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S1.1. STAFF AND DELIVERY NUMBERS

To obtain realistic figures for the workplace size and number of consignments, we received

data from a parcel delivery company and a logistics company that deliver large items, both

in the UK.

From the parcel company, we received company-wide figures for number of consignments

(i.e. delivery drops) and number of drivers on-shift from 01/01/2020 to 01/09/2020. First, we

fitted a linear generalised additive model (GAM) to the number of consignments, in order

to extract a smoothed curve P (p)(t) representing the demand over this period (see figure

S1(a)). Next, we used negative binomial regression to extract the weekday dependence for

both the number of drivers and the number of parcels. The model means (µ for drivers and

λ for deliveries) were parameterised as

µ(p)(t) = exp

(
α(p)
c + α(p)

p P (p)(t) +
6∑

d=0

α
(p)
d δd,w(t)

)
(1)

λ(p)(t) = exp

(
β(p)
c + β(p)

p P (p)(t) +
6∑

d=0

β
(p)
d δd,w(t)

)
(2)

where w(t) = (t mod 7), (3)

such that w(t) returns the day of the week (Monday = 0, Tuesday = 1, etc.) and t = 0 is

a Monday. The weekday dependence for each quantity is shown in S1(b). Finally, we were

also provided with weekly data for each site (again for number of consignments and number

of drivers). We again fitted a negative binomial regression to this data over the same period,

with categorical parameters for each site to account for the differences in demand. The mean

of this model was parameterised as

µ̄(p)(u, s) = exp

(
ᾱ(p)
c + ᾱ(p)

p W (p)(u) +
Ns−1∑
s′=0

ᾱ
(p)
s′ δs,s′

)
, (4)

λ̄(p)(u, s) = exp

(
β̄(p)
c + β̄(p)

p W (p)(u) +
Ns−1∑
s′=0

β̄
(p)
s′ δs,s′

)
, (5)

(6)

where u is the time in weeks (e.g w/c 01/01/2020 is u = 0), W (p)(u) is the weekly demand

(i.e. the total demand P (p)(t) summed over the days in week u) and s is the site number

(indexed from 0 for all Ns sites).
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FIG. S1. (a) Smoothed demand curves, fitted using a linear GAM to company-wide figures for

number of consignments, for the parcel and logistics companies. The figures are given relative to

their value at 01/03/20. (b) Weekday dependence for number of drivers and deliveries fitted using

negative binomial regression. Each point shows the number of deliveries or drivers relative to the

number on a Friday.

Similar data was provided by a large-items logistics company. In this case, we were

provided with daily data for the number of consignments and number of vans for each site in

the company from 01/04/19 to 01/09/20. First, we fitted a linear GAM to the total number

of consignments over all sites to extract a smoothed demand curve P (l)(t) (shown in S1(a)).

Next, we fitted a negative binomial model to both account for weekday effect and site, with

mean

µ(l)(t, s) = exp

(
α(l)
c + α(l)

p P (l)(t) +
6∑

d=0

α
(l)
d δd,w(t) +

Ns−1∑
s′=0

α
(l)
7+s′δs,s′

)
. (7)

λ(l)(t, s) = exp

(
β(l)
c + β(l)

p P (l)(t) +
6∑

d=0

β
(l)
d δd,w(t) +

Ns−1∑
s′=0

β
(l)
7+s′δs,s′

)
. (8)

We assume that, in the absence of COVID isolations, staff numbers on average follow the

same daily pattern as driver numbers shown in figure S1(b). The selection of employees in

work for a given job j on a given day is a three-step process:

1. All workers in COVID-related isolation are removed.

2. Of those available, each is assigned a random absence with probability pabs and removed

from the availability pool.

3. Of those still available, each has probability exp
(
α
(i)
w(t) − α

(i)
max)

)
of being in work on

day t, where α
(i)
max is the negative binomial parameter corresponding to the day with
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highest occupancy. In this notation i = l if in a large-item delivery workplace and

i = p is the parcel delivery workplace.

The fitted weekday coefficients are used to model the day-to-day variation in the number of

deliveries, so that for i ∈ {l, d}

Di(t) = D
(0)
i (t) exp

[
β
(i)
w(t)

]
. (9)

We use different values for the background demand D
(0)
i (t) based on the type of simulation.

• Scenario simulation: For the parcel delivery workplace, the weekly negative binomial

model can be used to approximate the number of deliveries over this period such that

D(0)
p (t) = λ̄(p)(t, s

(p)
med)/

{
6∑

d=0

exp
[
β
(p)
d

]}
, (10)

where s
(p)
med is the index of the median site in the parcel delivery dataset. In the large-

item delivery workplace then D
(0)
l (t) = λ(l)(t, s

(l)
med) where s

(l)
med is the index of the

median site in the large-item delivery dataset.

• Outbreak simulation: We assume fixed pre-pandemic levels of demand (approximately

equal to the scenario simulation case at March 1st 2020). In this case we use D
(0)
p (t) =

3000 and D
(0)
l (t) = 210.

in the parcel and large-item workplaces respectively. In this way, W
(0)
p (t) represents the

number of deliveries that the parcel workplace completes in a week. For outbreak simulations

we fix this at

In the case of outbreak simulations, we fix D
(0)
i (t) = NP where NP = 3000 deliveries per

week for the parcel company and NP = 210 deliveries per week for the logistics company.

To make the number of staff in work each day consistent with the data for a median

workplace, we defined the total number of drivers as

ND =

⌈
1

7

7∑
w=1

NP

pPD(1− pabs)
exp

(
β
(w(t))
P−DOW − β

(w(t))
S−DOW + β

(max)
S−DOW

)⌉
, (11)

where pPD is the average number of parcels delivered per driver per day under normal

conditions (85 for parcel delivery and 15 for large-item). The number of warehouse and

office staff were then defined relative to this.
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In the in situ scenarios, we use the negative binomial fitted demand such that

Dav(t) = exp
(
βc + βpP

(i)(t) + β
(smed)
site

)
(12)

where β
(smed)
site is the demand coefficient for the median site and i ∈ p, l indicates whether it

is the parcel or logistics company.

S1.2. COMMUNITY INCIDENCE AND PREVALENCE

The estimates community incidence data used for the continuous-source outbreak simu-

lations are shown in figure S2. They are based on data on hospitalisations and deaths from

01/03/2020 – 31/05/2020 inclusive. Community prevalence was simply estimated as the

cumulative sum of the incidence from the previous 10 days inclusive.

FIG. S2. Community incidence rates assumed for the continuous-source outbreak scenario.

S1.3. VIRAL LOAD, INFECTIVIOUSNESS, AND TEST-POSITIVE PROBABIL-

ITY

The infectiousness and test-positive probability of individuals over time are generated

using the viral-load based model in [1]. The “Ke er al.” model of RNA viral-load and

infectiousness, as defined in [1] and derived from the data in [2] is used here. The test-

sensitivity model for LFD used here is the ‘high-sensitivity’ model in [1], based on the phase

3b results from Porton Down testing of the Innova LFDs [3]. Sample curves and mean

profiles are given in figure S3, reproduced from [1].
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FIG. S3. Each figure shows 50 randomly generated profiles of (a) RNA viral load (log10 copies/ml)

and their associated (b) infectiousness (normalised units) and (c) test-positive probability. The red

lines show the mean of 10,000 generated individuals at each time point (where a missing value is

taken as 0).

S1.4. TRANSMISSION RATES

A contact of type i between an infectious individual k and a susceptible person k′ is

assumed to have transmission rate

γ
(i)
k,k′ = βF2F ciSk′(t)Jk(t)τi/2

xi−1 (13)

where βF2F is the average transmission rate for face-to-face contact while talking at 1m

separation, ci is the transmission modifier for the type of contact, taken from [4], τi is the

contact duration, and xi is the contact distance in metres. Sk′ and Jk are the susceptibility

and infectiousness of individuals k′ and k respectively on day t.

The baseline transmission rate βF2F is estimated using multiple sources. First, in the [4],

the probability of transmission while talking at 1m separation for one hour is given as 0.06 for

the original SARS-CoV-2 virus and 0.15 for the delta variant. This suggests a βF2F of 0.07−1

or 0.15−1 respectively. Test and trace data [5] suggests a workplace/school secondary attack

rate of ∼ 3% between close contacts, defined as either < 1m for more than a minute, 1-2m for

> 15minutes or sharing a vehicle/skin-to-skin contact. If we take the average contact to be

between 1-2m for 15-60min this gives a plausible range of βF2F =0.03–0.24h−1. Finally, in [6]

the probability of infection while talking at 1m separation for 15 mins is ∼ 0.03, suggesting

a βF2F of 0.13h−1. Therefore, we take βF2F = 0.15h−1 in this model as a “best guess” from

this range of estimates.

For household contacts, we use the transmission rate (per day) of

γ
(HH)
k,k′ = βHHSk′(t)Jk(t) (14)

6



where βHH = 0.07. This was set empirically using 106 realisations of infectiousness trajecto-

ries so that the mean probability of household infections was 40% (approximately twice the

observed household attack rate from the original SARS-CoV-2 strain [4, 7–9]). Comparing

to (13), we see that this means the household transmission rate is approximately equivalent

to 30 mins of F2F conversation indoors at a distance of 1m per day.

For package mediated fomites, we use a two-step process such that a fomite infection

between workers occurs with probability

pkk′ = exp [−(t2 − t1) ln 2/λ] [1− exp(−βFOMJk(t1)Sk′t2] (15)

where t1 < t2 is the time the package is handled by an infectious individual k and t2 is the

time the package is handled by susceptible individual k′. The parameter λ is the half-life of

the viable virus on the packaging, so the first exponential term represents this decay process.

The second term is the same as used for all other contacts except that βFOM is effectively the

probability of transmission if an infected person handles a package that is then immediately

handled by another employee.

Package handling is assumed to occur as follows

1. A picker (or picker-pair) k handles all of their lk packages at times uniformly distributed

in a time window of τL hours.

2. Each infectious packages n is then assigned a random integer rn between 1 and P ,

which then determines which driver (or driver-pair) they get assigned to, such that

1 +
∑k−1

k′=1 dk ≤ rn ≤
∑k

k′=1 dk is assigned to driver k.

3. Drivers are assumed to handle all of their dk packages twice. First they handle all at

time τL, and second at times distributed between τL and τL + τD (where τD the time

is takes to complete all of the deliveries).

Finally, for shared-spaces (not including F2F contact), we use the dose-response relation-

ship originally derived for SARS-CoV [10] and applied to SARS-CoV-2 [11]. Assuming that

the number of aerosolised infectious plaque-forming units (PFUs) exhaled per hour is n0,

the concentration in the surrounding air (assuming fast mixing) will be

c(t) =
n0

(ḟ + λ)V

[
1− e−(ḟ+λ)t

]
(16)

where V is the volume of the room and ḟ is the air exchange rate (air changes per hour,

ACH), and λ = ln(2)/t1/2 is the decay rate of the aerosolised virions (such that t1/2 is their

half-life).
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Therefore, the average concentration of infectious PFUs in the room while occupied by a

single infectious person for duration τ is

c̄(τ) =
n0

(ḟ + λ)V

[
1− 1

(ḟ + λ)τ

(
1− e−(ḟ+λ)τ )

)]
(17)

To convert this to a transmission rate, we assume that an average individual has an inhalation

rate V̇T (volume of air inhaled per hour). Their average dose, if sharing the space for the

full period τ , is then V̇T c̄(τ)τ .

The exponential dose-response model used in [10] has the same form as our infection

model, so the transmission rate between individuals sharing the same space for period τ is

given as

βss =
V̇T c̄(τ)

IDe

(18)

such that the probability of infection via this route is pss = 1− exp(−βssτ). The infectious

dose IDe is highly uncertain, as is the dose exhaled n0. However, the ratio n0/IDe is

approximated in [12] as ∼16–18 per hour at peak infectiousness. Given that, in our model,

peak infectiousness is ∼4 times mean infectiousness, we use n0/IDe = 4.0 here.

In order to more directly compare this to the F2F interactions, we derive an “effective

interaction distance” that is implied by this transmission rate. I.e. how far away would

the two contacts have to be in a (no-talking) F2F interaction to experience an equivalent

transmission rate in our model. This is given by xeff = 1 + log(βF2F/5βss), since βF2F/5 is

the F2F transmission rate at 1m distance with the “no-talking” modifier. The parameters

used to estimate xss are given in table S1.

S1.5. MODES OF FACE-TO-FACE CONTACT

We include several routes through which face-to-face contacts occur in the workplace,

which are summarised in table 2 (in the main text). Below we give some further details

about how these are simulated:

• Cohort contacts: Daily F2F interactions between employees working the on the same

shift and in the same area. For details of the rationale between how these cohorts are

assigned, see Appendix ??. It is assumed that, each employee contacts all others within

their cohort for the same duration, such that the total face-to-face contact time for

any given individual in a cohort is fixed. I.e. if a cohort consists of M people, each has

a F2F contact with the other M − 1 people in their cohort for τcoh/(M − 1).
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ParameterDescription Value Source

V Room volume. 150 m3

Approximated

(≈ 7× 7× 3)

V̇T Tidal breathing rate. 0.7 m3 h−1 Approximated

f Air changes per hour. 2 h−1

Assumed (typical

unventilated office

value)

λ Decay rate of SARS-CoV-2 in air. 0.76 h−1 [13]

n0/IDe

Average number of infectious

quanta exhaled per hour for an in-

dividual infected with SARS-CoV-2 4.0 [12]

TABLE S1. Parameters used to determine the shared-space transmission parameter xss.

• Random interactions: On a given day, each person with job j at work will randomly

contact another employee with job j′ with probability

pjj′ =

ρDpc if j = D or j′ = D

pc otherwise
(19)

The factor ρD is to account for the reducing mixing in drivers due to the time they

spent not at the workplace during a shift. Note, pDD = ρD and not ρ2D because we are

assuming that drivers are on site at approximately the same time as each other.

• Explicit workplace pairings (includes large-item handling, pair delivery, and pair

delivery routes): These are necessary for execution of picking and delivery of large

items. When these pairings exist, all drivers and pickers are paired at the start of each

shift, and this contact is guaranteed to occur during the shift. If the “fixed pairings”

intervention is applied, then staff in pairs always have the same partners, otherwise

the pairs are assigned randomly at the start of each day.
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