Dear editor and referees,

We would like to thank the referees for their reviews of our paper. We have provided a point-by-
point response to their comments below. Excerpts from the new manuscript are highlighted in red.
All of the editorial comments have also been addressed in the updated manuscript, as listed below.

Response to editorial comments

1. To match PLOS layout guidelines we have added a “Conclusion” section which consists of
what was previously the concluding sentence of the Discussion section.
2. Updates to the data availability statement are contained in the cover letter.

See above

4. Alead author has been added for the consortium authorship, and the author list moved to
the acknowledgements section

5. We have now added figure 4(c) so that the phrase ‘data not shown’ is no longer required.

The ethics statement has now been moved to the Methods section.

7. We have added captions for all the supplementary materials to the end of the document. To
align with PLOS One layout guidelines, we have also separated the supplementary texts as
submitted into the separate text, figure and table components now listed at the end of the
document so that they can be referenced directly in the main document. We have also
ensured that all supplementary material is cited in the main text.

8. The reference list has been reviewed
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Reviewer 1

We thank the reviewer for their positive comments and constructive review, below is our response
to the specific comments made.

1) Conclusion:
Since the mathematical models developed in this study did not evaluate the transmission
between workers and customers, | suggest removing this sentence “but that these posed
minimal risk to customers”, or to re-write “However, these could pose minimal risk to
customers”,

Our model does simulate contacts between workers and customers and the resulting customer
infections. However, this had not been adequately highlighted in the manuscript. We have added
the following paragraph to the results section (line 259) to highlight these results in a little more
detail.

Supplementary Fig S7(b) shows that this is also predicted to have a knock-on effect for
customer infections, making them approximately as rare as in the parcel delivery workplace
setting.

2) Introduction:
Pag 4, paragraph 2, line 7: | suggest changing: “epidemiological data and data and ...”
for: “epidemiological data and ...”

Corrected

3) Pag 4, paragraph 3, line 4: Since there are antibody and antigen lateral flow tests, |
suggest adding “antigen”.



We have added the qualifier “antigen” to all cases where we are discussing LFD antigen tests.

4) Pag 10, paragraph 2: Household sharing is not a route of transmission. In this situation,
the transmission occurs by the other three routes mentioned (F2F contact [droplets],
indirect contact [air transmission], or fomite transmission). Household sharing is another
condition such as car-share o room-share. For these reasons, | suggest removing this
route from the sentence.

We have removed household transmission from that sentence.

5) Isuggest including the definition of parcel the delivery workplace and the large-item
delivery workplace (How many workers does each workplace has?).

We have added the following paragraph at line 110, as well as introducing acronyms so that the
parameters and results for two settings can be more easily distinguished:

The model is parameterised to represent two archetypal delivery workplaces, a Small Parcel
Delivery Depot (SPDD) and a Large-items Delivery Depot (LIDD). These represent depots that
ship directly to customers. The SPDD is representative of a typical depot for (inter)national
couriers shipping small packages that can be handled by a single person. The LIDD case
represents a depot for logistics companies that specialise in items such as furniture and
white goods, and may also offer installation/assembly of the products as part of delivery. As
shown in table 1, the LIDD model has fewer staff, longer delivery times (as the deliveries
tend to be more spatially separated), longer customer contact durations (because items
tend to be delivered into the home and may be assembled/installed) and thus an order of
magnitude fewer deliveries per day than the SPDD model.

6) Results:
Pag 17, paragraph 1: Review “... xx%...”

Now corrected to read 75% (and the previous figure which had read 75% should have read 80%). We
have also added data to figure 4(c) to show this result.

7) Figure 7. | suggest changing the title. For example, “Rate of Secondary cases and
isolation days in a large-item delivery workplace over a 3-month period. Also, | suggest
adding a footnote such as in Figure 6.

Figure 8. | suggest changing the title. For example, “Rate of Secondary cases and
isolation days by each intervention (rather than cumulatively). (a) Parcel delivery
workplace. (b) large-item delivery workplace.”

Done

8) Discussion:
Pag 26, paragraph 3, line 3:
Since the mathematical models developed in this study did not evaluate the transmission
between workers and customers, | suggest removing this part of the sentence “the risk of
community”.

Given our response to comment 1) we have kept the reference to community transmission here,
however we have reworded this slightly to make it clear that the interventions can directly reduce



staff to customer infection event but that we are not commenting on community transmission more
generally.

Reviewer 2

We thank the reviewer for their positive comments and for the thorough review of our manuscript.
Below we have responded to the specific concerns raised.

1) Asynchronous vs synchronous updating. Please explain the rationale of synchronous

updating in the number of infectious individuals in the simulation algorithm (Appendix B.
Supplementary material) as opposed for example to Markov jump processes on networks. It
is known that delay (due perhaps to synchronous updating) may induce oscillations in
systems [3]. In the present case, it may happen that oscillations affect the time to extinction.
On the other hand, it is known that synchronous and asynchronous updating yield different
results in individual-based models [2, 1].

This is an important point, and one that that we have now highlighted in the manuscript. There was
no technical reason precluding the use of an asynchronous method (as the system could be
discretised this way). The main reasons we used synchronised updating with a discretisation scale of
1 day can be summarised as follows:

The shift and contact patterns (and hence the contact network) change from day-to-day. So,
a discretisation of 1 day was a natural (and simple) choice

Newly infected individuals have negligible infectiousness for the first day, so the chance of
them infecting another colleague on the same day, which would introduce error compared
to an asynchronous update, are very rare.

We aimed for the model to be transparent and easy to generalise/adapt to other settings
and this appeared to be the best framework for that while remaining computationally
efficient and avoiding being restricted to certain system classes (e.g. Markovian).

We have added the following text to the discussion to highlight this:

The simulations employ an individual-based network model approach with daily contact
networks randomly generated using the parameterisations in table 2. The algorithm updates
contacts and infection events at discrete intervals of one day. This was chosen as the most
natural option because the contact network changes from day-to-day. Additionally, the data
collected to parameterise the model (including viral load data) is all defined at the scale of 1
measurement per day. However, this ““synchronous’ updating does introduce some error
into the dynamics of the simulated epidemiology. It is known that in generic individual-
based models synchronous updating can cause spurious oscillations in the dynamics
compared to asynchronous methods such as a Gillespie algorithm or Markov chain model
[35]. Here a synchronous method was employed to make the model more transparent and
generalisable (e.g. to non-Markovian processes), and to avoid the complexity of specifying
the timings of shift and contact patterns over the course of a single day. This is similar to
other recent network or IB epidemic models [5,7,9]. We justify this by reasoning that the
error introduced is likely to be insignificant for transmission of SARS-CoV-2 as a newly
infected individual is effectively non-infectious for the first day. Therefore, events where one
worker is infected and then infects a co-worker within the same shift, which are missed by
the synchronous update model, are vanishingly rare. Thus, there is no mechanism to trigger
oscillations in this system at the timescale of the discretisation. The algorithm is outlined in
detail in Supplementary Text S2.



2)

Behavior. Although the manuscript’s findings have a lot of merits, accounting for behavior is
a much-needed feature for a model of this kind. This is especially the case if a model is to be
used to assist decision-making. Please discuss incorporating a stream of behavioral data into
the present model, as suggested in the discussion.

We have added the following text to the discussion to highlight ways that behavioural data can be
incorporated into the model.

On improving models of contact behaviour:

This could be improved if data were available from e.g. wireless proximity sensors, as have
been used in other studies to reconstruct social contact networks [41,42], including in
workplaces [43]. These provide much more high-fidelity data but when data is collected
during an epidemic or while restrictions are in place, these devices can themselves affect
behaviour and encourage greater distancing/policy adherence with a number of devices
deployed during the pandemic actively designed to have this effect [44,45]. Therefore,
empirical contact networks in the absence and presence of restrictions are difficult to
ascertain. Behaviour around social distancing is difficult to simulate, so contact networks
based on proximity monitors would be a significant improvement, especially if they were
deployed while measures were introduced.

We have also expanded the discussion around improving models of testing behaviour and
adherence to other work policies:

3)

Second, we do not model the complex relationship between interventions and behaviour. It
is possible that as more interventions are introduced, adherence with other interventions
wanes so the expected impact of combined interventions may not be as high as predicted.
This behavioural change is difficult to predict, and so would need to be monitored by
companies to gauge whether interventions are working as expected. Furthermore, even
with high adherence there is no guarantee that people will use the test as intended. For
example, people may be inclined to test more regularly when feeling “run down' or
“paucisymptomatic’, i.e. exhibiting very mild COVID-19 symptoms, whereas in the absence of
testing they may have simply isolated from work. In this case, much of the benefit of testing
can be lost [53] because asymptomatic carriers will be less likely to be detected while
symptomatic carriers who would have otherwise isolated may be given a false negative and
choose not to. For this reason, in some sectors, mandatory regular testing (i.e. carried out by
trained swabbers at the workplace) may be the preferred option, because with the
adherence rates assumed in this paper, one mandatory test per week has a similar impact to
two voluntary ones (see figures 3 and 4). To address this shortcoming of the model, surveys
of staff or test reporting rates in relevant sectors where regular testing has been deployed
may inform changes. In particular, data around when and how tests were being used would
be useful (as well as rates of symptomatic isolations). Survey information regarding contact
frequency with other employees while off-work or in isolation would also inform the model
assumptions around the effectiveness of isolation measures in reducing contacts. Finally,
data from workplaces that monitor adherence to other intervention policies (such as mask-
wearing) could inform the adherence rates simulated here. However with all behavioural
and survey data, there is the risk of reporting bias and behavioural changes in response to
observation.

Figure S13. Please explain more thoroughly the underlying mechanism behind the oscillation
in the mean number of secondary cases as the workplace scale factor increases in Figure S13



...the sharp reduction occurs when the number of teams is increased... What is the purpose
of showing that this oscillation occurs for a certain threshold?

Figure S13 is intended to show the range of outcomes for parcel and large-item delivery settings
across the range of workplace sizes we predict from the delivery data we have processed. We
reasoned that as the workplace size increases the number of workplace teams will also increase (to
keep the team size approximately consistent). However, these are discrete thresholds, which are
triggered at the points where you see a sharp decrease in infections. This shows that some of the
effects of changing workplace size are simply due to office sizes increasing (the effect shown in
figure S6), but that this does not completely account for all of the increase in infections with size.

We have clarified the supplementary text accordingly. In particular we have removed the discussion
about outbreak threshold (this seems to have mistakenly been left in from a previous version, where
the figure showed outbreak probability rather than secondary cases). To remove this artefact of
choice of outbreak threshold we show secondary cases instead. The new text reads

Figure S13 shows the results of point-source outbreak simulations in the two settings across
the range of feasible workplace size scalings. We see that the number of secondary cases
resulting from the outbreak increases with workplace size, although this is, in part, explained
by the increase in office cohort size (the sharp reduction occurs when the number of teams
is increased). This is because the number of teams are chosen relative to the number of
employees (to keep the number per team as consistent as possible). However, these
changes in team numbers occur at discrete thresholds, and as shown in figure S6. This shows
that some of the effects of changing workplace size are simply due to office sizes increasing
(the effect shown in figure S6), but that this does not completely account for all of the
increase in infections with size.



