

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202205436

Malic Enzyme 1 as a Novel Anti-Ferroptotic Regulator in Hepatic Ischemia/Reperfusion Injury

Xuexian Fang*, Jiawei Zhang, You Li, Yijing Song, Yingying Yu, Zhaoxian Cai, Fuzhi Lian, Jun Yang, Junxia Min and Fudi Wang*

Supporting Information for

Malic Enzyme 1 as a Novel Anti-ferroptotic Regulator in Hepatic Ischemia/Reperfusion Injury

Xuexian Fang et al.

This PDF file includes:

Figures S1-12

Tables S1-2

Figure S1. Hepatic *Me2* (A) and *Idh2* (B) mRNA of were measured in mice with sham or I/R injury. Significance was calculated by Student's *t*-test; n.s.=not significant.

Figure S2. Hepatocyte-specific deletion of Me1 is not sufficient to induce liver injury in mice. (A-C) Serum levels of ALT (A), AST (B), and LDH (C) were measured in $Me1^{flox/flox}$ and $Me1^{Alb/Alb}$ mice. (D) Representative H&E-stained liver sections from $Me1^{flox/flox}$ and $Me1^{Alb/Alb}$ mice. Significance was calculated by Student's t-test; n.s.=not significant.

Figure S3. Hepatic levels of NADPH (A), NADP⁺ (B), GSH (C), and GSSG (D) were measured in $Me1^{flox/flox}$ and $Me1^{Alb/Alb}$ mice subjected to I/R injury. Significance was calculated by Student's t-test; *P<0.05, **P<0.01, ***P<0.001, n.s.=not significant.

Figure S4. Hepatic docosahexaenoic acid (DHA) metabolites (A), dihomo-γ-linolenic acid (DGLA) metabolites (B), γ-linolenic acid (GLA) metabolites (C), eicosapentaenoic acid (EPA) metabolites (D), linoleic acid (LA) metabolites (E) in $Me1^{flox/flox}$ and $Me1^{Alb/Alb}$ mice subjected to I/R injury. Significance was calculated by Student's t-test.

Figure S5. Hepatic levels of NADPH (A), NADP⁺ (B), GSH (C), and GSSG (D) were measured in sham- or I/R-treated mice with or without malate supplementation. Significance was calculated by Student's t-test; *P < 0.05, **P < 0.01, ***P < 0.001, n.s.=not significant.

Figure S6. Effect of malate supplementation on $Me1^{Alb/Alb}$ mice subjected to I/R injury. (A-C) Serum levels of ALT (A), AST (B), and LDH (C) were measured in I/R-treated Me1Alb/Alb mice with or without malate supplementation. (D) Representative H&E-stained liver sections from indicated mice. Significance was calculated by Student's *t*-test; n.s.=not significant.

Figure S7. Hepatic expression of Gpx4 (A), Fth (B), Acsl4 (C), and Fsp1 (D) were measured in $Pten^{flox/flox}$ and $Pten^{Alb/Alb}$ mice subjected to I/R injury at different months old. Significance was calculated by Student's t-test; *P < 0.05, **P < 0.01, ***P < 0.001, n.s.=not significant.

Figure S8. Validation of PTEN inhibitor (bpV) and mTOR activator (3BDO). (A) Immunoblots of hepatic P-Akt, Akt, P-mTOR, and mTOR were measured in I/R-treated mice with or without PTEN inhibitor bpV injection. (B) Immunoblots of hepatic P-mTOR, and mTOR were measured in I/R-treated mice with or without mTOR activator 3BDO injection.

Figure S9. Hepatic levels of NADPH (A), NADP⁺ (B), GSH (C), and GSSG (D) were measured in I/R-treated mice with bpV or 3BDO injection. Significance was calculated by Student's t-test; *P<0.05, n.s.=not significant.

Figure S10. L-leucine supplementation protects against hepatic ferroptosis during I/R injury. (A) Immunoblots of hepatic P-mTOR, mTOR, and Me1 were measured in mice with or without leucine supplementation. (B,C) Hepatic Ptgs2 mRNA (B) and MDA levels (C) were measured in I/R-treated mice with leucine supplementation. (D-F) Serum levels of ALT (D), AST (E) and LDH (F) were measured in I/R-treated mice with leucine supplementation. (G) Representative H&E-stained liver sections from indicated mice. Significance was calculated by Student's t-test; *P<0.05, **P<0.01

Figure S11. Hepatic mRNA of *Srebp1* and *Me1* were measured in mice treated with AAV8-Srebp1 or AAV8-GFP. Significance was calculated by Student's t-test; *P<0.05, **P<0.01, ***P<0.001.

Figure S12. Hepatic levels of NADPH (A), NADP⁺ (B), GSH (C), and GSSG (D) were measured in I/R-treated mice with or without AAV-mediated *Srebp1* overexpression. Significance was calculated by Student's t-test; *P<0.05, n.s.=not significant.

Table S1. Primers used for genotyping and real-time PCR analysis.

Gene	Primer sequence (5'→3')		
Genotyping			
Me1 forward	TAGCCGCACGCTGATGATAG		
Me1 reverse	GCAGCTGTCAGACTAGCCAA		
Alb-Cre common	TGGCAAACATACGCAAGGG		
Alb-Cre mutant	CGGCAAACGGACAGAAGCA		
Alb-Cre mutant	GGCAATGGTTCCTCTCTGCT		
Real-time PCR			
Gapdh forward	ATCATCCCTGCATCCACT		
Gapdh reverse	ATCCACGACGGACACATT		
Ptgs2 forward	CTGCGCCTTTTCAAGGATGG		
Ptgs2 reverse	GGGGATACACCTCTCCACCA		
Me1 forward	GTCGTGCATCTCTCACAGAAG		
Me1 reverse	TGAGGGCAGTTGGTTTTATCTTT		
Me2 forward	TACCACTCCTTGTACCTTGACC		
Me2 reverse	TCTTGTAACGTAAACGCCATTCC		
G6pd forward	TCAGACAGGCTTTAACCGCAT		
G6pd reverse	CCATTCCAGATAGGGCCAAAGA		
6pgd forward	TACAGACACGAGATGCTGCC		
6pgd reverse	TGAGCCCCAAAGTAATCCCG		
Idh1 forward	GGTTATGGCTCCCTTGGCAT		
Idh1 reverse	CCCTTTCTGGTACATGCGGT		
Idh2 forward	GGAGAAGCCGGTAGTGGAGAT		
Idh2 reverse	GGTCTGGTCACGGTTTGGAA		
Mthfd1 forward	GGGAATCCTGAACGGGAAACT		
Mthfd1 reverse	TGAGTGGCTTTGATCCCAATC		
Mthfd2 forward	AGTGCGAAATGAAGCCGTTG		
Mthfd2 reverse	GACTGGCGGGATTGTCACC		

Aldh111 forward	CAGGAGGTTTACTGCCAGCTA
Aldh111 reverse	CACGTTGAGTTCTGCACCCA
Aldh112 forward	ACCAGCCGGGTTTATTTCAAA
Aldh112 reverse	ACTCCCACTACTCGGTGGC

Table S2. Antibodies used in this study.

Antibody	Application	Description	Source	Catalog no.		
Primary Antibodies						
anti-Me1	WB/IHC	Rabbit Polyclonal	Proteintech	16619-1-AP		
anti-Pten	WB	Rabbit Monoclonal	Cell Signaling	9559		
anti-mTOR	WB	Rabbit Monoclonal	Cell Signaling	2983		
anti-P-mTOR	WB	Rabbit Monoclonal	Cell Signaling	5536		
anti-Akt	WB	Rabbit Monoclonal	Cell Signaling	4691		
anti-P-Akt	WB	Rabbit Monoclonal	Cell Signaling	4060		
anti-S6K1	WB	Rabbit Monoclonal	Cell Signaling	2708		
anti-P-S6K1	WB	Rabbit Polyclonal	Cell Signaling	9208		
anti-Srebp1	WB/ChIP	Mouse Monoclonal	Santa Cruz	sc-13551		
anti-Gapdh	WB	Mouse Monoclonal	Proteintech	60004-1-Ig		
Secondary Antibodies						
anti-mouse IgG	WB	Goat	Proteintech	SA00001-1		
anti-rabbit IgG	WB	Goat	Proteintech	SA00001-2		

IHC, immunohistochemistry; WB, western blotting.