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Supplementary Text 

Supplementary Text 1: Mechanisms causing the death of bacteria on biomimetic polymer 

nanopillar arrays. 

There are several mechanisms proposed regarding the mechano-bactericidal effect.  Some 

biophysical models suggest that the nanopillar arrays stretch the region of the cell membrane 

suspended between neighboring nanopillars beyond its elastic limit, resulting in membrane rupture 

and bacterial death (29).  The biomechanical models, one the other hand, indicate that the largest 

strain, driven by intermolecular adhesion forces, develops at the pillar apex instead of the 

suspended regions, leading to localized rupture and penetration of the cell envelope (32).  

Meanwhile, recent proteomic analysis revealed that nanopillars induce oxidative stress within 

bacterial cells as evident from the elevated levels of oxidative-stress proteins and H2O2 (34).   

      Here we performed cross-sectional FIB-SEM analysis of the bacteria sitting on top of the 

bactericidal polymer nanopillar arrays (40, 56, 57).  The bacteria were first incubated on the 

biomimetic antimicrobial nanopillar arrays (240 nm pitch, 400 nm height, and 100 nm diameter) 

for 48 hours.  After fixation, the areas with bacterial attachment were first identified in top-view 

SEM, then iteratively cross-sectioned in FIB, and simultaneously imaged via SEM.  A 200 nm-

thick protective layer of platinum was blanketly deposited on top by sputtering before slicing to 

minimize the charging effect.  The cross-sectional FIB-SEM analysis of a S. aureus sitting on top 

of the polyimide nanopillar arrays was displayed in Fig. S1A and S1B.  There were at least four 

nanopillars in contact with this specific cell (marked as nanopillar #1–4).   Three of them 

(nanopillar #1, 3, and 4) interacted with the side of the S. aureus, only causing the deformation of 

the bacterial envelope morphology through indentation.  The other nanopillar (nanopillar #2), on 

the contrary, had clearly penetrated the bacterial envelope, but without causing the loss of the 

turgor pressure.  For P. aeruginosa (Fig. S1C and S1D), at least five neighboring nanopillars were 

in contact with the cell.  The deflection of the nanopillars with bending toward the center of the 

cell and the penetration through the cell envelope by all nanopillars were both observed.  The cell 

envelope was significantly deformed likely caused by cytoplasmic leakage.  The higher probability 

for nanopillars to pierce through the envelope of Gram-negative bacteria (P. aeruginosa) than that 

of their Gram-positive counterparts (S. aureus) which are strengthened by a much thicker 

peptidoglycan cell wall potentially explains the observed quantitative difference in achieved 

bactericidal efficacy. 

      The bacterium-nanopillar interface visualized by FIB-SEM shows that the nanopillars are able 

to pierce through the bacterial envelope and disrupt the continuous barrier between the cytosol and 

the extracellular environment, which can cause substantial alterations to the bacterial morphology 

and even the loss of the turgor pressure.   These results suggest that the local penetration of the 

cell membrane at the pillar apex as the plausible mechanism responsible for the mechano-

bactericidal effect of polymer nanopillar arrays.  But further investigations are required to confirm, 

which will be the subject in our future studies. 

Supplementary Text 2: Capillary bending and elastic restoring forces of nanopillars. 

      High-aspect-ratio nanopillar arrays are susceptible to deformation.  Especially, as water 

evaporates off the surface, the nanopillars bend and could potentially cluster together due to lateral 

capillary menisci interaction forces (41).  Such capillary force Fc between two neighboring 

nanopillars partially immersed in a liquid can be calculated as 
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where γ is the liquid-vapor interfacial energy; θ is the equilibrium contact angle; d is the nanopillar 

diameter; and p is the nanopillar pitch.   While the capillary force bends the tips of nanopillars 

toward each other to form clusters, it is counter-balanced with the elastic restoring force Fe: 
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where E is the modulus, δ is the deflection, and h is the pillar height (58).  The clustering can be 

avoided as long as that Fe > Fc can be maintained over a reasonable range of deflection δ. 

      By reducing the nanopillar height h by half from 800 nm to 400 nm while keeping both d and 

p identical, the elastic restoring force Fe is therefore increased by eight times to significantly 

improve the structural robustness of nanopillars against deformation as shown in Fig. 3F.  On the 

contrary, by reducing the diameter d by half from 100 nm to 50 nm while keeping both p=240 nm 

and h identical, although the capillary bending force Fc is reduced approximately by half, the 

elastic restoring force Fe is drastically reduced by 16 times, leading to the enhanced clustering 

behavior observed in experiment (Fig. 3G).  

Supplementary Text 3: Flexural strain on the spinal rod in four-point-bending test.  

      Fig. S14 illustrates the spinal rod subject to a four-point-bending test.  The diameter (d) of the 

rod (ArteMedics, Grade 23 Titanium) was 5.5 mm.  It was attached to two 9 mm-wide steel cubes 

with screws to limit the rotation of the rod during measurement, which were placed on two supports 

that were 60 mm apart (Ltotal).  The cylindrical actuators (diameter 10 mm) applied two equal point 

loads up to 2 kN in total on the spinal rod.  The distance (L) between the support and the actuator 

on the same side was 9.5 mm.  With the symmetric geometry of the test step, the fore (F) applied 

at each contact was 1 kN.   The maximum deflection recorded in the center of the rod (δ) was ~0.5 

mm.  

      Based on the classical Euler–Bernoulli beam theory, the maximum stress on the rod (σ) can 

then be calculated as: 

My I =

where M is the moment applied at the middle of the rod defined as: 
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I is the moment of inertia, which can be calculated as  
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and y is the distance from the neutral plane of the rod to its utmost fibre, which is the rod radius 

(d/2). 

      Meanwhile, the effective modulus (E) can be calculated as  
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      More accurate results were further obtained based on the finite-element simulation utilizing 

the software package COMSOL.  The 3D geometry in the model comprised the Ti rod, the steel 

support blocks, and the cylindrical actuators.  The simulated εmax as a function of the load applied 

is displayed in Fig. S15A, suggesting εmax=0.25% under 2 kN load, which has a better agreement 

with the 0.21% maximum tensile strain we measured in experiment.  The simulated cross-sectional 

and lateral strain tensor distributions (Fig. S15B and S15C) quantitatively agree with the 

experimental strain-mapping results shown in Fig. 4F. 

Supplementary Text 4: Strain on the spinal rod measured using the commercial metal-foil 

strain gauges and off-chip amplifiers.   

      To further validate the results obtained from the multiplexed single-crystalline silicon 

piezoresistive sensor arrays and demonstrate their superior performance, we performed the 

identical four-point bending of the spinal rod with the commercial metal-foil strain gauge 

(MMF403994, Micro-Measurements) applied on its surface instead (Fig. S8A), as bonded with 

the same medical-grade polyester tape (3M 1513).  The sensor was consisted of a small-section 

Constantan-alloy filament deposited on a backing plastic substrate.  Under applied tensile or 

compressive strain, the metal wire changes its shape and thus the electrical resistance end-to-end, 

with a gauge factor of 2.  The resistance of the sensor was 120 Ω.  During the measurement, it was 

connected with another three off-chip resistors to form a Wheatstone bridge and the differential 

voltage signal was amplified with an off-chip amplifier by 1,000×.  Since there was no 

multiplexing capability with the individually packaged commercial sensor, it was sequentially 

applied to three different locations around the circumference of the spinal rod, as illustrated in Fig. 

S8B, to record the strain in three separate load cycles, where the load was increased linearly from 

0.1 to 2.1 kN with a rate of 20 N·s-1.  Even after the 1,000× off-chip amplification of the signal 

and utilizing a much higher drive voltage of 13 V, the data measured using the conventional metal-

foil gauge still exhibited much worse signal-to-noise ratio and thus unreliable measurement results 

compared to what was recorded using the multiplexed single-crystalline silicon piezoresistive 

sensor arrays, which have ~25 times higher piezoresistive gauge factor and built-in multiplexing 

for strain mapping, even though the strain measured under the maximum 2 kN load was 

quantitatively comparable (Fig. S8C).  

Supplementary Text 5: Finite-element modeling of the strain distribution on a spinal-rod 

implant in interbody fusion.  

A finite-element model was developed for simulating the biomechanics associated with the 

posterolateral spinal fusion using COMSOL Multiphysics.  The exact geometry of the spinal 

vertebra in the model was imported from BodyParts3D, a 3D structure database for anatomy (59).  

As shown in Fig. S9A, the model contained two vertebral bodies with Young’s modulus of 12 GPa 



and an intervertebral spinal disc with a lower modulus of 42.7 MPa (60, 61).  The backside view 

of the model shows the facet joints, which were simplified to a cylindrical shape.  Their Young’s 

modulus was set to 2.28 MPa for destabilized facet joints (62), and 6 GPa for early-to-middle stage 

fused facet joints.  The spinal rod and screws made of titanium, whose modulus was set as 110 

GPa (63), were affixed to the vertebral bodies without loosening.  We then simulated the spinal 

movements in flexion by applying 150 N compression force to the topper part of the vertebral 

bodies (Fig. S9B).  The strain fields in the axial direction of the spinal rods along their surface 

were estimated and compared between the spinal models with either destabilized or fused facet 

joints.  The simulated strain on the spinal rod demonstrated a large spatial variation, which reflects 

the importance of straining mapping.  The maximum flexural strain reduced significantly after the 

simulated fusion of facet joints, which agrees both qualitatively and quantitatively with what we 

observed in experiment.  



Fig. S1. Cross-sectional analysis of bacteria on polymer nanopillar-array surface suggesting 

biomimetic mechano-bactericidal nanopillars penetrating and deforming the cell envelope. 

(A-B) Analysis of S. aureus (strain 29213) cross sections taken at two different locations, showing 

that nanopillar 2 penetrated the cell envelope.  (C-D) Analysis of P. aeruginosa (strain 27853) 

cross sections taken at two different locations, showing that all five nanopillars penetrated the cell 

envelope.  Scale bars: 200 nm. 
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Fig. S2. Tilted-view SEM micrographs showing the polyimide nanopillar arrays prepared 

with systematically varied geometries.  (A-D) 250 nm diameter, 500 nm pitch nanopillar arrays 

with the pillar heights varied from 200 nm (part A), 400 nm (part B), 800 nm (part C), to 1 μm 

(part D).  (E-H) 100 nm diameter, 500 nm pitch nanopillar arrays with the pillar heights varied 

from 200 nm (part E), 400 nm (part F), 800 nm (part G), to 1 μm (part H).  (I-L) 100 nm diameter, 

240 nm pitch nanopillar arrays with the pillar heights varied from 200 nm (part I), 400 nm (part 

J), 800 nm (part K), to 1 μm (part L).  (M-P) 50 nm diameter, 240 nm pitch nanopillar arrays with 

the pillar heights varied from 200 nm (part M), 400 nm (part N), 800 nm (part O), to 1 μm (part 

P).  Scale bars: 1 µm. 

A B C D

E F G H

I J K L

M N O P



Fig. S3. Impact of the nanopillar height on surface wettability with water.  (A-E) Static 

contact-angle images of a droplet of water on top of a planar Kapton foil (part A) and nanopillar 

arrays (part B-E).  The pillar diameters were all 100 nm and pillar pitches were all 240 nm, while 

the pillar heights ranged from 200 nm (part B), 400 nm (part C), 800 nm (part D), to 1 μm (part 

E).  (F) Measured contact angle of water on polyimide nanopillar arrays as a function of the pillar 

height. 

Fig. S4. Impact of strain on the bactericidal efficacy of biomimetic physical antimicrobial 

nanopillar arrays.  (A) Optical picture showing the incubation of bacterial suspensions (E. coli 

strain MG1655) on smart-coating foils coated on the surface of 5.5 mm diameter titanium rods, 

with ~1.75% tensile strain applied due to bending.  (B) The number of CFUs in the suspension 

after 3-hour incubation with the planar control and nanopillar arrays, under ~1.75% tensile strain 

applied (N=4).  Virtually all bacteria were killed by nanopillars, as with flat foils (Fig. 3I).  p value 

for unpaired t-test with unequal variance is 0.002.  
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Fig. S5. Robustness and large-area spatial uniformity of physical antimicrobial polymer 

nanopillar arrays.  (A) SEM image of the nanopillar arrays after Scotch-tape test.  Scale bar: 2 

µm.  (B-C) Optical image of a 2.5” square polyimide foil featuring mechano-bactericidal 

nanopillar arrays on its top surface (part B), and the spatial mapping of the measured bactericidal 

efficacy, which is represented as the percentage of one million E. coli killed in suspension after 90 

min incubation over each 1×1 cm2 piece cut from the foil (part C).  Scale bars: 1 cm. 
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Fig. S6. Fabrication and characteristics of mechanically flexible selector transistors and 

strain sensors built on transfer-printed silicon nanomembranes.  (A) Schematics showing the 

process to transfer-print single-crystalline silicon nanomembranes cultivated from silicon-on-

insulator wafers to polymer foils.  PVA: polyvinyl alcohol.  (B) Optical image of a large-area 

silicon nanomembrane transferred on a Kapton-foil substrate.  Scale bar: 1 cm.  (C-D) Micrographs 

showing the completed transistors (part C) and piezoresistive strain sensors (part D).  Scale bars: 

200 µm.  (E) Current-voltage characteristics of the selector transistor (channel width is 200 µm 

and channel length is 15 µm).  The applied gate voltage decreases from 3 V to 0 V with a step of 

0.5 V from top to bottom.  (F) Relative change in resistance of a silicon-nanomembrane 

piezoresistor as a function of the applied longitudinal tensile strain, with the slope corresponding 

to a gauge factor of 50.  (G) Voltage output (∆Vout) from multiple Wheatstone-bridge strain gauges 

under tensile strain.  The applied bias was 1 V. 
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Fig. S7. Biofluid barrier protecting electronics for chronic orthopedic implants.  (A) Optical 

image of a uniform layer of aluminum deposited on a Kapton foil as a convenient test vehicle to 

examine the barrier properties.  (B) Defects in the aluminum film created by the reaction 

2Al+6H2O→2Al(OH)3+3H2 after continuous immersion in hot PBS for 12 hours without 

passivation.  (C-D) Optical images of the aluminum films passivated with two (part C) and four 

(part D) layers of parylene/Al2O3 stacks after immersion in hot PBS for one and four days, 

respectively.  (E-F) Defect-free aluminum film passivated with four layers of the 

parylene/Al2O3/HfO2/Al2O3 stacks before (part E) and after (part F) immersion in hot PBS for 30 

days.   Visible defects start to emerge afterwards.  Scale bar: 5 mm. 
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Fig. S8. Benchmark the measurements performed using the commercial metal-foil strain 

gauges and the flexible silicon piezoresistive sensor arrays.  (A) Optical image showing a 

commercial metal-foil sensor applied on the surface of a spinal rod.  Scale bar: 5 mm.  (B) 

Schematic showing the three different locations where the metal-foil gauge was applied, 

corresponding with the positions of the top, middle, and bottom rows of the flexible silicon strain 

sensors in their multiplexed array.  (C) Comparison of the local strain as a function of the load 

applied, as measured by the commercial metal-foil strain gauges (black) and the flexible single-

crystalline silicon piezoresistive sensor array (red). 
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Fig. S9. Biomechanical modeling showing the strain modulation on the spinal rod after 

fusion.  (A) Front (left part) and back (right part) side views of the model based on computed-

tomography scan of a lumber spine segment.  The Young’s moduli of the vertebral bodies, disc, 

facet joints, rods, and screws were all extracted from literature and labeled.   The modulus of the 

facet joints is assumed to reduce by 10 times from their typical value of 22.8 MPa after 

destabilization, and restored to 6 GPa, after early- to middle-stage fusion.  (B) Simulated 

compressive and tensile strain distributions along the spinal rods before and after bony fusion in 

simulated flexion motion.   
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Fig. S10. Radiological imaging of the pedicle-screw loosening.  (A) X-ray image showing the 

spine specimen with the pedicle screws and the cap fixtures attached.  (B) Magnified view showing 

the loosening and extraction of one pedicle screw. 
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Fig. S11. Antimicrobial performance of the smart-coating foils authenticated in the 

superficial skin-infection model.  (A) Schematic showing the mice superficial skin-infection 

model (7–8-week-old CD-1 mice, 5 per cohort, equal males and females), where the skin barrier 

was disrupted by the partial removal of the epidermal layer with tape stripping using Tensoplast, 

followed by the application of the foils inoculated with pathogenic bacteria using surgical tape.  

(B) Optical images showing the epidermal and subcutaneous tissues, together with the planar

controls and the smart-coating foils applied after 3 days, both challenged with 5×106 CFUs of P.

aeruginosa (278532).  Compared to the planar controls, the smart-coating foils with biomimetic

mechano-bactericidal nanopillar arrays can effectively prevent the superficial infection as evident

from the absence of pus and hemorrhage.  (C) Comparison of the S. aureus (N=5) and P.

aeruginosa (N=6) burdens in the planar controls (green solid bars), the smart-coating foils

featuring antimicrobial nanopillar arrays (green diagonal hatched bars), and their surrounding skin

tissues (orange bars).  p-values for unpaired t-test between the planar controls and smart-coating

foils are all less than 0.0004.
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Fig. S12. Preliminary telemetry system for the smart-coating foils.  (A) Optical image showing 

the flexible piezoresistive strain sensors, built on single-crystalline silicon nanomembrane 

transfer-printed onto a polyimide substrate, connected to a printed circuit board (PCB) containing 

antenna and a near-field communication (NFC) chip (RF430FRL152H, Texas Instrument).  (B) 

Resistance change measured with the NFC telemetry system under different tensile strain applied 

by wrapping the flexible sensor on cylinders with different radii.  Scale bars: 5 mm. 

Fig. S13. Circuit diagram of strain-sensing pixels incorporating additional multiplexing 

transistors to turn off unselected pixels for lower energy consumption.   
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Fig. S14. Deflection of the spinal rod in the four-point-bending test.  Applied load was 2 kN. 

Fig. S15. Finite-element simulation of strain on a spinal rod in four-point-bending test.  (A) 

Simulated maximum tensile strain as a function of the force load applied.  (B) Simulated cross-

sectional strain tensor distribution at the middle position along the spinal rod under 2 kN load 

applied.  (C) Side view of the simulated deformation of the spinal rod and the corresponding strain 

tensor distribution. 
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