parameters of your model). Note, if you would like to include a model diagram, please do so as
an optional 1le upload at the end*:

Model Component (e.g. compartment, probability, or rate)

Susceptibility*:

 !

Type (or lack) of symptoms*:

 !

Disease severity (e.g. mild/severe)*:

 !

Time until infectious*:

 !

Time until symptomatic*:

 !

Reinfection (e.g. waning immunity)*:

 !

Hospitalization (of any kind)*:

 !

Entering intensive care/treatment unit (ICU/ITU)*:

 !

Recovery*:

 !

Disease related death/mortality*:

 !

Testing*:

 !

If applicable, indicate age groups used (if multiple age groups are used in different components of the model, please detail):

Please describe any other model components or structures considered (e.g. health conditions, pathogens besides SARS-CoV-2 simultaneously modelled, other
groups/strati1cations included):

MODEL PARAMETERS, UNCERTAINTY, AND OUTCOMES

Please enter the distribution of values (5th, 25th, 50th, 75th, 95th quantiles) considered for the initial number of susceptible individuals (i.e., on May 15). If a distribution
is not possible, then please provide a single median value::*

Please indicate importation rate(s) used (e.g. 1 case / week), if included in the model:

Please detail any assumed relationships between infected numbers and reported cases (e.g., reporting rate(s) used):*

Please detail modeling choices regarding proportion of asymptomatic individuals:*

If your model is able to produce a probability distribution for the probability of an outbreak, please provide the full distribution in the submission template and detail
methods used to produce the distribution here:

Please enter the distribution of dates (5th, 25th, 50th, 75th, 95th quantiles) at which the 5% intervention was set in motion (if a distribution is not possible, then please
provide a single median value, or if not attained, indicate NA):*

Please enter the distribution of dates (5th, 25th, 50th, 75th, 95th quantiles) at which the 2-week intervention was set in motion (if a distribution is not possible, then
please provide a single median value, or if not attained, indicate NA):*

Please enter the distribution of values (5th, 25th,50th, 75th, 95th quantiles) observed for the 1nal number of susceptible individuals (i.e., on Nov 15). If a distribution is
not possible, then please provide a single median value:*

If available, please provide the distribution of values (5th, 25th,50th, 75th, 95th quantiles) observed for the daily new infections on 1nal day (i.e., on Nov 15th). If a
distribution is not possible, then please provide a single median value:

If available, please provide the distribution of values (5th, 25th,50th, 75th, 95th quantiles) observed for the daily deaths on 1nal day (i.e., on Nov 15th). If a distribution is
not possible, then please provide a single median value:

Below, please indicate whether component value(s) are 1xed or whether uncertainty was accounted for and if so, how. . For each component, select the option
that applies best from the following:

N/A (component not included)
Fixed (no uncertainty expressed regarding this component)
Uncertainty - Likelihood-based (uncertainty included; estimated using likelihood-based methods)
Uncertainty – Simulation (uncertainty included; values explored through simulation)
Uncertainty - Expert Judgment (uncertainty included; estimated using expert judgment), or
Uncertainty – Other (uncertainty included; values estimated by methods other than above)

Model Component

Susceptibility:*

 !

Type (or lack) of symptoms:*

 !

Disease severity (e.g. mild/severe):*

 !

Time until infectious:*

 !

Time until symptomatic:*

 !

Reinfection (e.g. waning immunity):*

 !

Hospitalization (of any kind):*

 !

Entering intensive care/treatment unit (ICU/ITU):*

 !

Recovery:*

 !

Disease related death/mortality:*

 !

Testing:*

 !

Please provide any additional details you think are important to note regarding uncertainty about model components here:

Please describe methods used to address any structural or other sources of uncertainty in your model, if applicable:

Interventions

 Tick if interventions aside from non-essential workplace closures were explicitly included in the model.

​​Please tick boxes next to any additional interventions that were incorporated in your Elicitation 1 model here:

 Contact tracing (digital)
 Contact tracing (manual)
 Social distancing
 Quarantine (post exposure)
 Isolation (post infection)
 Stay-at-home (voluntary)
 Stay-at-home (mandatory, e.g., government-ordered)
 Age-speci1c interventions (e.g., isolation of elderly)

Other(s):

​​Please detail model assumptions regarding compliance with NPIs, including for non-essential workplace closures:

​​Pharmaceutical interventions (PIs):

 Testing (for active infection, e.g. PCR testing)
 Testing (for past infection, e.g. antibody testing)

If testing was included:

Please detail assumptions regarding testing location (i.e. community testing):

Please detail assumptions regarding testing rate:

Please list any other intervention(s) modeled and related assumptions:

DATA

Please tick boxes next to all data sources provided as part of this elicitation that were used:*

 Cases
 Deaths
 Mobility
 Demographic
 Testing
 Stay at home / State of emergency
 None of the above data provided as part of this elicitation were used

Please describe/provide links to any additional data sources used:

MODEL CALIBRATION

 Model calibration was performed (that is, some aspects of parameter estimation were conducted using the model structure and the available data).

MODEL HISTORY

 Model has been used before now.

If research using this model has been published, tick all publication types in which the model has appeared that apply:

 White paper
 Peer-reviewed journal
 Pre-print server

If model has been used (in published research) before being applied to COVID-19, please detail other pathogen(s) to which the model has been applied and/or which
locations (e.g. region, country) where this model has been previously applied:

Please include links/references to any key publications or pre-prints where the model has been used previously:

ADMINISTRATION

How many person-hours do you estimate were allocated to this modeling effort?*

ELICITATION

Please provide any feedback or suggestions as to what you think should have been requested for this and/or future elicitations (e.g. other objectives/metrics,
interventions, settings, sources of uncertainty, or additional pertinent information that should have been explicitly requested):

To help with future elicitations, please provide any comments regarding this process that would have made it easier on participants:

ADDITIONAL INFORMATION

If you have any additional documentation 1les available, that you are willing to share, please upload them here (e.g., epidemic curves, distributions of the underlying
parameters, model diagram, or manuscript describing the model). Note there is a 5MB upload limit. Allowed 1le types are: csv, xls, xlsx, pdf, jpg, and png. Select multiple
1les in your browser window if you'd like to upload multiple 1les:

no 1les selectedChoose Files

Please provide any other general comments or suggestions here:

Submit

The content of this page is conVdential and research in progress. Please do not share or cite.
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