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FIG. S4. Stacked bar charts of the mean number of simulated secondary infections resulting from

a single index case in (a) a driver, (b) a picker, or (c) an office worker in the SPDD work setting.

Each bar shows secondary infections in each group of staff broken down by transmission route,

as recorded in table 2 in the main text. Note that the “shared spaces” contacts does not include

contacts from sharing an office, these are counted as “cohort” interactions for office staff.

S3.1. BASELINE TRANSMISSION RATES BY JOB ROLE AND CONTACT

TYPE

At baseline (assuming all default parameters in table 1 (main text), but high symptomatic

isolation rate of pisol = 0.9), our model predicts that the average number of cases the index

case will infect in the parcel delivery workplace is 0.140±0.004, 0.653±0.012, and 2.24±0.03

when the index-case is a driver, picker, or office worker respectively. In the large-items

delivery work setting, it is predicted to be 1.398±0.016, 0.982±0.015, and 1.338±0.017 when

the index-case is a driver, picker, or office worker respectively. Note that the error bounds

here are 1.96 standard errors of the mean, and do not account for parameter uncertainty

(only stochasticity of the simulations).

Given the numbers of workers in each job role (see table 1 in the main text) this means

that if the index case is selected at random we expect an R number of ≲ 1 in the parcel work-

setting, and ≈ 1 in the large-item setting. Therefore, without any interventions our model

predicts that these setting are very likely to see small outbreaks. Given the uncertainty in

the underlying parameters, these baseline characteristics need to be considered as a “best

guess” case. Bearing this in mind, there remains a great deal to be learned from quantifying

the relative impact of various non-pharmaceutical interventions.

The average number of secondary cases in each job role and via each contact route is

summarised for each workplace in figures S4 and S5.
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FIG. S5. Stacked bar charts of the mean number of simulated secondary infections resulting from a

single index case in (a) a driver, (b) a picker, or (c) an office worker in the LIDD setting. Each bar

shows secondary infections in each group of staff broken down by transmission route, as recorded

in table 2 in the main text. Note that the “shared spaces” contacts does not include contacts from

sharing an office, these are counted as “cohort” interactions for office staff.

S3.2. PARCEL DELIVERY: ROLE OF COHORT SIZE AND MIXING

Figure S6 shows the effect of increasing the number of work cohorts (and thereby reducing

cohort size) in the parcel delivery work setting, as well as changing the rate at which staff

switch between cohorts. Cohort-size only makes a large difference in the case where the

index case is a member of office staff. This is because separating into different offices reduces

overall rates of aerosol transmission. In the case of driver/picker cohorts, the underlying

model assumptions mean that increasing the cohort size does not change the total amount

of contact time (it is simply spread over more contacts). Therefore cohort size only makes

a difference to outbreak probability when there is significant enough transmission via this

route that saturation effects can occur. In our model this is the case for picker staff, where

the effect is small, but not drivers.

Similarly, figure S6 also shows that increasing the rate at which employees move between

cohorts (fc) has very little effect on outbreak probability. Drivers are predicted to be much
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less likely to cause an outbreak due to their reduced time spent in the workplace.

Thus we predict that, for these settings, cohort size effects are most important when

considering shared indoor spaces such as offices. In well ventilated spaces, where workers are

generally spread out and only make contact intermittently, the dominant factor to consider

is the total F2F contact time that each employee has with colleagues (not the number of

distinct contacts). Note this ceases to be true for longer interactions where transmission risk

is higher, as will be demonstrated in the following section.

0.00 0.05 0.10 0.15
Cohort flux

0.0

0.2

0.4

0.6

0.8

O
ut

br
ea

k 
pr

ob
.

(a) Index Case = Driver

Drivers per team
12.7
9.5

6.3
4.8

0.00 0.05 0.10 0.15
Cohort flux

0.0

0.2

0.4

0.6

0.8
(b) Index Case = Picker

Pickers per team
9.5
6.3

4.8
3.8

0.00 0.05 0.10 0.15
Cohort flux

0.0

0.2

0.4

0.6

0.8
(c) Index Case = Office

Office staff per team
12.0 6.0 3.0

FIG. S6. Estimated probability of outbreak (defined as more than 3 secondary cases) resulting

from a single index case plotted against the cohort flux fc in days−1. Each marker shows the

mean of 10,000 simulations of the SPDD workplace, with shaded error region estimated using a

bootstrapping process [1]. Point-source outbreaks where the source case was (a) a driver, (b) a

picker; (c) an office worker. Each line in each figure compares simulations with different numbers of

teams used for that job role, shown as the number of workers per team on average. In each figure,

the job roles not shown have the default team size and pisol = 0.9 is assumed.

S3.3. LARGE-ITEM DELIVERY: ROLE OF PAIR WORK AND LONGER CUS-

TOMER EXPOSURE

We now consider the case of workplaces that deliver large-items (e.g. furniture, white

goods, etc.), such that drivers and pickers work in pairs to perform their tasks. This means

they are in close-contact with one another for long periods of the day, increasing the risk of

transmission. In figure S7 we consider 4 intervention scenarios:

1. No intervention: pairings are picked randomly at the start of each shift.
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2. Fixed pairings: pairs are fixed and isolation of one partner automatically triggers

isolation of the other.

3. Windows open: transmission rate between drivers sharing a cabin assumed to be the

same as outside transmission rates, rather than inside.

4. Combination of scenarios 2 + 3.

Figure S7(a) shows the sizeable impact that the fixed pairings intervention has on the

baseline dynamics. In particular, when the index case is a driver, the baseline dynamics

are dominated by pair transmission (as shown in supplementary figure S5), and more-so for

driver pairs due to the time spent in a shared cabin, which we assume to be higher risk

than close-contact transmission in better-ventilated settings, such as the warehouse or on

the doorstep. The randomly switching pairs mean that all drivers are connected by this

transmission route, resulting in a larger number of secondary cases. Fixed pairings (scenario

2) close off these chains, meaning drivers can infect at most one person via this route, and

that person then cannot infect anybody else via this route.

On the other hand, when the index case is a warehouse worker, figure S7(a) shows that

changing from random to fixed pairings only has a relatively small effect on transmission.

This indicates that, daily contact within picker-pairs are not predicted to be so high-risk to

see a saturation effect. Note that this result is sensitive to the underlying parameterisation,

and so has significant uncertainty associated with it.

Figure S7(b) compares the risk to customers related to a point-source outbreak with a

driver index case in the large-item delivery workplace vs. the parcel workplace. It is clear

that, for each individual customer there is increased risk (due to the longer contact time,

chance of home entry needed). Nonetheless, the total number of customers likely to be

infected is comparable in the two cases, owing to the large number of deliveries carried out

by each driver in the parcel delivery setting. In both cases, even without interventions, the

rate is predicted to be small (0.144±0.008 and 0.58±0.02 customers infected per simulation

in the parcel and large-item settings respectively, reducing to 0.124 ± 0.008 in the large-

item workplace with ‘FP + WO’ interventions). Given a successful workplace outbreak (i.e.

more than 5% of the workforce infected), this rate increases to 0.56 ± 0.16 and 1.06 ± 0.03

customer infections for the parcel and large-item delivery workplaces respectively, reducing

to 0.45± 0.05 for the latter with ‘FP + WO’ interventions. Note that, in practice, customer

infections were largely mitigated against via contactless delivery, which was implemented by

the companies we consulted.
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We conclude that pair-work can pose a high-risk of transmission in these settings, in

which case fixed pairings in combination with pair isolation is an effective measure to break

transmission chains and reduce the probability of a workplace outbreak. Generally, we

predict that home delivery is unlikely to seed a significant number of new infections in the

community, but it is likely that one or more customer infections will occur in the presence

of a workplace outbreak. Thus, extra measures to protect customers (contactless delivery,

mask wearing indoors etc.) will have likely made a meaningful impact when prevalence in

the workplace was high.
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FIG. S7. (a) Simulated probability of an outbreak (defined as more than 2 secondary cases). Four

scenarios are shown: no intervention (staff are randomly paired each day); driver pairs travel with

window open (transmission rate constant reduced to 1/5 of original value in this setting); fixed

pairs (people always work with the same partner); and both of these interventions simultaneously

(fixed pairs and windows open). Each bar represents 10,000 simulations, error bars indicate un-

certainty in the mean, estimated via a bootstrapping method [1]. (b) Boxen plots of the number

of customers infected per point-source outbreak simulation in the LIDD setting with either no or

both interventions and the parcel delivery setting with default parameters.

S3.4. EFFECTS OF PRESENTEEISM

In this model we define presenteeism as working with symptoms of COVID-19 (as we

do not model other sickness absences explicitly). On average, 50% of the employees in
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our simulations develop symptoms relevant for isolation, and if they isolate then they do

not attend work for the following 10 days (but household transmission between employees is

assumed unaffected). Note that we do not model the effects of illness severity (e.g. prolonged

symptoms after recovery, hospital stays, or even death).
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FIG. S8. Dependence of simulated outbreak probability on the self-isolation adherence probability

pisol in the model SPDD work setting. The different curves show the effect of increasing the house-

sharing factor H as labelled.

Figure S8 shows the effect of increasing self-isolation rates among symptomatic individuals

in both work settings, for various values ofH, the house-sharing factor. Outbreak probability

reduces linearly with isolation adherence, and the proportional effect is larger when house-

sharing is rare.

Figure S9 shows the impact of pisol in the large-item delivery setting on secondary cases

(rather than outbreak probability). The impacts are similar in this workplace to the parcel

setting.

Focusing on when the index case is a driver: the fixed pairings policy has a large impact

on the mean number of secondary cases. Increasing adherence to symptomatic isolation has

a similar relative effect in both cases (∼50% reduction in number of cases increasing Pisol

from 0.1 to 1.0 either with or without the fixed pairs policy). Comparing the transmission

dynamics in these two cases we see that the increased rates of isolation are actually impact-

ing different contact routes to different extents. When there is no fixed pairings, improved

isolation adherence impacts infection via all contact routes by a similar amount proportion-

ally (∼50% reduction in number of cases increasing Pisol from 0.1 to 1.0), see figure S10(a).

In the case of fixed pairs interventions, the increase in isolation adherence more significantly

reduces (> 50% reduction) infections via all contact routes except the fixed pairings them-
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FIG. S9. Dependence of mean number of simulated secondary cases from a single index case on

the self-isolation adherence probability pisol in the model LIDD work setting. The different curves

show the effect of adding a fixed-pairs isolation intervention, as described in the previous section.

selves (< 50% reduction), see figure S10(b). This is because, in this case when a driver

index case develops symptoms and isolates, they have likely already infected their (fixed)

partner through daily close contact, whereas the isolation period stops them infecting other

colleagues via the other contact routes. Moreover, when they isolate, their work partner

also isolates (usually much earlier than they would develop symptoms) removing the vast

majority of their potential onward workplace infection, which otherwise would not be via the

‘pair’ route anyway, because their work partner was the index case, and cannot be reinfected.

When the index case is not a driver, we see from figures S9(b) and (c) that the fixed

pairings intervention has a more modest effect on overall infection counts as the pair infection

route is less prominent in these transmission chains.

To conclude, adherence to isolation measures is predicted to make a substantial difference

to transmission dynamics. The size of the impact is not obvious when considering the

case of pair isolation policies in the large-item workplace, but nonetheless the measures

were complimentary, greatly reducing the probability of transmission beyond the affected

pair when the index case was a driver. We saw a less-strong effect for household isolation

in our model even when a large fraction of workers share accommodation, this is because

we assumed that this measure does not prevent household transmission, which was the

dominant transmission mode in this scenario. This stresses the importance of messaging
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FIG. S10. Mean number of infected drivers per simulation with a single driver index casein the

LIDD setting, plotted against symptomatic isolation probability pisol. The infections are broken

down by those cased by close contact pair work, and all other contact routes. (a) The case with

no fixed pairing intervention so pairs switch randomly each day. (b) The case with fixed pairings a

pair isolation policy. Dots show the mean number of infections while shading shows 95% confidence

in the mean calculated via bootstrapping methods.

around measures to reduce within-household transmission as well isolation measures.
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