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I. STRAINS USED IN THIS STUDY

Name background Genotype

40nm-GEMs HTB2-mCherry BY4741 HTB2::HTB2-mCherry-URA3; PINO4::Pfv-GS-Sapphire-LEU2
cytosolic GFP W303 ura3::pRS306-pHIS3-2xGFP

nuclear envelop mCherry W303 nup57::NUP57-mCherry-kanMX
20nm-GEMs W303 ura3::PHIS3-AqLumSynth-Sapphire

mRNA particles W303 GFA1/gfa1::GFA1-24PP7; PP7-CP-3xYFP::HIS3
DNA locus W303 leu2::TETR-GFP:LEU2 ura3::TETOarray:URA3

PADH2-mCherry BY4741 ura3�0::pADH2-mCherry-URA3; pINO4::Pfv-GS-Sapphire-LEU2
PADH2-mCherry hog1� BY4742 hog1d::G418; pADH2-mCherry(URA)
40nm-GEMs hog1� BY4742 hog1d::G418; leu2::PINO4-PfV-GS-Sapphire-LEU2; pADH2-mCherry(URA)



3

II. MATHEMATICAL MODELING

A. GIP compresses the nucleus by increasing intracellular colloid osmotic pressure.

We assumed that the nucleus was a passive osmometer in osmotic equilibrium with the cytoplasm. ⇧c

i
= ↵⇧i is

the cytosolic colloid osmotic pressure (due to macromolecules that cannot freely di↵use through the nuclear pore),
which is hypothesized to be proportional to the intracellular total osmotic pressure ⇧i with a factor ↵. We denote
⇧n the nuclear colloid osmotic pressure. Osmotic equilibrium enforces: ⇧c

i
= ⇧n. When growth-induced pressure

P builds up, the cytoplasmic total osmotic pressure increases from the nominal value ⇧0, such that ⇧i = ⇧0 + P .
Similarly, we assume that the cytosolic colloidal pressure increases to P c = ↵P , and ⇧c

0
= ↵⇧0. This corresponds to

an increase in osmolyte concentration from N0 to NP , while keeping the cell volume constant at vc. We hypothesized
that the change in cytosolic pressure compresses the nuclear volume, such that it decreases from vn to vn + �vn. We
also hypothesized that, during the buildup of GIP, there was no large increase in nuclear colloid osmotic pressure,
osmotically active species remaining constant at N0

n
.

From van’t Ho↵’s equation, under confined growth, osmotic equilibrium leads to,:

NP

vc
=

N0

n

vn + �vn
(1)

Re-writing N0

n
= (vn/vc)N0 from the equilibrium without GIP, we determine the nuclear volume dependence with

P to be:

�vn
vn

= � P c/⇧c

0

1 + P c/⇧c

0

= � P/⇧0

1 + P/⇧0

(2)

We used Eq. 2 to fit the experimental data of Fig. 1c, and extracted ⇧0 = 0.95± 0.05 MPa.

B. Change in cell volume after GIP relaxation.

We assumed, as above, that the intracellular osmotic pressure, ⇧i, rose with GIP: ⇧i = ⇧0+P , where P is growth-
induced pressure. From our data, we found that cell volume, v0

c
, did not significantly change under confined growth.

Growth under pressure is therefore accompanied with an increase in osmolyte concentration, from N0 to NP under a
pressure of P . The van’t Ho↵ equation gives:

(⇧0 + P ) v0
c
= NPRT (3)

R is the gas constant and T is the temperature. After pressure relaxation, the volume increased by a value �vc,
equilibrating intracellular osmolarity back to the control value ⇧0. This can be written to (⇧0 + P ) v0

c
= ⇧0

�
v0
c
+ �vc

�
,

leading to:

�vc
v0
c

=
P

⇧0

(4)

Eq. 4 was used to predict the volume change after pressure relaxation, performed by devices similar to those
previously published in [1]. These predictions are displayed in Fig. 1f.

C. Measuring growth rate from the experimental data.

We defined the growth rate kg of the cell population, in terms of total cell volume Vc, as:

@tVc

Vc

= kg =
@tN

N
(5)
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where N is the cell number. Indeed, since the single cell volume v0
c
remained roughly constant (Fig. 1b), Vc = Nv0

c
.

Writing that N = ⇢V , with ⇢ being the cell density and V the volume of the PDMS chamber, one gets:

kg =
@tN

N
=

@t⇢

⇢
+

@tV

V
=

@t⇢

⇢
+

@PV

V
@tP (6)

The dependence of kg on pressure has two contributions: cell density, and total volume. We measured both
contributions independently:

• Contribution of cell density: we measured cell density in the chamber by counting cell nuclei using an HTB2-

mCherry fluorescent histone marker.

• Contribution of cell volume: we measured the deformation of the chamber using bright-field imaging [1, 4], to
infer growth-induced pressure.

Fig. S?? plots the two respective contributions from Eq. 6. Note that cell density increases quickly in the chamber,
suggesting that cells are more deformable than the PDMS chamber walls.

D. Protein expression from PADH2-mCherry.

We developed a simple model of protein production to extract key parameters from our fluorescence reporter assay.
We hypothesized that, upon switch to carbon starvation, following a time delay td, transcripts m were produced with
a rate km:

@tm = km (7)

and proteins p were produced from these transcripts with a net rate kpm:

@tp = kpm (8)

After an induction time td before which no mRNAs or proteins are produced (m(td) = 0 and p(td) = 0), Eq. 7
can be solved, giving m(t) = km(t � td) predicting a quadratic increase of protein concentration with time, solving
Eq. 8, as p(t) = 1/2kmkp(t � td)2. Note that both km and kp are e↵ective net rates that incorporate multiple
processes including transcript and protein degradation, export of the transcript from the nucleus, and fluorescent
protein folding/maturation. It is impossible, from this simple fit, to extract more detailed information on which
of these precise parameters is limiting for protein expression. We define instead an overall e↵ective rate of protein
production kexp, such that p(t) = kexp(t� td)2.

Fluorescence intensity is proportional to the concentration of proteins I(t) = ↵p(t). The proportionality coe�cient
↵ cannot be readily predicted, and will depend on illumination conditions (intensity of the source, filters, exposure
time, e�ciency of the camera) and the fluorophore itself, therefore absolute protein concentration is not determined.
However, the fitting of the data allows the extraction of a relative ↵kexp for a given GIP condition. We kept the
illumination conditions constant, and hypothesized that ↵ does not depend on GIP. Renormalizing the rate for di↵erent
values of pressure by the rate of the control thus allows for an estimation of the change in protein expression under
GIP. Note ↵ for mCherry does not vary significantly with crowding, in contrast to YFP in vitro[5].

Note on mRNA degradation: In this model we neglected mRNA degradation. Classically, the degradation rate
of mRNA can be written @tm = �kdm. Incorporating it in Eq. 7 and solving mathematically p(t), we find that, at long
timescales, protein concentration should increase linearly in time following the relationship: p(t) ⇠ kmkp/kdt. This
linear regime is not observed experimentally, probably because we do not reach the linear regime in this experiment.
At shorter timescales, including mRNA degradation, protein concentration reduces to p(t) = 1/2kmkpt2+o(t2), which
is the mathematical function that we used to fit our data. The temporal range of the experiment does not appear to
be large enough to extract a degradation rate and assess if this parameter changes under GIP.
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E. Protein expression from PHIS3-GFP.

We performed additional experiments on housekeeping genes to complement our results on protein synthesis with
PADH2-mCherry. We investigated the dynamic change in fluorescence intensity of a GFP expressed from the con-
stitutively active promoter PHIS3-GFP. The increase in fluorescence over time can be analyzed using the following
minimal assumptions:

1. Housekeeping protein production (e.g. His3p) follows the exponential cell volume increase such that protein
concentration, N , increases exponentially in time[6]: @tN = kprodN .

2. Fluorescence intensity, I, is proportional to protein concentration, c.

Because @tI/I = @tc/c = @tN/N � @tv/v = @tN/N � kgrowth where v is the cell volume and kgrowth is the cellular
growth rate, we can write that the derivative of the integrated fluorescence intensity as @tI/I = kprod � kgrowth.
Note that, any potential dependence of the fluorescence properties of GFP on crowding during the instantaneous
quantification of protein expression from the HIS3 promoter, which occurs with almost no change in pressure or
crowding, is thus normalized in this assay at almost constant pressure.

We measured the fluorescence intensity of the GFP over time and computed kprod as a function of GIP according
to the above equation. We superimposed this result to the PADH2-mCherry experiment (Fig. S??), and observed a
very good agreement between these data.

F. Exponential dependence of nanoparticle di↵usion with growth-induced pressure.

The Doolittle equation has been used previously to successfully relate the di↵usion coe�cient of nanoparticles
to crowding inside the cell[7]. Denoting Dw as the di↵usion coe�cient of the nanoparticle in water, the di↵usion
coe�cient D of a tracer nanoparticle can be expressed as[8]:

D = Dw exp

✓
�⇠

vcrowder

vfree

◆
(9)

where vcrowder is the volume occupied by macromolecules and vfree is the free volume. The prefactor ⇠ relates to
interactions between the tracer particle and the environment. We denote v0

crowder
and v0

free
respectively as the volume

occupied by crowders and the free volume in the control (uncompressed) condition, for which D = D0. We can
re-write D as:

D = D0 exp

✓
�⇠

✓
vcrowder

vfree
� v0

crowder

v0
free

◆◆
(10)

We assume that cells are mainly crowded at the mesoscale by ribosomes of volume vr, at a cytosolic concentration
cr that was previously estimated as ⇠ 14,000 ribosomes / µm3 [7]. In the cytosol, vfree refers to the cytosolic volume,
such that vcrowder/vfree = crvr. Note that this rewrites the number of ribosomes, contained in vcrowder, in terms of its
concentration. Denoting c0

r
the control crowder concentration, we get:

D = D0 exp

✓
�⇠c0

r
vr

✓
cr
c0
r

� 1

◆◆
(11)

Based on our experiments, we assume that the concentration of osmolytes, co, is proportional to the concentration
of crowders, such that cr/c0r = co/c0o. Using the van’t Ho↵ equation to relate the concentration of osmolytes to the
osmotic pressure, and denoting ⇧i the intracellular osmotic pressure, we can re-write the di↵usion of 40nm-GEMs as:

D = D0 exp

✓
�⇠c0

r
vr

⇧i �⇧0

⇧0

◆
= D0 exp

✓
�⇠c0

r
vr

⇧0

P

◆
= D0 exp (�P/Pc) (12)

where P is the growth-induced pressure, defined as the intracellular osmotic pressure accumulated above the control
value P = ⇧i � ⇧0, and Pc = ⇧0/(⇠c0rvr) is a characteristic pressure associated with the exponential decay of the
tracer particle. The inverse relationship between Pc and particle size s displayed in Fig. 1e suggests that ⇠ / s: the
larger the nanoparticle, the larger the steric interactions, therefore the greater the e↵ect of crowding. In principle, ⇠
can also incorporate other types of interactions, such as electrostatic interactions.
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G. Calibration of the motion of 40nm-GEMs.

We used osmotic perturbations to calibrate the 3 parameters that define Pc for 40nm-GEMs: ⇠40, c0rvr and ⇧0.
We determined the intracellular osmotic pressure as ⇧0 ⇠ 0.95 MPa from the compression of the nucleus (Fig.
1c). Approximating the ribosome as a sphere with a radius of 15 nm, c0

r
vr ⇠ 0.2 [7]. ⇠40 can be determined

by instantaneously changing cell volume using osmotic compression. The volume of water in cells can be written
vw = vc � vno, where vc is the cell volume and vno is the non-osmotic volume of the cell, which corresponds to the
volume occupied by the dry mass of the cell.

Keeping the number of crowders constant, Eq. 11 can be re-written:

D40 = D0 exp

✓
�⇠40c

0

r
vr

✓
v0
w

vw
� 1

◆◆
= D0 exp

✓
�⇠40c

0

r
vr

✓
1� vc/v0c

vc/v0c � vno/v0c

◆◆
(13)

vno/v0c corresponds to the minimum cell volume after an osmotic compression, which we found to be about 0.4, in
good agreement with previous data [7, 9]. We fitted the experimental data with Eq. 13 to extract ⇠40 = 7.4 ± 2.5
(Fig. S??). This allowed the estimation of the exponential dependence of di↵usion with pressure (the characteristic
pressure) to be Pc = 0.64 ± 0.2 MPa. Using this value led to an excellent prediction of the e↵ective di↵usion of
40nm-GEMs as a function of GIP (Fig 1d.)

H. Modeling confined growth.

We developed a model to physically explain the phenomenology of confined cell growth. Here, we expand upon the
basic ideas of cell growth, our hypothesis on what happens when cells are confined, and how we calibrated all the
parameters of the model, leading to remarkable predictive power.

a. Fundamental concepts of the confined cell growth model. It has been shown that cell density remains remarkably
constant as cells grow[10]. Thus, undertaking this as a starting point, in the absence of confinement, the rates of cell
volume expansion and macromolecule biogenesis should be equal to maintain this constant macromolecular crowding.
Cell volume expansion requires production of intracellular osmolytes, while macromolecule production requires many
metabolic processes, but is limited by the production of macromolecules, including ribosomes, and subsequently
proteins[6]. Indeed, we experimentally determined that growth rate was proportional to protein production rate.
Thus, osmolyte and macromolecule production must be proportional to enable balanced growth. It remains unknown
how exactly this proportionality is achieved, and this fundamental question is not addressed here. However, our data
support the hypothesis that confined growth does not alter this proportionality.

According to this central hypothesis, cells will accumulate osmolytes and macromolecules at a proportional rate.
When volume expansion is inhibited by confinement, the accumulation of macromolecules leads to an increase in
crowding, while the accumulation of osmolytes results in an increase in intracellular osmotic pressure. We postulated
the following sequence to describe growth in a step-by-step manner:

1. Cells produce macromolecules and osmolytes at a fixed cell volume, increasing intracellular osmotic pressure
above the unconfined control value ⇧0, ⇧i > ⇧0. The production of macromolecules is exponential, for exam-
ple because ribosomes are rate limiting for the production of ribosomal proteins[6]. Per our central coupling
hypothesis, this means that osmolyte production is also exponential. We denote this rate kprod.

2. When the pressure di↵erence between intracellular and extracellular osmolarity, ⇧i � ⇧e, exceeds a threshold
value, the cell wall expands enough to allow the incorporation of new cell wall components[11, 12], leading to a
cell volume increase of �v. The actual value of �v is not a critical parameter: it sets the time interval �t required
to reach the threshold concentration of osmolytes, such that �v/v = kprod�t. �v/�t ⇤ 1/v sets the growth rate of
the cell.

3. The resultant increase in volume partly dilutes osmolytes (and macromolecules) below the threshold value
required for further cell wall expansion. Osmolytes then again accumulate at fixed volume, and the sequence is
repeated.

This sequential model of cell growth naturally leads to exponential growth at a constant level of macromolecular
crowding, and the intracellular osmotic pressure is continually maintained around the threshold value for cell wall
expansion. We posit that the critical pressure for cell expansion is related to the cellular turgor pressure
Pt, which corresponds to the hydrostatic pressure that balances the elasticity of the cell wall. Within this framework,
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if the elasticity of the cell wall were to increase, the critical pressure would also increase and so more osmolytes
would be required to reach this new threshold. Since osmolyte and macromolecule production are coupled, macro-
molecular crowding would also necessarily increase. We hypothesize that this is what happens when cells are confined.

b. Modeling the elasticity of the confining environment. When the chamber becomes filled such that all the cells
are in contact, cell expansion must overcome the additional elastic resistance of neighboring cells and the walls of the
PDMS chamber. These elasticities can be modeled as two springs acting in parallel. Denoting Ec as the cell elasticity,
and EPDMS as the elasticity of the PDMS chamber, the cell will be pushing against a material of an e↵ective
elasticity equivalent to Eeq = Ec EPDMS/(Ec + EPDMS).

PDMS operates in a linear elastic regime for small deformations, such that EPDMS is a constant. This is not the
case for the elasticity of the cells Ec. We must account for two e↵ects: First, when all cells are tightly packed, the
elasticity of each cell is related to its internal pressure[13], i.e. the osmotic pressure di↵erence ⇧i �⇧e. Thus, as GIP
increases, the elastic resistance imposed by neighboring cells will also increase, and the cells will progressively become
sti↵er. Second, at lower cell densities (prior to becoming completely packed) some of the mechanical pressure will
deform cells, until the density reaches a maximum. Taking these two factors together, to a first approximation, we
hypothesize that Ec = (⇧i �⇧e) (⇢(P )� ⇢c) /⇢m, where ⇢(P ) is the pressure-dependence of cell density, ⇢c is the cell
density at confluence, and ⇢m is the maximum cell density.

To evaluate how cell density depends on external pressure, we consider a volume V0 filled with cells, occupying a
volume Vc, and culture medium, occupying a volume Vm, such that V0 = Vc+Vm. By definition, ⇢ = 1/V0. We found
that under confinement, cell volume is not strongly a↵ected by growth-induced pressure. Therefore, if we compress a
box of volume V0 (leading to an increase in cell density), only Vm will decrease. The culture medium volume decreases
because it is displaced by an increasing number of cells that are deforming at fixed volume. We hypothesize, as above,
that cell deformability is ⇧i �⇧e, such that:

@PVm

Vm

= � 1

⇧i �⇧e

(14)

where P = ⇧i�⇧0 is the growth-induced pressure. We take the derivative of ⇢(P ) and get the following di↵erential
equation describing the change in cell density as a function of P:

@P ⇢/⇢m =
1

⇧i �⇧e

⇢/⇢m (1� ⇢/⇢m) (15)

Eq. 15 has a sigmoidal solution:

⇢

⇢m
=

1

1 + exp (�P/ (⇧i �⇧e))
+

✓
⇢c
⇢m

� 1

2

◆
(16)

where ⇢c is the cell density when the cells are at confluence. We posit that, after cell confluence is reached, the
threshold pressure needed to further expand the cell wall increases as as a function of the compressive
stress imposed by the surroundings:

• Before confluence, this threshold pressure is the nominal turgor pressure Pt

• After confluence, the threshold pressure is increased by the additional stress required to deform the elastic
surroundings, Eeq�V/Vconfluence

where Vconfluence is the total cell volume when confluence is reached. Note that this is conceptually similar to
increasing cell wall elasticity. The extra compressive stress P = Eeq�V/Vconfluence, that needs to be overcome to
continue to expand in volume, is the growth-induced pressure: the larger the volume expansion �V is, the larger P
becomes.

c. Feedback: inhibition of protein production (kprod) by macromolecular crowding. As cell volume expansion
becomes inhibited due to confinement, both osmolarity and macromolecular crowding increase. Our data indicate that
protein production is di↵usion-limited and decreases as macromolecular crowding increases (Fig 2d). We incorporated
this feedback into our model, with the form:

kprod = k0 exp (�⇠crvr) (17)
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where the protein production rate decreases, similarly to Eq. 11, as macromolecular crowding increases cr (vr
corresponds to the volume occupied by a single crowder, see above).

d. Calibration of model parameters. This model has a large number of parameters: k0, ⇠ and c0
r
vr that define the

production rate and its dependence on macromolecular crowding, ⇢c/⇢m related to the definition of the cell elasticity,
EPDMS, the surrounding elasticity, ⇧e and ⇧0, the external and internal control osmotic pressure, and Pt the turgor
pressure.

In the following, we describe the experimental calibration of all of these parameters (except Pt, which is described
in the next section):

• Growth parameters: c0
r
vr has already been calibrated, see above. Moreover, since kprod is proportional to the

growth rate, we calibrated k0 such that kprod = k0 exp (�⇠crvr) = 0.3 h�1, which corresponds to the unconfined
growth rate. Concerning ⇠, we used the fact that Pc was inversely proportional to the size of the di↵using probe
s, leading to ⇠ / s. Using the ⇠40 value measured for the di↵usion of 40nm-GEMs, and the observed limiting
size of 92 nm (Fig. 3b), this gives ⇠ = 92 ⇠40 /40 = 17 ± 5.5. This value led to Pc ⇠ 0.28 MPa, in excellent
agreement with experimental data (Fig. 4b).

• ⇢c/⇢m was calculated from cell number data (Fig. 4d), where we found that confluence was reached at about
40% of final cell number, leading to ⇢c/⇢m ⇠ 0.4, consistent with previous data (see Fig. S2C from [4]).

• EPDMS = 0.8±0.1 MPa was calibrated by measuring the deformation of the chamber with a defined hydrostatic
pressure.

• We measured the osmolarity of SCD medium at 30oC, ⇧e, using an osmometer, and found ⇧e = 0.63 ± 0.05
MPa.

• As described previously, we fitted the dependence of nuclear volume on GIP to estimate the nominal intracellular
osmotic pressure, ⇧0 = 0.95± 0.05 MPa.

• Calibration of the turgor pressure was a complex process, requiring a combination of electron microscopy, AFM,
and laser ablation (details below). After careful evaluation, we found Pt = 0.05± 0.02 MPa.

Important note on �⇧ vs. Pt:
We do not find, as often assumed, that the osmotic pressure di↵erence is equal to the turgor pressure, but in-
stead that �⇧ = ⇧0 �⇧e > Pt. This result is not inconsistent, and actually points to common misconceptions made
in the evaluation of these parameters in the literature. In fact, during rapid growth, the continual increase in cell
volume leads to a pressure loss. This pressure reduction e↵ect is known as the suction pressure. Thus, the pressure
change is written: �⇧ = Pt + Ps, where Ps is the suction pressure, corresponding to the pressure loss through water
influx into the cell as cell volume expands. In the limit where cell volume cannot increase, the osmotic pressure
di↵erence is exactly the same as the turgor pressure. However, if cell volume is increasing, �⇧ > Pt. From our
measurements, we estimate the suction pressure to be Ps ⇠ 0.27 MPa. Does this value make sense? We were unable to
find values in the literature, but we can estimate a reasonable value from known properties of S. cerevisiae. We denote
Rh as the hydraulic resistance of the cell wall, and get Ps ⇠ RhJ , where J corresponds to the flow of water, which is
approximately the same as the cell volume expansion rate. Hydraulic resistance, Rh, is approximately ⇠ 1/SLp [14],
where S is the surface area of the cell membrane and Lp is the membrane permeability. Lp ⇠ 10�14m/s/Pa has been
measured for plant cells [15], which have a thick wall like S. cerevisiae, and so it is reasonable to guess that these
values could be similar. With the known surface area of a yeast cell at S ⇠ 3.10�11m2, this leads to an estimate of
Ps ⇠ J/SLp ⇠ 0.25 MPa for budding yeast. This value is very close to our estimation of Ps. Note that these values
are consistent with previous observations in S.cerevisiae in which the authors found that Pt ⇠ 0.05 MPa when cells
were growing, and Pt ⇠ 0.25 MPa for stationary cells[16]. In the model, we considered that Ps ⇠ 0.25 MPa was
constant and did not depend on GIP.

Using all these parameters, we can predict how growth rate, cell number and GIP should vary
during growth in confinement. We found that our model predicted our experimental observations remarkably
well. This suggests, as discussed in the manuscript, that it is not necessary to invoke a specific biological adaptation
through stress pathway signaling to explain the changes in protein production and proliferation that we observe
during growth in confinement.
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I. Measurement of turgor pressure through laser ablation, AFM and electronic microscopy.

We undertook a series of three experiments to determine cell wall elasticity and thickness, and turgor pressure.
Fig. S?? shows examples of the data.

a. Laser ablation experiments to deflate a cell and to measure a function of turgor pressure and cell wall elasticity.

By shooting the border of the cell with a laser, we create a hole in the cell, leading to e✏ux of cellular contents and
deflation owing to loss of turgor and relaxation of cell wall components. Denoting E the cell wall elasticity, ⌫ the
Poisson ratio, h the cell wall thickness, �P = Pt the loss of pressure, and R1 (R0) the initial (final) radius of the cell,
we found:

�P = Pt =
R1 �R0

R1

h

R1

2E

1� ⌫
(18)

Experiments showed a deflation 1�R0/R1 = 0.21± 0.06 (Fig. S??a).

b. Transmission electron microscopy to determine cell wall thickness. High resolution TEM images were acquired
to estimate cell wall thickness. While precise measurement is di�cult due to the fact that we do not really know where
we cut in the cell, averaging over multiple measurements we estimate cell wall thickness to be h ⇠ 0.13µm (Fig. S??b).

c. Atomic force microscopy as an orthogonal method to measure a function of turgor pressure and cell wall elas-

ticity. Recent work from the group of A. Boudaoud investigated the use of AFM as a means to indent a pressurized
shell [13]. Two regimes were identified: a small indentation regime where both internal pressure and cell wall elasticity
are measured in a coupled way, and a large indentation regime, largely independent of cell wall elasticity, probing
internal pressure only. We find that the large indentation regime is impossible to achieve for our cells because the
probe usually ruptures the cell wall. Small indentation was however possible, and led to the measurement of the
e↵ective spring constant of the cell wall k ⇠ 0.15 N/m (Fig. S??c).

Theoretically, for small indentation, the authors derived a relationship between the e↵ective spring constant of the
cell wall k and the mechanical properties of the cell (formula 3.6 in their paper). This formula is a function of both
Pt and E. Replacing E, we can estimate Pt:

Pt =

p
3 (1� ⌫2)

1� ⌫

R1 �R0

R1

k

⇡hf(⌧)
(19)

where:

⌧ =

p
(3 (1� ⌫2)

1� ⌫

R1 �R0

R1

R1

h
(20)

and f(⌧)

f(⌧) =

p
⌧2 � 1

arctanh
p
1� ⌧�2

(21)

d. Extracting Pt. Using Eqs. 18 and 19 along with the measurement of cell wall thickness h, we were able to
extract both the cell wall elasticity (assuming that ⌫ ⇠ 0) to be E ⇠ 2.5 MPa and the turgor pressure to be Pt ⇠ 0.05
MPa. We used this parameter in the theoretical prediction of experimental data (see above).
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Hersen. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular
crowding. Proceedings of the National Academy of Sciences, 110(14):5725–5730, 2013.

[10] Andrea K Bryan, Alexi Goranov, Angelika Amon, and Scott R Manalis. Measurement of mass, density, and volume during
the cell cycle of yeast. Proceedings of the National Academy of Sciences, 107(3):999–1004, 2010.

[11] Enrique R Rojas, Kerwyn Casey Huang, and Julie A Theriot. Homeostatic cell growth is accomplished mechanically
through membrane tension inhibition of cell-wall synthesis. Cell systems, 5(6):578–590, 2017.

[12] Peter Albersheim, Alan Darvill, Keith Roberts, Ron Sedero↵, and Andrew Staehelin. Plant cell walls. Garland Science,
2010.

[13] Dominic Vella, Amin Ajdari, Ashkan Vaziri, and Arezki Boudaoud. The indentation of pressurized elastic shells: from
polymeric capsules to yeast cells. Journal of the Royal Society Interface, 9(68):448–455, 2012.
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