Supplementary Materials *Molecular Biology of the Cell* King and Campellone King and Campellone, 2023

Supplemental Material

Figure S1. JMY expression in cells stably encoding GFP-JMY. (A) Lysates from control nontransfected U2OS cells or U2OS cells stably encoding GFP or GFP-JMY were immunoblotted with antibodies to JMY, GFP, tubulin, actin, and GAPDH. **(B)** For quantification, the JMY band intensities for endogenous JMY and GFP-JMY were normalized to the loading control intensities. The endogenous control value for JMY was set to 1. Each bar is the mean intensity ±SD from 3 blots. AU = Arbitrary Units. Note that endogenous JMY exhibited a prominently nuclear localization in U2OS cells at steady state, while GFP-JMY maintained a mostly cytosolic presence (Figure 1A). These differences in the nucleo-cytoplasmic distribution of endogenous compared to tagged JMY imply that GFP-JMY is more useful for studying cytosolic rather than nuclear activities of JMY.

Figure S2. JMY forms cytosolic puncta within juxtanuclear F-actin-rich territories in response to different DNA damaging agents. (A-B) U2OS cells were treated with a media control, 10μ M etoposide, or 60μ M mitomycin c for 6h before being fixed and stained with a JMY antibody (green) to visualize endogenous JMY and phalloidin to visualize F-actin (magenta). In (A), the % of cells with JMY puncta was calculated. Each bar represents the mean ± SD from 3 experiments (n = 1,314-1,387 cells per bar). ***p<0.001 (ANOVA, Tukey post-hoc tests) are comparisons to the control sample. In (B), arrowheads highlight examples of cytosolic JMY puncta and F-actin-rich territories. Scale bar: 25µm.

Figure S4. Cortactin and WHAMM, but not representatives of other subgroups within the WASP family, are enriched within apoptotic F-actin-rich territories. (A) Nontransfected U2OS cells or transfected U2OS cells expressing GFP-JMY (green) or LAP-WHAMM (magenta) were treated with 10µM etoposide for 6h, fixed, and stained with phalloidin (F-actin; cyan) and antibodies to JMY (green), Cortactin, N-WASP, WASH, or WAVE2 (each in magenta). Magnifications (i-ii) depict F-actin territories with JMY, Cortactin, and LAP-WHAMM, while (iii-v) show territories without enrichment of N-WASP, WASH, or WAVE2. Scale bars: 25µm, 5µm. (B) 20µm lines were used to measure the pixel intensity profiles. RFU = relative fluorescence units.

Figure S5. p53 and the Golgi are not recruited to apoptotic F-actin-rich territories. (A) U2OS cells or U2OS cells encoding GFP-JMY (green) were treated with etoposide for 6h, fixed, and stained with phalloidin (F-actin; cyan) and antibodies to JMY (green), p53 (magenta), GM130 (magenta), or AIF (yellow). Magnifications (i-iii) depict JMY and F-actin territories lacking p53, Golgi (GM130), or AIF. Scale bars: 25µm, 5µm. (B) 20µm lines were used to measure the pixel intensity profiles.

Figure S6. Initiator caspase-9 and executioner caspase-3 are found in apoptotic F-actin-rich territories. (A) U2OS cells or U2OS cells encoding GFP-JMY (green) were treated with etoposide for 6h, fixed, and stained with phalloidin (F-actin; cyan), antibodies to JMY (green), and antibodies that recognize total caspase-9 (TCasp-9; magenta), total caspase-3 (TCasp-3; magenta), or active caspase-3 cleaved at Asp175 (CCasp-3; magenta). Magnifications (i-iii) depict territories containing total or cleaved caspases. Scale bars: 25µm, 5µm. (B) 20µm lines were used to measure the pixel intensity profiles. (C) U2OS cells were stained with antibodies to JMY (green) and XIAP (magenta), and with phalloidin (F-actin; yellow). Magnifications (i) depict an F-actin-rich territory surrounded by XIAP. (D) 20µm lines were used to measure the pixel intensity profiles. were measure for the whole territory as well as the interior and peripheral portions (n = 17 territories).

Figure S7. The formation of JMY puncta and F-actin-rich territories is not dependent on caspase activity. (A) U2OS cells were treated with 10µM etoposide (control), 10µM etoposide plus 50µM z-VAD-fmk, or 10µM etoposide plus 50µM z-DEVD-fmk for 6h before being fixed and stained with a JMY antibody (green), phalloidin (F-actin; magenta), and DAPI (DNA). Arrowheads highlight examples of JMY puncta and F-actin-rich territories. (B) The % of cells with JMY puncta within F-actin-rich territories was calculated. Each bar represents the mean \pm SD from 3 experiments (n = 2,414-2,502 cells per bar). Cells were also stained with an antibody to cleaved caspase-3 (CCasp-3; cyan). The fraction of F-actin-rich territory-positive cells that were (CCasp-3⁺) or were not (CCasp-3⁻) enriched for cleaved caspase-3 was quantified. Each bar represents the mean \pm SD from 3 experiments (n = 2,434-2,566 cells per bar). (C) Etoposide-treated control cells possess F-actin-rich territories containing cleaved caspase-3 while etoposide-treated cells co-treated with the pan-caspase inhibitor z-VAD-fmk have F-actin-rich territories lacking cleaved caspase-3. Scale bars: 25µm. **p<0.01 (ANOVA, Tukey post-hoc tests).

Figure S8. The amount of F-actin and caspases within apoptotic cells is enhanced by WHAMM. Cells were treated as in Figure 8A. Whole cell fluorescence values for F-actin and cleaved caspase-3 were measured in individual cells and normalized to the parental samples. Values for the CCasp-3-postitve cell population alone appear in Figure 8G. Each bar is the mean \pm SD from 3 experiments (n = 607-866 cells per sample). *p<0.05; **p<0.01; ***p<0.001 (ANOVA, Tukey post-hoc tests).

Parental Cells								
Cell Line		Source						
eHAP		Horizon Genomics (C669)						
HAP1		Horizon Genomics (C631)						
U2OS		UC Berkeley Cell Culture Facility						
HAP1 Derivatives								
KO Cell Line		Mutation	Predicted AAs	Source				
JMY ^{KO-1A}		17bp deletion in exon 1 of 11	145/988, 4 post-shift	Horizon Genomics (HAP1_JMY_28380-03) King et al., 2021				
JMY ^{KO-2}		2bp deletion in exon 2 of 11	362/988, 3 post-shift	Horizon Genomics (HZGHC002631c007) King et al., 2021				
eHAP Derivatives								
KO Cell Line		Mutation	Predicted AAs	Source				
WHAMM ^{KO-2}		10bp deletion in exon 2 of 10	204/809, 7 post-shift	Horizon Genomics Mathiowetz et al., 2017 King et al., 2021				
WHAMM ^{KO-4}		7bp deletion in exon 4 of 10	321/809, 17 post-shift	Horizon Genomics (HZGHC001060c001) King et al., 2021				
WHAMM/JMY ^{DKO-1}	WHAMM:	10bp deletion in exon 2 of 10	204/809, 7 post-shift	Horizon Genomics (HZGHC004884C012)				
	JMY:	16bp deletion in exon 1 of 11	112/998, 64 post-shift	King et al., 2021				
WHAMM/JMY ^{DKO-2}	WHAMM:	10bp deletion in exon 2 of 10	204/809, 7 post-shift	Horizon Genomics (HZGHC004884C007)				
	JMY:	35bp deletion in exon 2 of 11	362/998, 33 post-shift	King et al., 2021				

Table S1. Cell Lines.

Plasmids					
Description	Vector	Species	AA	R.E. Sites	<u>Source</u>
pGFP	pCDNA3::GFP (pKC425)	N/A	N/A	N/A	Campellone et al., 2008
pGFP-JMY	pGFP	Mouse	1-983	BamHI-Notl	King et al., 2021
pGFP-JMY(ΔCA)	pGFP	Mouse	1-941	BamHI-Notl	King et al., 2021
pGFP-JMY(ΔWWW)	pGFP	Mouse	1-856 / 934-983	BamHI-Notl	King et al., 2021
pKC-LAP-C1	plC113	N/A	N/A	N/A	Campellone et al., 2008
pLAP-WHAMM	pKC-LAP-C1	Human	1-809	Kpnl-BamHl	Campellone et al., 2008
pACT-Lifeact-MCH	pACT::MCH	N/A	N/A	Spel-BgIII	Ohkawa & Welch, 2018

Table S2. Plasmids.

Primary Antibodies (Immunofluorescence)									
Target	nes (n	Probe				Conc		Identifier	
AIF (Fig 4 S5)		anti-AIF	F	Rabbit		<u>1.1 000</u>	Ce	Il Signaling Technology (5318)	
Anaf-1 (Fig 5, 6)		anti-Anaf-1	- i	Mouse		1.1,000	R8	R&D Systems (MAB868)	
Arn3 (Fig.3)		anti-ARP3	Mouse			1.200	Sic	Sigma (A5979)	
$\frac{\text{ArpS}(1193)}{\text{ArpC2}(\text{Fig.3.5})}$		anti-n34-Arc	Rabbit			1.1,000	FN	-MD Millipore (07-227-I)	
BAX (Fig 4)		anti-BAX	Ň	Mouse		1:500	Pro	Proteintech (60267-1-lg)	
Caspase-9 (Fig S6)		anti-Total Caspase-9	F	Rabbit		1:500	Ce	Cell Signaling Technology (9502)	
Caspase-3 (Fig S6)		anti-Total Caspase-3	Ν	Mouse		1:500	Ce	Cell Signaling Technology (9668)	
Cleaved Caspase-3		anti-Cleaved	F	Rabbit		1:1,000	Ce	Il Signaling Technology (9664)	
(Fig 6, 7, 8, S6, S	67)	Caspase-3 (Asp175)				,		5 5 5, (<i>,</i>	
Cortactin (Fig S4	•)	anti-Cortactin	Ν	Mouse		1:2,000	ΕN	EMD Millipore (05-180)	
Cyto c (Fig 5, 6)		anti-Cytochrome c	Ν	Nouse		1:500 Cell Signaling Technol		Il Signaling Technology (12963)	
GM130 (Fig S5)		anti-GM130	Ν	Mouse		1:1,000	BD	BD Transduction Labs (610822)	
JMY (Fig 1-5, S2	2-S7)	anti-JMY	F	Rabbit		1:1,000 Proteintech (25098-		oteintech (25098-1-AP)	
mtDNA (Fig 4)		anti-DNA	Ν	Mo IgM		1:100	ΕN	EMD Millipore (CBL-186)	
N-WASP (Fig S4))	anti-N-WASP	C	G Pig		1:1,000	Du	Duleh et al., 2010	
p53 (Fig S5)		anti-p53	F	Rabbit		1:1,000	Pro	oteintech (10442-1-AP)	
STRAP (Fig 3)		anti-STRAP	Ν	Nouse		1:1,000	Pro	oteintech (66712-1-lg)	
Tubulin (Fig 3)		anti-Beta-Tubulin	Ν	Nouse		1:2,000	DS	SHB (E7)	
WASH (Fig S4)		anti-WASH	F	Rabbit		1:1,000	Du	leh et al., 2010	
WAVE2 (Fig S4)		anti-WAVE2	F	Rabbit		1:1,000	Ce	Il Signaling Technology (3659)	
WHAMM (Fig 3,	5)	anti-WHAMM	F	Rabbit		1:250 S		en et al., 2012	
XIAP (Fig 6, S6)		anti-XIAP	Ν	Mouse		1:1,000	Pro	oteintech (66800-1-lg)	
Primary Antiboo	lies (Ir	nmunoblotting)							
Target		Probe		С	conc.	<u>Identifier</u>			
Actin (Fig S1, S3	3)	anti-Beta-Actin	Мс	ouse	1:	:10,000	Pro	oteintech (66009-1-lg)	
GAPDH (Fig S1,	S3)	anti-GAPDH	Мс	Mouse		:10,000	Pro	oteintech (60004-1-lg)	
GFP (Fig S1)		anti-GFP	Мо	Mouse		:1,000	Santa Cruz (sc9996)		
JMY (Fig S1, S3)		anti-JMY	Ra	Rabbit		:1,000	Proteintech (25098-1-AP)		
Tubulin (Fig S1,	S3)	anti-Beta-Tubulin	Мо	ouse	1:	1:10,000		DSHB (E7)	
Secondary Antibodies (Immunofluorescence)									
Target Probe			/			Conc.	1	dentifier	
Mouse IgG	Alexa 488 anti-mouse			Goat		4 µg/ml I		nvitrogen (A11029)	
Mouse IgG	Alexa	exa 555 anti-mouse		Goat		4 µg/ml	1	nvitrogen (A21424)	
Rabbit IgG	Alexa	lexa 488, 555, 647 anti-rabb		it Goat		4 µg/ml	1	nvitrogen (e.g. A11034)	
Guinea Pig IgG	Alexa	lexa 555 anti-guinea pig		Goat	t	4 µg/ml		Invitrogen (A11075)	
Secondary Antibodies (Immunoblotting)									
Target Probe					Conc.		Identifier		
Mouse laG	HRP	P anti-Mouse		Sheep		1:10,000		GE Healthcare (NXA931)	
Rabbit IoG	HRP	anti-Rabbit		Donkey		1:10.000		GE Healthcare (NA934V)	
Mouse IgG	IRDv	Dve 680, 800 anti-Mouse		Donkey		0.05 µg/ml		LI-COR (e.g., 926-32212)	
Rabbit IoG	IRDve 680, 800 anti-Rabbit			Donkey		0.05 µg/ml		LI-COR (e.g. 926-32213)	

Table S3. Immunofluorescence and Immunoblotting Reagents.

Molecular Probes (Fluorescence)							
<u>Target</u>	<u>Probe</u>	<u>Conc.</u>	<u>Identifier</u>				
DNA (Fig 1, 2, 7, 8, S7)	DAPI	1 µg/ml	Invitrogen (D1306)				
DNA (Fig 2)	Hoescht 33342 Solution	2 µg/ml	Thermo Scientific (62249)				
F-actin (Fig 3-7, S3-S6)	Alexa647-Phalloidin	0.4 U/ml	Invitrogen (A22287)				
F-actin (Fig 1, 2, 8, S2, S7)	Alexa555-Phalloidin	0.4 U/ml	Invitrogen (A34055)				
F-actin (Fig 6)	Alexa350-Phalloidin	0.6 U/ml	Invitrogen (A22281)				
Mitochondria (Fig 4)	MitoTracker Red CMH2XRos	500 nM	Invitrogen (M7513)				

Video S1. Time-lapse movie showing the formation of punctate GFP-JMY structures and an F-actin-rich territory. Live U2OS cells expressing GFP-JMY (green) and Lifeact-mCherry (magenta) and treated with hoechst (blue) were imaged at 2min intervals 180-260min after exposure to 10μ M etoposide. Playback rate = 10 frames per second. Scale bar: 20μ m. Still frames are shown in Figure 2.