Study Ref	Year	Publication type	Country	Sample size	Mean age	Age range	Female %	Participants' health condition
Adamczyk ¹	2021	Journal article	Poland	55	40.1	NR	55	Depression, healthy
Ahmed ²	2022	Journal article	United States	142	21.5	18-31	54.9	Depression
Aminifar ³	2021	Conference Paper	Norway	55	40.1	NR	55	Depression, healthy
Bai ⁴	2021	Journal article	China	261	NR	18-60	NR	Depression
Chikersal ⁵	2021	Journal article	United States	138	NR	NR	NR	Depression, healthy
Cho ⁶	2019	Journal article	Korea	55	25.9	21-31	49.1	Depression, bipolar
Choi ⁷	2021	Journal article	Korea	1552	42.1	NR	55.1	General
Choi ⁸	2022	Journal article	Korea	14	76	65-86	85.7	General
Coutts ⁹	2020	Journal article	United Kingdom	668	21.9	18-69	71.2	General
Dai ¹⁰	2022	Journal article	United States	89	47.1	NR	76.4	Depression
Espino-Salinas ¹¹	2022	Journal article	Mexico	55	40.1	NR	55	Depression, healthy
Frogner ¹²	2019	Conference Paper	Norway	55	40.1	NR	55	Depression, healthy
Fukuda ¹³	2020	Conference Paper	Japan	60	NR	NR	NR	General
Galvan-Tejada ¹⁴	2019	Journal article	Mexico	55	40.1	NR	55	Depression, healthy
Garcia-Ceja ¹⁵	2018	Conference Paper	Norway	55	40.1	NR	55	Depression, healthy
Garcia-Ceja ¹⁶	2018	Conference Paper	Norway	55	40.1	NR	55	Depression, healthy
Ghandeharioun ¹⁷	2017	Conference Paper	United States	12	37	20-73	75	Depression
Griffiths ¹⁸	2022	Journal article	United Kingdom	17	46.8	21-69	79	Depression
Horwitz ¹⁹	2022	Journal article	United States	2459	27.6	NR	55.1	General
Jacobson ²⁰	2019	Journal article	United States	55	40.1	NR	55	Depression, healthy
Jakobsen ²¹	2020	Journal article	Norway	55	40.1	NR	55	Depression, healthy
Jin ²²	2020	Journal article	China	60	NR	18-26	50	General
Jung ²³	2022	Conference Paper	Korea	45	76.7	>64	66	Depression, healthy
Kim ²⁴	2019	Journal article	Korea	47	78	NR	94	Depression
Kulam ²⁵	2019	Thesis	Norway	55	40.1	NR	55	Depression, healthy
Kumar ²⁶	2022	Journal article	United Kingdom	55	40.1	NR	55	Depression, healthy
Lee ²⁷	2022	Journal article	Korea	270	23.3	NR	54.4	Depression, bipolar
Llamocca ²⁸	2021	Journal article	Spain	17	NR	NR	NR	Bipolar
Lu ²⁹	2018	Journal article	United States	103	NR	18-25	76.7	Depression, healthy
Mahendran ³⁰	2019	Journal article	India	450	40	NR	NR	Mood swings
Makhmutova ³¹	2021	Thesis	Switzerland	4036	37.2	18-85	73.7	General
Makhmutova ³²	2022	Journal article	Switzerland	4036	37.2	18-85	73.7	General

Supplementary Table 1: Characteristics of each included study. NR: not reported

Mallikarjun ³³	2020	Journal article	India	86	NR	NR	100	General
Minaeva ³⁴	2020	Journal article	Netherlands	179	46.5	NR	64	Depression, healthy
Mullick ³⁵	2022	Journal article	United States	55	15.5	12-18	74.5	Depression
Narziev ³⁶	2020	Journal article	Korea	20	NR	NR	NR	Depression, healthy
Nguyen ³⁷	2021	Conference Paper	Taiwan	Taiwan 55 40.1 NR 55		Depression, healthy		
Nishimura ³⁸	2022	Conference Paper	Japan	100	42.1	NR	37	General
Opoku Asare ³⁹	2022	Journal article	Finland	54	43	24-68	55.6	Depression, healthy
Pacheco-Gonzalez ⁴⁰	2019	Journal article	Mexico	55	40.1	NR	55	Depression, healthy
Pedrelli ⁴¹	2020	Journal article	United States	31	33.7	19-73	74	Depression
Price ⁴²	2022	Journal article	United States	55	40.1	NR	55	Depression, healthy
Qian ⁴³	2019	Conference Paper	Japan	83	38.4	22-58	2.4	Depression, healthy
Raihan ⁴⁴	2021	Conference Paper	Bangladesh	55	40.1	NR	55	Depression, healthy
Rodríguez-Ruiz ⁴⁵	2020	Journal article	Mexico	55	40.1	NR	55	Depression, healthy
Rodríguez-Ruiz ⁴⁶	2020	Journal article	Mexico	55	40.1	NR	55	Depression, healthy
Rodríguez-Ruiz ⁴⁷	2022	Journal article	Mexico	109	40.8	NR	48.8	Depression, healthy, schizophrenia
Rykov ⁴⁸	2021	Journal article	Singapore	267	33	21-64	63.7	General
Shah ⁴⁹	2021	Journal article	United States	14	21.6	NR	71.4	Depression
Tazawa ⁵⁰	2020	Journal article	Japan	86	60.2	NR	46.5	Depression, healthy
Valenza ⁵¹	2015	Journal article	Italy	8	NR	NR	NR	Bipolar
Wang ⁵²	2018	Conference Paper	United States	83	20.1	NR	51.8	General
Xu ⁵³	2019	Journal article	United States	350	NR	NR	NR	General
Zanella-Calzada ⁵⁴	2019	Journal article	Mexico	55	40.1	NR	55	Depression, healthy

1 Adamczyk, J. & Malawski, F. Comparison of Manual and Automated Feature Engineering for Daily Activity Classification in Mental Disorder Diagnosis. *Computing and Informatics* **40**, 850–879-850–879 (2021).

2 Ahmed, A. *et al.* Investigating the Feasibility of Assessing Depression Severity and Valence-Arousal with Wearable Sensors Using Discrete Wavelet Transforms and Machine Learning. *Information* **13**, 406 (2022).

Aminifar, A., Rabbi, F., Pun, V. K. I. & Lamo, Y. Monitoring Motor Activity Data for Detecting Patients' Depression Using Data Augmentation and Privacy-Preserving Distributed Learning. *Annu Int Conf IEEE Eng Med Biol Soc* **2021**, 2163-2169, doi:10.1109/embc46164.2021.9630592 (2021).

- 4 Bai, R. *et al.* Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. *JMIR Mhealth Uhealth* **9**, e24365, doi:10.2196/24365 (2021).
- 5 Chikersal, P. *et al.* Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection. *ACM Trans. Comput.-Hum. Interact.* **28**, Article 3, doi:10.1145/3422821 (2021).
- 6 Cho, C. H. *et al.* Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. *J Med Internet Res* **21**, e11029, doi:10.2196/11029 (2019).
- 7 Choi, J. G., Ko, I. & Han, S. Depression Level Classification Using Machine Learning Classifiers Based on Actigraphy Data. *IEEE Access* 9, 116622-116646, doi:10.1109/ACCESS.2021.3105393 (2021).
- 8 Choi, J., Lee, S., Kim, S., Kim, D. & Kim, H. Depressed Mood Prediction of Elderly People with a Wearable Band. *Sensors (Basel)* **22**, doi:10.3390/s22114174 (2022).
- 9 Coutts, L. V., Plans, D., Brown, A. W. & Collomosse, J. Deep learning with wearable based heart rate variability for prediction of mental and general health. *J Biomed Inform* **112**, 103610, doi:10.1016/j.jbi.2020.103610 (2020).
- 10 Dai, R. *et al.* Multi-Task Learning for Randomized Controlled Trials: A Case Study on Predicting Depression with Wearable Data. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **6**, Article 50, doi:10.1145/3534591 (2022).
- 11 Espino-Salinas, C. H. *et al.* Two-Dimensional Convolutional Neural Network for Depression Episodes Detection in Real Time Using Motor Activity Time Series of Depresjon Dataset. **9**, 458 (2022).
- 12 Frogner, J. I. *et al.* in *Proceedings of the 4th International Workshop on Multimedia for Personal Health & amp; Health Care* 9–15 (Association for Computing Machinery, Nice, France, 2019).
- 13 Fukuda, S., Matsuda, Y., Tani, Y., Arakawa, Y. & Yasumoto, K. in 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). 1-6.
- Galván-Tejada, C. E. *et al.* Depression Episodes Detection in Unipolar and Bipolar Patients: A Methodology with Feature Extraction and Feature Selection with Genetic Algorithms Using Activity Motion Signal as Information Source. *Mobile Information Systems* 2019, 8269695, doi:10.1155/2019/8269695 (2019).
- 15 Garcia-Ceja, E. *et al.* in *Proceedings of the 9th ACM Multimedia Systems Conference* 472–477 (Association for Computing Machinery, Amsterdam, Netherlands, 2018).
- 16 Garcia-Ceja, E. *et al.* in 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS). 316-321.
- 17 Ghandeharioun, A. et al. in 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). 325-332.
- 18 Griffiths, C. *et al.* Investigation of physical activity, sleep, and mental health recovery in treatment resistant depression (TRD) patients receiving repetitive transcranial magnetic stimulation (rTMS) treatment. *J Affect Disord Rep* **8**, 100337, doi:10.1016/j.jadr.2022.100337 (2022).
- 19 Horwitz, A. G. *et al.* Using machine learning with intensive longitudinal data to predict depression and suicidal ideation among medical interns over time. *Psychol Med*, 1-8, doi:10.1017/s0033291722003014 (2022).
- Jacobson, N. C., Weingarden, H. & Wilhelm, S. Digital biomarkers of mood disorders and symptom change. *npj Digital Medicine* **2**, 3, doi:10.1038/s41746-019-0078-0 (2019).

- 21 Jakobsen, P. *et al.* Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. *PLoS One* **15**, e0231995, doi:10.1371/journal.pone.0231995 (2020).
- 22 Jin, J. *et al.* Attention-Block Deep Learning Based Features Fusion in Wearable Social Sensor for Mental Wellbeing Evaluations. *IEEE* Access **8**, 89258-89268, doi:10.1109/ACCESS.2020.2994124 (2020).
- Jung, D., Kim, J. & Mun, K. R. Identifying Depression in the Elderly Using Gait Accelerometry. *Annu Int Conf IEEE Eng Med Biol Soc* **2022**, 4946-4949, doi:10.1109/embc48229.2022.9871877 (2022).
- 24 Kim, H. *et al.* Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. *JMIR Mhealth Uhealth* **7**, e14149, doi:10.2196/14149 (2019).
- 25 Kulam, S. Time-Series Classification with Uni-Dimensional Convolutional Neural Networks: An Experimental Comparison with Long Short-Term Memory Networks, (2019).
- 26 Kumar, A., Sangwan, S. R., Arora, A. & Menon, V. G. Depress-DCNF: A deep convolutional neuro-fuzzy model for detection of depression episodes using IoMT. *Applied Soft Computing* **122**, 108863, doi:<u>https://doi.org/10.1016/j.asoc.2022.108863</u> (2022).
- 27 Lee, H. J. *et al.* Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study. *Psychol Med*, 1-9, doi:10.1017/s0033291722002847 (2022).
- 28 Llamocca, P., López, V., Santos, M. & Čukić, M. Personalized Characterization of Emotional States in Patients with Bipolar Disorder. *Mathematics* **9**, doi:10.3390/math9111174 (2021).
- 29 Lu, J. *et al.* Joint Modeling of Heterogeneous Sensing Data for Depression Assessment via Multi-task Learning. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **2**, Article 21, doi:10.1145/3191753 (2018).
- 30 Mahendran, N. *et al.* Sensor-Assisted Weighted Average Ensemble Model for Detecting Major Depressive Disorder. *Sensors (Basel)* **19**, doi:10.3390/s19224822 (2019).
- 31 Makhmutova, M. *Predicting changes in depression using person-generated health data* Master degree thesis, Ecole polytechnique federale de Lausanne, (2021).
- 32 Makhmutova, M. *et al.* Predicting Changes in Depression Severity Using the PSYCHE-D (Prediction of Severity Change-Depression) Model Involving Person-Generated Health Data: Longitudinal Case-Control Observational Study. *JMIR Mhealth Uhealth* **10**, e34148, doi:10.2196/34148 (2022).
- 33 Mallikarjun, H. M. & Manimegalai, P. Manoglanistara Emotional Wellness Phases Prediction of Adolescent Female Students by using Brain Waves. *Current Signal Transduction Therapy* **15**, 315-323, doi:10.2174/1574362414666190703151853 (2020).
- 34 Minaeva, O. *et al.* Screening for Depression in Daily Life: Development and External Validation of a Prediction Model Based on Actigraphy and Experience Sampling Method. *J Med Internet Res* **22**, e22634, doi:10.2196/22634 (2020).
- 35 Mullick, T., Radovic, A., Shaaban, S. & Doryab, A. Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning-Based Exploratory Study. *JMIR Form Res* **6**, e35807, doi:10.2196/35807 (2022).
- 36 Narziev, N. *et al.* STDD: Short-Term Depression Detection with Passive Sensing. *Sensors (Basel)* **20**, doi:10.3390/s20051396 (2020).
- 37 Nguyen, D.-K., Chan, C.-L., Li, A.-H. A. & Phan, D.-V. in *2021 5th International Conference on Medical and Health Informatics* 7–12 (Association for Computing Machinery, Kyoto, Japan, 2021).

- 38 Nishimura, Y. *et al.* in *Sensor-and Video-Based Activity and Behavior Computing* 1-26 (Springer, 2022).
- Asare, K. O. *et al.* Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. *Pervasive and Mobile Computing* **83**, 101621, doi:<u>https://doi.org/10.1016/j.pmcj.2022.101621</u> (2022).
- 40 Pacheco-González, S. L. *et al.* Evaluation of Five Classifiers for Depression Episodes Detection. *Res. Comput. Sci.* **148**, 129-138, doi:10.13053/rcs-148-10-11 (2019).
- 41 Pedrelli, P. *et al.* Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors. *Front Psychiatry* **11**, 584711, doi:10.3389/fpsyt.2020.584711 (2020).
- 42 Price, G. D. *et al.* An unsupervised machine learning approach using passive movement data to understand depression and schizophrenia. *J Affect Disord* **316**, 132-139, doi:10.1016/j.jad.2022.08.013 (2022).
- 43 Qian, K. *et al.* in *Proceedings of the Third International Symposium on Image Computing and Digital Medicine* 71–75 (Association for Computing Machinery, Xi'an, China, 2019).
- 44 Raihan, M., Bairagi, A. K. & Rahman, S. in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). 1-5.
- 45 Rodríguez-Ruiz, J. G., Galván-Tejada, C. E., Vázquez-Reyes, S., Galván-Tejada, J. I. & Gamboa-Rosales, H. Classification of Depressive Episodes Using Nighttime Data; a Multivariate and Univariate Analysis. *Program. Comput. Softw.* **46**, 689–698, doi:10.1134/s0361768820080198 (2020).
- 46 Rodríguez-Ruiz, J. G. *et al.* Comparison of Night, Day and 24 h Motor Activity Data for the Classification of Depressive Episodes. *Diagnostics (Basel)* **10**, doi:10.3390/diagnostics10030162 (2020).
- 47 Rodríguez-Ruiz, J. G. *et al.* Classification of Depressive and Schizophrenic Episodes Using Night-Time Motor Activity Signal. *Healthcare* (*Basel*) **10**, doi:10.3390/healthcare10071256 (2022).
- 48 Rykov, Y., Thach, T. Q., Bojic, I., Christopoulos, G. & Car, J. Digital Biomarkers for Depression Screening With Wearable Devices: Crosssectional Study With Machine Learning Modeling. *JMIR Mhealth Uhealth* **9**, e24872, doi:10.2196/24872 (2021).
- 49 Shah, R. V. *et al.* Personalized machine learning of depressed mood using wearables. *Translational Psychiatry* **11**, 338, doi:10.1038/s41398-021-01445-0 (2021).
- 50 Tazawa, Y. *et al.* Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning. *Heliyon* **6**, e03274, doi:10.1016/j.heliyon.2020.e03274 (2020).
- 51 Valenza, G. *et al.* Characterization of depressive States in bipolar patients using wearable textile technology and instantaneous heart rate variability assessment. *IEEE J Biomed Health Inform* **19**, 263-274, doi:10.1109/jbhi.2014.2307584 (2015).
- 52 Wang, R. *et al.* Tracking Depression Dynamics in College Students Using Mobile Phone and Wearable Sensing. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **2**, Article 43, doi:10.1145/3191775 (2018).
- 53 Xu, X. *et al.* Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **3**, Article 116, doi:10.1145/3351274 (2019).

54 Zanella-Calzada, L. A. *et al.* Feature Extraction in Motor Activity Signal: Towards a Depression Episodes Detection in Unipolar and Bipolar Patients. *Diagnostics (Basel)* **9**, doi:10.3390/diagnostics9010008 (2019).

Supplementary Table 2: Features of wearable AI. ANN: Artificial Neural Network; BDI-II: Beck Depression Inventory-II; BPRS: Brief Psychiatric Rating Scale; BT: Boosted Trees; CNN: Convolutional Neural Network; DAMS: Depression and Anxiety Mood Scale; DART: Dropouts Meet Multiple Additive Regression Trees; DASS: Depression Anxiety Stress Scales; DCNF: Deep convolutional neuro fuzzy; DNN: Deep Neural Network; DSM: Diagnostic and Statistical Manual of Mental Health; DT: Decision tree; ECG: Electrocardiograph; EDA: Electrodermal activity ; EEG: Electroencephalograph; ERT: Extremely Randomized Trees; GMM: Gaussian mixture models; HDRS: Hamilton Depression Rating Scale; ID3: Iterative Dichotomiser 3; KNN: K-Nearest Neighbors; LASSO: Least Absolute Shrinkage and Selection Operator; LDA: Linear discriminant analysis; LightGBM: Light Gradient Boosting Machine; LinR: Linear regression; LogR: Logistic regression; LOOCV: Leave-One-Out Cross-Validation; MADRS: Montgomery-Asberg Depression Rating Scale; MLM: Multi Level Modeling; MSE: Mean Squared Error; NB: Naive Bayes; NN: Neural Network; NPV: Negative Predictive Value; NR: Not reported; PCC: Pearson correlation coefficient ; PDSS: Panic Disorder Severity Scale; PHQ-9: Patient Health Questionnaire-9; PR: Poisson regression; QDA: Quadratic Discriminant Analysis ; QIDS: Quick Inventory of Depressive Symptomatology; r: correlation coefficient; RAE: Relative Absolute Error; RF: Random Forest; RMSE: Root Mean Square Error; RR: Ridge Regression; R-Squared: Coefficient of determination; SMAPE: Symmetric Mean Absolute Percentage Error; SVM: Support Vector Machine; VR: Voting regressor; XGBoost: extreme gradient boosting; YMRS: Young Mania Rating Scale

Study Ref	Name of WD			Problem solving	AI algorithm	Dataset	Data input	Ground truth	Validation
Study		of WD	algorithm	approach	AI algorithm	source	Data input	assessment	approach
Adamczyk ¹	Actiwatch AW4	Wrist	Detection	Classification	LogR, RF, SVM	Open	Activity data	MADRS	Nested
Ahmed ²	Psychorus	Wrist	Detection	Classification	CB, GB, LogR, KNN, RF, SVC, XGB	Open	Activity data, EDA data, heart rate data	BDI-II	K-fold
Aminifar ³	Actiwatch AW4	Wrist	Detection	Classification	DT, ERT, ID3, RF, SVM, XGBoost	Open	Activity data	MADRS	LOOCV
Bai ⁴	Mi Band 2	Wrist	Detection	Classification	DT, LogR, RF, SVM	Closed	Activity data, heart rate data, location, sleep data, smartphone usage data, social interaction	PHQ-9	K-fold
Chikersal⁵	Fitbit Flex 2	Wrist	Detection and Prediction	Classification	AdaBoost, GB, LogR, KNN, LASSO	Closed	Activity data, location, sleep data, smartphone usage data, social interaction	BDI-II	LOOCV
Cho ⁶	Fitbit Charge HR, Fitbit Charge 2	Wrist	Prediction	Classification	RF	Closed	Activity data, heart rate data, light exposure, mood status, sleep data	DSM-5	Hold-out
Choi ⁷	ActiGraph GT3X	Ankle, thigh, waist, wrist	Detection	Classification	LogR, MLP, SVC, XGBoost	Open	Circadian rhythms	PHQ-9	Hold-out
Choi ⁸	Empatica E4	Wrist	Detection	Classification	DT, GB, KNN, MLP, RF, SVM, XGBoost	Closed	Activity data, EDA data, heart rate data, skin temperature	GDS, PHQ-9	K-fold
Coutts ⁹	Biobeam	Wrist	Detection	Classification	LSTM	Closed	Heart rate data	DASS, STAI	Hold-out
Dai ¹⁰	Fitbit Alta HR	Wrist	Prediction	Classification	AdaBoost, ANN, LogR, GBDT, MTL, RF, SVM	Closed	Activity data, coping, demographic data, depression level, heart rate data, negative problem orientation, post-traumatic stress disorder status, psychiatric status, sleep data	PHQ-9	K-fold
Espino-Salinas ¹¹	Actiwatch AW4	Wrist	Detection	Classification	CNN	Open	Activity data	MADRS	Hold-out, K-fold
Frogner ¹²	Actiwatch AW4	Wrist	Detection	Classification, regression	CNN	Open	Activity data	MADRS	Hold-out, K-fold, LOOCV
Fukuda ¹³	Fitbit Charge 3	Wrist	Detection	Classification	RF	Closed	Sleep data	DAMS	LOOCV
Galvan-Tejada ¹⁴	Actiwatch AW4	Wrist	Detection	Classification	RF	Open	Activity data	MADRS	Hold-out, K-fold

ost, ANN, DT,			
SP, NB, QDA, Closed VM, ZeroR	Activity data	MADRS	K-fold
NN, RF Open	Activity data	MADRS	LOOCV
ost, Ensemble l, GP, LinR, Closed AC, RF, RR	Activity data, alcohol, drug, and caffeine consumption, anxiety level, EDA data, location, mood status, sleep data, smartphone usage data, social interaction, stress level	HDRS	Hold-out, K-fold, LOOCV
RF Closed	Activity data, sleep data	PHQ-9	K-fold
ticNet, RF Closed	Activity data, mood status, sleep data	PHQ-9	Nested
GBoost Open	Activity data	MADRS	LOOCV
, DNN, RF Open	Activity data	MADRS	LOOCV
LSTM Closed	Activity data, audio data	BDI-II, STAI	Hold-out
LSTM Closed	Activity data	DSM-IV	K-fold
T, LogR, RF Closed	Activity data, depression level, light exposure, sleep data	HDRS, GDS	Hold-out
N, LSTM Open	Activity data	MADRS	K-fold
CNN, LSTM Open	Activity data	MADRS	Hold-out
RF Closed	Activity data, heart rate data, light exposure, sleep data	Clinician assessment	Hold-out
gR, RF, SVM Closed	Activity data, irritibility level, motivation level, sleep data	Clinician assessment	Hold-out
SSO, RR Closed	Activity data, depression level, heart rate data, location, sleep data	DSM-5, QIDS	LOOCV
nble model, Closed	Activity data, heart rate data, sleep data	HDRS	Hold-out, K-fold
nble model, C, LogR, RF, Closed GBoost	Current therapies, demographic data, depression level, health care utilization, lifestyle changes, medical history, sleep data	PHQ-9	K-fold
mble model Closed	Current therapies, demographic data, depression level, health care utilization, lifestyle changes, medical history, sleep data	PHQ-9	K-fold
Rule Inducer, F, DT, SVM Closed	EEG data	PHQ-9	LOOCV
LogR Closed	Activity data, behavioural data, circadian rhythms, demographic data, emotional data, sleep data	CIDI	External validation
Boost, RF, Closed	Activity data, heart rate data, location, sleep	PHQ-9	LOOCV
	VM, ZeroRNN, RFOpenost, Ensemble I, GP, LinR, AC, RF, RRClosedRFClosedGBoostOpen, DNN, RFOpen, DNN, RFOpenLSTMClosedLSTMClosedRFClosedRFClosedgR, RF, RFClosedgR, RF, SVMClosedSSO, RRClosednble model, bgR, RFClosednble model, c, LogR, RF, SVMClosedGBoostClosedSO, RRClosednble model, c, LogR, RF, ClosedClosednble model, c, LogR, RF, ClosedClosednble model, c, LogR, RF, ClosedClosedLogRClosed	VM, ZeroROpenActivity dataNN, RFOpenActivity datast, Ensemble (, GP, LinR, AC, RF, RRClosedActivity data, alcohol, drug, and caffeine consumption, anxiety level, EDA data, location, mod status, sleep dataRFClosedActivity data, smartphone usage data, social interaction, stress levelRFClosedActivity data, sleep dataGBoostOpenActivity data, DNN, RFOpenActivity data, DNN, RFOpenActivity dataLSTMClosedActivity dataLSTMClosedActivity dataRFClosedActivity dataN, LSTMOpenActivity dataN, LSTMOpenActivity dataRFClosedActivity data, heart rate data, light exposure, sleep datagR, RF, SVMClosedActivity data, heart rate data, light exposure, sleep datagR, RF, SVMClosedActivity data, depression level, heart rate data, location, sleep datahole model, ogR, RFClosedActivity data, heart rate data, sleep datahole model, ogR, RF, ClosedCurrent therapies, demographic data, depression level, health care utilization, lifestyle changes, medical history, sleep datahole model togR, RF, DT, SVMClosedEEG dataLogRClosedEEG dataActivity data, behavioural data, circadian rhythms, demographic data, emotional data, sleep data	VM, ZeroR MADRS NN, RF Open Activity data, alcohol, drug, and caffeine MADRS sst, Ensemble, GP, LinR, AC, RF, RR Closed Activity data, alcohol, drug, and caffeine HDRS RF Closed Activity data, sleep data, smartphone usage data, social interaction, stress level PHQ-9 GBoost Open Activity data, mood status, sleep data PHQ-9 GBoost Open Activity data MADRS , DNN, RF Open Activity data MADRS LSTM Closed Activity data, audio data BDI-II, STAI LSTM Closed Activity data, depression level, light exposure, sleep data MADRS N, LSTM Open Activity data, heart rate data, light exposure, sleep data MADRS RF Closed Activity data, heart rate data, light exposure, sleep data Clinician assessment gR, RF, SVM Closed Activity data, heart rate data, light exposure, sleep data DSM-5, QIDS nble model, gR, RF, Closed Activity data, heart rate data, sleep data DSM-5, QIDS nble model, gR, RF, SVM Closed Activity data, heart rate data, sleep data DSM-5, QIDS

Narziev ³⁶	Gear S3	Wrist	Detection	Classification	RF	Closed	Activity data, light exposure, food intake, heart rate data, mood status, sleep data, smartphone use data, social interaction	BDI-II, DSM-5, PHQ-9	Hold-out, K-fold
Nguyen ³⁷	Actiwatch AW4	Wrist	Detection	Classification	CNN, Ensemble model	Open	Activity data	MADRS	Hold-out, K-fold
Nishimura ³⁸	Fitbit Charge 3	Wrist	Detection	Classification	LightGBM	Closed	Activity data, behavioural data, heart rate data, sleep data, weather data	DAMS	K-fold
Opoku Asare ³⁹	Oura Ring	Finger	Detection	Classification	KNN, LogR, RF, SVM, XGBoost	Closed	Activity data, heart rate data, location, mood status, sleep data, smartphone usage data	DASS	Nested, time-series
Pacheco- Gonzalez ⁴⁰	Actiwatch AW4	Wrist	Detection	Classification	DT, KNN, NB, RF, SVM	Open	Activity data	MADRS	NR
Pedrelli ⁴¹	Empatica E4	Wrist	Detection	Regression	Ensemble model	Closed	Activity data, EDA data, heart rate data, location, sleep data, smartphone usage data, social interaction, weather data	HDRS	Hold-out, K-fold
Price ⁴²	Actiwatch AW4	Wrist	Detection	Classification	RF	Open	Activity data	MADRS	Nested
Qian ⁴³	Ruputer	Wrist	Detection	Classification	SVM	Closed	Activity data	NR	Hold-out
Raihan ⁴⁴	Actiwatch AW4	Wrist	Detection	Classification	AdaBoost, ANN, RF	Open	Activity data, demographic data	MADRS	K-fold
Rodríguez-Ruiz ⁴⁵	Actiwatch AW4	Wrist	Detection	Classification	RF	Open	Activity data	MADRS	Hold-out
Rodríguez-Ruiz ⁴⁶	Actiwatch AW4	Wrist	Detection	Classification	RF	Open	Activity data	MADRS	Hold-out
Rodríguez-Ruiz ⁴⁷	Actiwatch AW4	Wrist	Detection	Classification	RF	Open	Activity data	BPRS, MADRS	K-fold
Rykov ⁴⁸	Fitbit Charge HR, Fitbit Charge 2	Wrist	Detection	Classification, regression	XGBoost	Closed	Activity data, circadian rhythms, sleep data	PHQ-9	K-fold
Shah ⁴⁹	Galaxy watch	Wrist	Detection	Regression	AdaBoost, elasticNet, GB, PR, RF, SVM, VR	Closed	Activity data, anxiety level, depression level, dietary data, heart rate data, sleep data, stress level	PHQ-9	Nested
Tazawa ⁵⁰	Silmee W20	Wrist	Detection	Classification, regression	XGBoost	Closed	Activity data, heart rate data, skin temperature, sleep data, UV light exposure	HDRS	K-fold
Valenza ⁵¹	PSYCHE	Chest	Detection	Classification	MLP	Closed	ECG data	DSM-IV, QIDS, YMRS	Hold-out, K-fold
Wang ⁵²	Microsoft Band 2	Wrist	Detection	Regression	LinR, LogR	Closed	Activity data, heart rate data, location, sleep data, smartphone usage data, social interaction	PHQ-4, PHQ-8	K-fold
Xu ⁵³	Fitbit Flex 2	Wrist	Prediction	Classification	AdaBoost	Closed	Activity data, location, sleep data, smartphone usage data, social interaction	BDI-II	External validation, Hold-out, LOOCV
Zanella-Calzada ⁵⁴	Actiwatch AW4	Wrist	Detection	Classification	RF	Open	Activity data	MADRS	Hold-out

- 1 Adamczyk, J. & Malawski, F. Comparison of Manual and Automated Feature Engineering for Daily Activity Classification in Mental Disorder Diagnosis. *Computing and Informatics* **40**, 850–879-850–879 (2021).
- 2 Ahmed, A. *et al.* Investigating the Feasibility of Assessing Depression Severity and Valence-Arousal with Wearable Sensors Using Discrete Wavelet Transforms and Machine Learning. *Information* **13**, 406 (2022).

- Aminifar, A., Rabbi, F., Pun, V. K. I. & Lamo, Y. Monitoring Motor Activity Data for Detecting Patients' Depression Using Data Augmentation and Privacy-Preserving Distributed Learning. *Annu Int Conf IEEE Eng Med Biol Soc* **2021**, 2163-2169, doi:10.1109/embc46164.2021.9630592 (2021).
- 4 Bai, R. *et al.* Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. *JMIR Mhealth Uhealth* **9**, e24365, doi:10.2196/24365 (2021).
- 5 Chikersal, P. *et al.* Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection. *ACM Trans. Comput.-Hum. Interact.* **28**, Article 3, doi:10.1145/3422821 (2021).
- 6 Cho, C. H. *et al.* Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. *Journal of medical Internet research* **21**, e11029, doi:10.2196/11029 (2019).
- 7 Choi, J. G., Ko, I. & Han, S. Depression Level Classification Using Machine Learning Classifiers Based on Actigraphy Data. *IEEE Access* 9, 116622-116646, doi:10.1109/ACCESS.2021.3105393 (2021).
- 8 Choi, J. *et al.* Depressed Mood Prediction of Elderly People with a Wearable Band. *Sensors (Basel, Switzerland)* **22**, doi:10.3390/s22114174 (2022).
- 9 Coutts, L. V., Plans, D., Brown, A. W. & Collomosse, J. Deep learning with wearable based heart rate variability for prediction of mental and general health. *J Biomed Inform* **112**, 103610, doi:10.1016/j.jbi.2020.103610 (2020).
- 10 Dai, R. *et al.* Multi-Task Learning for Randomized Controlled Trials: A Case Study on Predicting Depression with Wearable Data. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **6**, Article 50, doi:10.1145/3534591 (2022).
- 11 Espino-Salinas, C. H. *et al.* Two-Dimensional Convolutional Neural Network for Depression Episodes Detection in Real Time Using Motor Activity Time Series of Depresjon Dataset. **9**, 458 (2022).
- 12 Frogner, J. I. *et al.* in *Proceedings of the 4th International Workshop on Multimedia for Personal Health & amp; Health Care* 9–15 (Association for Computing Machinery, Nice, France, 2019).
- 13 Fukuda, S. et al. in 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). 1-6.
- Galván-Tejada, C. E. *et al.* Depression Episodes Detection in Unipolar and Bipolar Patients: A Methodology with Feature Extraction and Feature Selection with Genetic Algorithms Using Activity Motion Signal as Information Source. *Mobile Information Systems* 2019, 8269695, doi:10.1155/2019/8269695 (2019).
- 15 Garcia-Ceja, E. *et al.* in *Proceedings of the 9th ACM Multimedia Systems Conference* 472–477 (Association for Computing Machinery, Amsterdam, Netherlands, 2018).
- 16 Garcia-Ceja, E. *et al.* in 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS). 316-321.
- 17 Ghandeharioun, A. et al. in 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). 325-332.
- 18 Griffiths, C. *et al.* Investigation of physical activity, sleep, and mental health recovery in treatment resistant depression (TRD) patients receiving repetitive transcranial magnetic stimulation (rTMS) treatment. *J Affect Disord Rep* **8**, 100337, doi:10.1016/j.jadr.2022.100337 (2022).

- 19 Horwitz, A. G. *et al.* Using machine learning with intensive longitudinal data to predict depression and suicidal ideation among medical interns over time. *Psychol Med*, 1-8, doi:10.1017/s0033291722003014 (2022).
- Jacobson, N. C., Weingarden, H. & Wilhelm, S. Digital biomarkers of mood disorders and symptom change. *npj Digital Medicine* **2**, 3, doi:10.1038/s41746-019-0078-0 (2019).
- Jakobsen, P. *et al.* Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls. *PLoS One* **15**, e0231995, doi:10.1371/journal.pone.0231995 (2020).
- Jin, J. *et al.* Attention-Block Deep Learning Based Features Fusion in Wearable Social Sensor for Mental Wellbeing Evaluations. *IEEE Access* **8**, 89258-89268, doi:10.1109/ACCESS.2020.2994124 (2020).
- Jung, D., Kim, J. & Mun, K. R. Identifying Depression in the Elderly Using Gait Accelerometry. *Annu Int Conf IEEE Eng Med Biol Soc* **2022**, 4946-4949, doi:10.1109/embc48229.2022.9871877 (2022).
- 24 Kim, H. *et al.* Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. *JMIR Mhealth Uhealth* **7**, e14149, doi:10.2196/14149 (2019).
- 25 Kulam, S. Time-Series Classification with Uni-Dimensional Convolutional Neural Networks: An Experimental Comparison with Long Short-Term Memory Networks, (2019).
- 26 Kumar, A., Sangwan, S. R., Arora, A. & Menon, V. G. Depress-DCNF: A deep convolutional neuro-fuzzy model for detection of depression episodes using IoMT. *Applied Soft Computing* **122**, 108863, doi:<u>https://doi.org/10.1016/j.asoc.2022.108863</u> (2022).
- 27 Lee, H. J. *et al.* Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study. *Psychol Med*, 1-9, doi:10.1017/s0033291722002847 (2022).
- 28 Llamocca, P., López, V., Santos, M. & Čukić, M. Personalized Characterization of Emotional States in Patients with Bipolar Disorder. *Mathematics* **9**, doi:10.3390/math9111174 (2021).
- 29 Lu, J. *et al.* Joint Modeling of Heterogeneous Sensing Data for Depression Assessment via Multi-task Learning. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **2**, Article 21, doi:10.1145/3191753 (2018).
- 30 Mahendran, N. *et al.* Sensor-Assisted Weighted Average Ensemble Model for Detecting Major Depressive Disorder. *Sensors (Basel, Switzerland)* **19**, doi:10.3390/s19224822 (2019).
- 31 Makhmutova, M. *Predicting changes in depression using person-generated health data* Master degree thesis, Ecole polytechnique f ed erale de Lausanne, (2021).
- 32 Makhmutova, M. *et al.* Predicting Changes in Depression Severity Using the PSYCHE-D (Prediction of Severity Change-Depression) Model Involving Person-Generated Health Data: Longitudinal Case-Control Observational Study. *JMIR Mhealth Uhealth* **10**, e34148, doi:10.2196/34148 (2022).
- 33 Mallikarjun, H. M. & Manimegalai, P. Manoglanistara Emotional Wellness Phases Prediction of Adolescent Female Students by using Brain Waves. *Current Signal Transduction Therapy* **15**, 315-323, doi:10.2174/1574362414666190703151853 (2020).
- 34 Minaeva, O. *et al.* Screening for Depression in Daily Life: Development and External Validation of a Prediction Model Based on Actigraphy and Experience Sampling Method. *Journal of medical Internet research* **22**, e22634, doi:10.2196/22634 (2020).

- 35 Mullick, T., Radovic, A., Shaaban, S. & Doryab, A. Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning-Based Exploratory Study. *JMIR Form Res* **6**, e35807, doi:10.2196/35807 (2022).
- 36 Narziev, N. *et al.* STDD: Short-Term Depression Detection with Passive Sensing. *Sensors (Basel, Switzerland)* **20**, doi:10.3390/s20051396 (2020).
- 37 Nguyen, D.-K., Chan, C.-L., Li, A.-H. A. & Phan, D.-V. in *2021 5th International Conference on Medical and Health Informatics* 7–12 (Association for Computing Machinery, Kyoto, Japan, 2021).
- 38 Nishimura, Y. et al. in Sensor-and Video-Based Activity and Behavior Computing 1-26 (Springer, 2022).
- Asare, K. O. *et al.* Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis. *Pervasive and Mobile Computing* **83**, 101621, doi:<u>https://doi.org/10.1016/j.pmcj.2022.101621</u> (2022).
- 40 Pacheco-González, S. L. *et al.* Evaluation of Five Classifiers for Depression Episodes Detection. *Res. Comput. Sci.* **148**, 129-138, doi:10.13053/rcs-148-10-11 (2019).
- 41 Pedrelli, P. *et al.* Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors. *Frontiers in psychiatry* **11**, 584711, doi:10.3389/fpsyt.2020.584711 (2020).
- 42 Price, G. D. *et al.* An unsupervised machine learning approach using passive movement data to understand depression and schizophrenia. *Journal of affective disorders* **316**, 132-139, doi:10.1016/j.jad.2022.08.013 (2022).
- 43 Qian, K. *et al.* in *Proceedings of the Third International Symposium on Image Computing and Digital Medicine* 71–75 (Association for Computing Machinery, Xi'an, China, 2019).
- 44 Raihan, M., Bairagi, A. K. & Rahman, S. in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). 1-5.
- 45 Rodríguez-Ruiz, J. G. *et al.* Classification of Depressive Episodes Using Nighttime Data; a Multivariate and Univariate Analysis. *Program. Comput. Softw.* **46**, 689–698, doi:10.1134/s0361768820080198 (2020).
- 46 Rodríguez-Ruiz, J. G. *et al.* Comparison of Night, Day and 24 h Motor Activity Data for the Classification of Depressive Episodes. *Diagnostics (Basel)* **10**, doi:10.3390/diagnostics10030162 (2020).
- 47 Rodríguez-Ruiz, J. G. *et al.* Classification of Depressive and Schizophrenic Episodes Using Night-Time Motor Activity Signal. *Healthcare* (*Basel*) **10**, doi:10.3390/healthcare10071256 (2022).
- 48 Rykov, Y. *et al.* Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling. *JMIR Mhealth Uhealth* **9**, e24872, doi:10.2196/24872 (2021).
- 49 Shah, R. V. *et al.* Personalized machine learning of depressed mood using wearables. *Translational Psychiatry* **11**, 338, doi:10.1038/s41398-021-01445-0 (2021).
- 50 Tazawa, Y. *et al.* Evaluating depression with multimodal wristband-type wearable device: screening and assessing patient severity utilizing machine-learning. *Heliyon* **6**, e03274, doi:10.1016/j.heliyon.2020.e03274 (2020).
- 51 Valenza, G. *et al.* Characterization of depressive States in bipolar patients using wearable textile technology and instantaneous heart rate variability assessment. *IEEE J Biomed Health Inform* **19**, 263-274, doi:10.1109/jbhi.2014.2307584 (2015).

- 52 Wang, R. *et al.* Tracking Depression Dynamics in College Students Using Mobile Phone and Wearable Sensing. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **2**, Article 43, doi:10.1145/3191775 (2018).
- 53 Xu, X. *et al.* Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* **3**, Article 116, doi:10.1145/3351274 (2019).
- 54 Zanella-Calzada, L. A. *et al.* Feature Extraction in Motor Activity Signal: Towards a Depression Episodes Detection in Unipolar and Bipolar Patients. *Diagnostics (Basel)* **9**, doi:10.3390/diagnostics9010008 (2019).

Supplementary Table 3: Reviewers' judgments about each domain in "risk of bias" and "applicability concerns" for each included study. D: Domain; Plus inside a green circle: low risk, Question mark inside yellow circle: Some concerns; Minus inside red circle: high risk.

	Risk of Bias						
Study ID	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>			
Adamczyk 2021	+	+	+	+			
Ahmed 2022	+	+	+	+			
Aminifar 2021	?	•	+	+			
Bai 2021	•	?	+	•			
Chikersal 2021	+	•	+	+			
Cho 2019	?	+	+	+			
Choi 2021a	+	+	+	+			
Choi 2022b		+	?				
Coutts 2020	+	+	+				
Dai 2022	•	+	+	+			
Espino-Salinas 2022	•	+	+	+			
Frogner 2019	?	+	+	•			
Fukuda 2020	+	+	+	+			
Galvan-Tejada 2019	+	+	+	+			
Garcia-Ceja 2018a	+	+	+	+			
Garcia-Ceja 2018b	+	+	+	+			
Ghandeharioun 2017	•	+	-	+			
Griffiths 2022	•	+	+	+			
Horwitz 2022	?	+	+				
Jacobson 2019	-	+	+	+			
Jakobsen 2020	+	+	+	+			
Jin 2020			+				
lung 2022	-	+	?	+			
Kim 2019	-	+	+				
Kulam 2019	•	+	+	+			
(umar 2022		+	+	+			
Lee 2022	+	+	+	+			
		•	•	•			

<u>D1</u>	<u>D2</u>	<u>D3</u>
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
	+	+
+	+	÷
+	+	+
+	+	+
+	+	+
+	+	+
+	•	+
+	•	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
+	+	+
4	_	e

+

+	Low risk
?	Some concerns
	High risk

D1	Participant
D2	Index test
D3	Reference Standard
D4	Analysis

Llamocca 2021	~	+	+	-	?	+	+
Lu 2018	~	+	+	+	?	+	+
Mahendran 2019	?		+	+	?	+	+
Makhmutova 2021	?	•	+	+	•	+	+
Makhmutova 2022	?	•	+	+	•	+	+
Mallikarjun 2020		+	+	-	+	+	+
Minaeva 2020	Ŧ	+	+	+	+	+	+
Mullick 2022		+	+	+	•	+	+
Narziev 2020		•	•	+	•	+	+
Nguyen 2021		+	+	+	•	+	+
Nishimura 2022	?	+	+	+	+	+	+
Opoku Asare 2022		+	•	+	•	+	+
Pacheco-Gonzalez 2019	?	+	+	?	•	+	+
Pedrelli 2020	?	+	+	+	•	+	+
Price 2022	Ŧ	+	+	+	+	+	+
Qian 2019		+	?	+	•	+	?
Raihan 2021		+	+	+	+	•	+
Rodríguez-Ruiz 2020a		+	+	•	•	+	+
Rodríguez-Ruiz 2020b		+	+	-	+	•	+
Rodríguez-Ruiz 2022	+	+	+	+	•	•	+
Rykov 2021		+	+	+	•	+	+
Shah 2021		+	+	+	•	+	+
Tazawa 2020	+	+	+	+	•	+	+
Valenza 2015		+	+	+	•	+	+
Wang 2018	?	+	+	+	•	+	+
Xu 2019	+	+	+	+	•	+	•
Zanella-Calzada 2019		+	+	+	+	+	+

total n 19 8 7 5 4 4 3 3	Total N 105,716 21,353 28,116 6,131 6,181 22,996	Range 0.64-1.00 0.56-0.93 0.61-0.97 0.76-1.00 0.610.76	Mean (%) (95% CI) 0.85 (0.79-0.90) 0.76 (0.68-0.84) 0.88 (0.82-0.94)	Tau ²	Q (p-value) 5119.9 (<0.001) 603.7 (<0.001)	I ² (%) 99.6	Q (p-value)
8 7 5 4 4 3	21,353 28,116 6,131 6,181	0.56-0.93 0.61-0.97 0.76-1.00	0.76 (0.68-0.84)		· /		
8 7 5 4 4 3	21,353 28,116 6,131 6,181	0.56-0.93 0.61-0.97 0.76-1.00	0.76 (0.68-0.84)		· /		
7 5 4 4 3	28,116 6,131 6,181	0.61-0.97 0.76-1.00	· · · · ·		602.7(<0.001)	00.0	
4 4 3	6,131 6,181	0.76-1.00	0.88 (0.82-0.94)		005.7 (<0.001)	98.8	
4 4 3	6,181				2712.7 (<0.001)	99.8	
4 3		0 ((0 70	0.85 (0.74-0.92)		374.9 (<0.001)	98.9	
3	22,996	0.66-0.78	0.79 (0.69-0.88)		8.9 (0.081)	66.2	
-	,//0	0.68-0.99	0.86 (0.78-0.93)		1272.0 (<0.001)	99.8	
2	5,696	0.66-0.93	0.79 (0.68-0.88)	0.04	46.8 (<0.001)	95.7	27.94 (-0.001)
3	1,337	0.73-0.96	0.85 (0.71-0.95)	0.04	111.5 (<0.001)	98.2	37.84 (<0.001)
2	139	0.88-0.98	0.99 (0.92-1.00)		6.3 (0.173)	84.0	
2	104	0.71-0.84	0.86 (0.72-0.96)		2.5 (0.321)	59.2	
2	2,141	0.58-0.66	0.81 (0.70-0.91)		2.9 (0.246)	65.7	
2	2,141	0.64-0.69	0.85 (0.74-0.93)		1.2 (0.548)	15.9	
2	11,291	0.84-1.00	0.85 (0.73-0.94)		1335.8 (<0.001)	99.9	
2	11,192	0.60-0.85	0.83 (0.73-0.91)		524.0 (<0.001)	99.8	
73	175,215	0.56-1.00	0.89 (0.82-0.93)	26	8623.9 (<.001)	99.2	0.33 (0.567)
2	73,988	0.67-0.90	0.81 (0.30-0.98)	2.0	345.7 (<.001)	99.7	0.55 (0.507)
31	53,617	0.65-1.00	0.91 (0.83-0.96)		2083.8 (<0.001)	98.6	
16	140,123	0.63-0.92	0.80 (0.57-0.92)	2.5	4791.6 (<0.001)	99.7	2.17 (0.34)
7	1,813	0.75-0.99	0.91 (0.55-0.99)		115.9 (<0.001)	94.8	
40	72,137				2986.5 (<0.001)		
22			· · · · ·	2.8	3738.9 (<0.001)		1.05 (0.592)
10	74,356	0.63-0.90	0.81 (0.40-0.96)		312.5 (<0.001)	97.1	
30	54,338	0.65-1.00	0.91 (0.83-0.96)		2159.8 (<0.001)	98.7	
28	91,393	0.56-0.99	0.85 (0.68-0.93)	2.6	7346.5 (<0.001)	99.6	1.07 (0.587)
17	103,472	0.64-1.00	0.88 (0.70-0.96)		3601.7 (<0.001)	99.6	
	2 31 16 7 40 22 10 30 28	2 73,988 31 53,617 16 140,123 7 1,813 40 72,137 22 102,610 10 74,356 30 54,338 28 91,393	2 73,988 0.67-0.90 31 53,617 0.65-1.00 16 140,123 0.63-0.92 7 1,813 0.75-0.99 40 72,137 0.56-1.00 22 102,610 0.67-0.99 10 74,356 0.63-0.90 30 54,338 0.65-1.00 28 91,393 0.56-0.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Supplementary Table 4: Pooled mean estimates of highest accuracy by several factors. BDI-II: Beck Depression Inventory-II; CI Confidence interval; DSM: Diagnostic and Statistical Manual of Mental Health; HDRS: Hamilton Depression Rating Scale; MADRS: Montgomery-Asberg Depression Rating Scale; NA: Not applicable; PHQ-9: Patient Health Questionnaire-9; WD: Wearable device

All studies	75	249,203	0.56-1.00	0.89 (0.83-0.93)	2.55	14657.1 (<0.001)	99.5	NA
DSM	3	4,635	0.67-1.00	0.97 (0.80-1.00)		250.0 (<0.001)	99.2	
HDRS	4	1,586	0.76-0.99	0.92 (0.51-0.99)		100.4 (<0.001)	97.0	
BDI-II	12	14,750	0.56-0.88	0.66 (0.16-0.95)	3.0	79.9 (<0.001)	86.2	3.60 (0.462)
PHQ-9	19	99,948	0.68-0.97	0.84 (0.58-0.95)		3483.9 (<0.001)	99.5	
MADRS	30	52,312	0.65-1.00	0.91 (0.80-0.96)		1856.7 (<0.001)	98.4	

Pooled mean Number Sample Accuracy Test for subgroup **Heterogeneity measures** of studies size (%) accuracy differences Groups Total Total Mean (%) Q 0 Tau² Range $I^{2}(\%)$ (95% CI) (p-value) (p-value) Ν n Algorithms Random forest 9 9,094 0.61-0.99 0.64 (0.55-0.72) 2231.2 (<0.001) 99.6 Convolutional neural network 4 1,040 0.71-0.77 0.70 (0.59-0.81) 1.3 (0.535) 0.0 1,291 0.29-0.70 0.63 (0.54-0.72) 98.3 Logistic regression 4 177.2 (<0.001) Support vector machine 3 681 0.59-0.75 0.67 (0.57-0.78) 15.4 (<0.001) 87.0 XGBoost 3 0.20-0.74 0.03 99.4 1,321 0.55(0.45-0.64)317.2 (<0.001) 96.55 (<0.001) Ensemble model 3 22,546 0.62-0.86 0.78 (0.67-0.90) 330.4 (<0.001) 99.4 2 20,83 0.33-0.65 99.7 Multilayer perceptron 0.67 (0.58-0.77) 363.6 (<0.001) 2 Deep neural network 110 0.65-0.67 0.65 (0.52-0.78) 0.00 (0.980) 0.0 2 AdaBoost 94.3 157 0.76-0.97 0.96 (0.83-1.00) 17.5 (<0.001) Wearable devices Actiwatch 18 0.62-0.99 0.80 (0.70-0.87) 907.9 (<0.001) 98.1 10,451 0.9 3.71 (0.054) Fitbit 8 22,816 0.45-0.86 0.63 (0.45-0.77) 134.4 (<.0001) 94.8 Data sources WD-based 18 14.579 0.54-0.99 0.72 (0.60-0.81) 98.7 1306.4 (<0.001) WD-based & self-reported 14 26,766 0.20-0.97 0.64 (0.46-0.78) 1.0 1556.9 (<0.001) 99.2 0.84 (0.657) WD-based & non-WD based 6 879 0.45-0.76 0.64 (0.33-0.87) 88.2 42.5 (<0.001) Data types 0.59-0.99 Activity data 16 10,731 0.75 (0.62-0.84) 1011.4 (<0.001) 98.5 Activity data & others 15 4,194 0.45-0.97 0.70 (0.55-0.81) 0.9 168.2 (<0.001) 91.7 2.55 (0.279) Non-activity data 8 27,399 0.20-0.72 0.57 (0.36-0.75) 99.5 1551.5 (<0.001) **Reference standards** MADRS 17 9,138 0.62-0.99 0.80 (0.68-0.88) 849.9 (<0.001) 98.1 6.82 (0.078) PHQ-9 10 26,402 0.20-0.75 0.56 (0.37-0.74) 1528.4 (<0.001) 99.4 0.9 BDI-II 4 2,327 0.45-0.76 0.56 (0.26-0.82) 18.6 (0.064) 83.8 DSM 0.55(0.24-0.82)2 1,690 0.61-0.65 91.8 (<0.001) 98.9 39 98.9 NA All studies 44,846 0.20-0.99 0.70 (0.62-0.78) 0.9 3322.7 (<0.001)

Supplementary Table 5: Pooled mean estimates of lowest accuracy by several factors. BDI-II: Beck Depression Inventory-II; CI Confidence interval; DSM: Diagnostic and Statistical Manual of Mental Health; MADRS: Montgomery-Asberg Depression Rating Scale; NA: Not applicable; PHQ-9: Patient Health Questionnaire-9; WD: Wearable device

Crowna	Number of studies	Sample size	Sensitivity (%)	Pooled mean sensitivity		Heterogeneity measu	ires	Test for subgroup differences
Groups	Total n	Total N	Range	Mean (%) (95% CI)	Tau ²	Q (p-value)	I ² (%)	Q (p-value)
Algorithms								
Random forest	17	19,116	0.61-0.99	0.79 (0.73-0.85)		2971.1 (<0.001)	99.5	
XGBoost	6	5,799	0.65-0.91	0.80 (0.74-0.87)		350.2 (<0.001)	98.6	
Logistic regression	5	3,435	0.60-0.90	0.79 (0.72-0.86)		149.7 (<0.001)	97.3	
Convolutional neural network	4	2,022	0.65-0.99	0.83 (0.73-0.94)		51.4 (<0.001)	94.2	
Support vector machine	4	2,548	0.53-0.89	0.74 (0.66-0.82)	0.02	64.0 (<0.001)	95.3	24.05 (0.002)
Ensemble model	3	4,771	0.55-0.92	0.88 (0.80-0.96)		750.0 (<0.001)	99.7	
Decision tree	3	2,400	0.74-0.92	0.70 (0.62-0.78)		10.3 (<0.001)	80.5	
AdaBoost	2	56	0.82-1.00	0.96 (0.82-1.00)		6.2 (0.046)	83.8	
Deep neural network	2	40	0.57-0.82	0.78 (0.60-0.96)		3.5 (0.176)	71.2	
Aims of AI								
Detection	56	45,943	0.53-1.00	0.88 (0.80-0.93)	2.2	2730.6 (<0.001)	98.0	0.71 (0.400)
Prediction	2	8,226	0.61-0.83	0.74 (0.27-0.96)	2.2	19.4 (<0.001)	94.8	0.71 (0.400)
Wearable devices								
Actiwatch	28	21,328	0.57-1.00	0.90 (0.81-0.95)	1.0	754.6 (<0.001)	96.4	2.44(0.110)
Fitbit	10	21,809	0.55-0.88	0.75 (0.51-0.90)	1.8	959.2 (<0.001)	99.1	2.44 (0.119)
Data sources								
WD-based	37	31,193	0.53-1.00	0.90 (0.82-0.95)		1889.9 (<0.001)	98.1	
WD-based & self-reported	15	14,456	0.55-1.00	0.77 (0.53-0.91)	2.2	819.7 (<0.001)	98.3	2.20 (0.332)
WD-based & non-WD based	6	8,520	0.74-0.90	0.84 (0.49-0.97)		11.5 (0.083)	56.6	
Data types								
Activity data	27	21,608	0.53-0.99	0.89 (0.80-0.94)		859.9 (<0.001)	97.0	
Activity data & others	20	16,370	0.60-1.00	0.80 (0.59-0.91)	2.2	761.7 (<0.001)	97.5	1.65 (0.437)
Non-activity data	11	16,191	0.55-1.00	0.91 (0.68-0.98)		809.9 (<0.001)	98.8	
Reference standards								
MADRS	27	20,870	0.57-1.00	0.89 (0.77-0.95)		712.6 (<0.001)	96.4	
PHQ-9	15	14,028	0.55-0.92	0.80 (0.50-0.94)	26	810.1 (<0.001)	98.3	2 04 (0 295)
BDI-II	8	7,551	0.60-0.82	0.74 (0.23-0.96)	2.6	37.4 (<0.001)	81.3	3.04 (0.385)
DSM	3	2,800	0.61-1.00	0.96 (0.79-1.00)		62.9 (<0.001)	96.8	
All studies	58	54,169	0.53-1.00	0.87 (0.79-0.92)	2.1	2925.3 (<0.001)	98.1	NA

Supplementary Table 6: Pooled mean estimates of highest sensitivity by several factors. BDI-II: Beck Depression Inventory-II; CI: Confidence interval; DSM: Diagnostic and Statistical Manual of Mental Health; MADRS: Montgomery-Asberg Depression Rating Scale; NA: Not applicable; PHQ-9: Patient Health Questionnaire-9; WD: Wearable device

Courses	Number of studies	Sample size	Sensitivity (%)	Pooled mean sensitivity	Не	eterogeneity measu	res	Test for subgroup differences
Groups	Total n	Total N	Range	Mean (%) (95% CI)	Tau ²	Q (p-value)	I ² (%)	Q (p-value)
Algorithms								
Random forest	9	3,628	0.39-0.98	0.58 (0.39-0.76)		339.9 (<0.001)	97.6	
Convolutional neural network	4	360	0.53-0.66	0.60 (0.35-0.80)		2.9 (0.574)	0.0	
Logistic regression	3	155	0.46-0.84	0.69 (0.42-0.87)		12.8 (0.005)	84.4	
Ensemble model	3	4,771	0.20-0.77	0.61 (0.33-0.84)	1.7	637.8 (<0.001)	99.7	2.56 (0.862)
Support vector machine	3	248	0.29-0.84	0.63 (0.36-0.84)		42.4 (<0.001)	95.3	
XGBoost	2	131	0.00-0.66	0.32 (0.05-0.80)		9.6 (0.008)	89.6	
Deep neural network	2	46	0.43-0.43	0.48 (0.22-0.76)		0.00 (1.00)	0.0	
Wearable devices								
Actiwatch	17	4,095	0.43-0.98	0.69 (0.52-0.82)	1.4	329.3 (<0.001)	95.1	4.22 (0.029)
Fitbit	5	4,711	0.00-0.66	0.35 (0.15-0.62)	1.4	524.7 (<0.001)	99.2	4.32 (0.038)
Data sources								
WD-based	17	7,853	0.00-0.98	0.64 (0.48-0.77)		527.7 (<0.001)	97.0	
WD-based & self-reported	9	4,823	0.20-0.91	0.51 (0.29-0.72)	1.3	554.0 (<0.001)	98.6	1.47 (0.480)
WD-based & non-WD based	4	339	0.66-0.84	0.73 (0.37-0.93)		13.1 (0.001)	77.1	
Data types								
Activity data	16	4,190	0.29-0.98	0.64 (0.47-0.79)		412.8 (<0.001)	96.4	
Activity data & others	11	1,794	0.00-0.91	0.61 (0.40-0.78)	1.4	88.6 (<0.001)	88.7	0.56 (0.755)
Non-activity data	3	7,031	0.20-0.79	0.50 (0.21-0.79)		1413.3 (<0.001)	99.9	
Reference standards								
MADRS	16	3,631	0.43-0.98	0.64 (0.49-0.79)		913.0 (<0.001)	98.4	
PHQ-9	6	4,836	0.00-0.84	0.39 (0.17-0.62)	0.05	1125.8 (<0.001)	99.6	
BDI-II	2	1,103	0.63-0.66	0.64 (0.31-0.97)	0.05	0.1 (0.945)	0.0	3.36 (0.340)
DSM	2	1,620	0.25-0.42	0.59 (0.27-0.92)		97.5 (<0.001)	99.0	
All studies	30	13,015	0.00-0.98	0.61 (0.49-0.72)	1.3	2109.6 (<0.001)	98.6	NA

Supplementary Table 7: Pooled mean estimates of lowest sensitivity by several factors. BDI-II: Beck Depression Inventory-II; CI: Confidence interval; DSM: Diagnostic and Statistical Manual of Mental Health; MADRS: Montgomery-Asberg Depression Rating Scale; NA: Not applicable; PHQ-9: Patient Health Questionnaire-9; WD: Wearable device

Crowns	Number of studies	Sample size	Specificity (%)	Pooled mean specificity	Н	eterogeneity measur	es	Test for subgroup differences
Groups	Total n	Total N	Range	Mean (%) (95% CI)	Tau ²	$Tau^{2} \qquad \begin{array}{c} Q \\ (p-value) \end{array} I^{2}(\%)$		Q (p-value)
Algorithms								
Random forest	16	86,012	0.60-1.00	0.86 (0.80-0.92)		7784.3 (<0.001)	99.8	
XGBoost	6	13,150	0.56-1.00	0.86 (0.79-0.94)		1977.2 (<0.001)	99.7	
Logistic regression	4	9,632	0.51-1.00	0.80 (0.72-0.87)		325.2 (<0.001)	99.1	
Convolutional neural network	4	3,775	0.81-1.00	0.86 (0.76-0.97)		24.8 (<0.001)	87.9	
Support vector machine	3	3,559	0.60-0.94	0.79 (0.71-0.88)	3.6	149.8 (<0.001)	98.7	16.02 (0.042)
Ensemble model	3	17,775	0.80-0.98	0.84 (0.75-0.93)		758.7 (<0.001)	99.7	
Decision tree	2	3,248	0.57-0.94	0.78 (0.69-0.87)		154.3 (<0.001)	99.4	
AdaBoost	2	86	0.96-0.97	1.00 (0.87-1.00)		0.02 (0.990)	0.0	
Deep neural network	2	64	0.84-0.91	0.92 (0.78-1.00)		0.57 (0.704)	0.0	
Aims of AI								
Detection	52	91,905	0.51-1.00	0.94 (0.88-0.97)	25	5572.4 (<0.001)	99.1	0.57 (0.452)
Prediction	2	65,671	0.74-0.91	0.84 (0.29-0.99)	3.5	139.0 (<0.001)	99.3	0.57 (0.452)
Wearable devices								
Actiwatch	28	31,265	0.56-1.00	0.95 (0.88-0.98)	3.9	1287.7 (<0.001)	97.9	0.25(0.556)
Fitbit	10	117,634	0.74-1.00	0.92 (0.68-0.98)	5.9	2603.1 (<0.001)	99.7	0.35 (0.556)
Data sources								
WD-based	37	39,267	0.51-1.00	0.95 (0.89-0.98)		1482.6 (<0.001)	97.6	
WD-based & self-reported	15	53,035	0.69-1.00	0.87 (0.61-0.96)	3.5	541.2 (<0.001)	97.4	1.57 (0.456)
WD-based & non-WD based	2	65,274	0.91-0.96	0.94 (0.52-1.00)		1.7 (0.433)	40.2	
Data types								
Activity data	27	31,706	0.56-1.00	0.95 (0.88-0.98)		1360.1 (<0.001)	98.1	
Activity data & others	16	72,911	0.51-1.00	0.89 (0.68-0.97)	3.5	5396.5 (<0.001)	99.7	1.11 (0.573)
Non-activity data	11	52,959	0.67-1.00	0.92 (0.65-0.99)		539.2 (<0.001)	98.1	
Reference standards								
MADRS	27	30,418	0.56-1.00	0.95 (0.85-0.98)		1118.0 (<0.001)	97.7	
PHQ-9	11	52,101	0.67-1.00	0.92 (0.56-0.99)	4.5	41.1 (<0.001)	83.0	0.72(0.966)
BDI-II	8	6,774	0.51-0.96	0.84 (0.21-0.99)	4.3	475.4 (<0.001)	97.9	0.73 (0.866)
DSM	3	1,744	0.74-1.00	0.96 (0.66-1.00)		113.3 (<0.001)	98.2	
All studies	54	157,576	0.51-1.00	0.93 (0.87-0.97)	3.4	11879.1 (<0.001)	99.6	NA

Supplementary Table 8: Pooled mean estimates of highest specificity by several factors. BDI-II: Beck Depression Inventory-II; CI: Confidence interval; DSM: Diagnostic and Statistical Manual of Mental Health; MADRS: Montgomery-Asberg Depression Rating Scale; NA: Not applicable; PHQ-9: Patient Health Questionnaire-9; WD: Wearable device

Groups	Number of studies	Sample size	Specificity (%)	Pooled mean specificity	Н	Ieterogeneity measures		Test for subgroup differences
	Total n	Total N	Range	Mean (%) (95% CI)	Tau ²	Q (p-value)	$I^{2}(%)$	Q (p-value)
Algorithms								
Random forest	8	5,433	0.42-0.99	0.70 (0.60-0.80)		1422.2 (<0.001)	99.5	
Convolutional neural network	4	679	0.78-0.82	0.72 (0.60-0.84)		1.1 (0.902)	0.0	
Ensemble model	3	17,775	0.65-0.90	0.80 (0.68-0.92)		352.4 (<0.001)	99.4	
XGBoost	2	166	0.57-0.79	0.69 (0.45-0.93)	0.03	6.7 (0.035)	85.0	27.22 (-0.001)
Logistic regression	2	58	0.62-0.74	0.61 (0.44-0.79)	0.03	1.2 (0.548)	17.4	27.23 (<0.001)
Support vector machine	2	391	0.62-0.87	0.72 (0.57-0.88)		15.6 (<0.001)	93.6	
AdaBoost	2	82	0.82-0.94	0.98 (0.81-1.00)		2.9 (0.235)	65.4	
Deep neural network	2	64	0.69-0.78	0.69 (0.53-0.84)		0.73 (0.947)	0.0	
Wearable devices								
Actiwatch	17	6,277	0.59-0.99	0.84 (0.74-0.90)	0.0	699.9 (<0.001)	97.7	4 (4 (0 021)
Fitbit	5	17,862	0.42-0.82	0.63 (0.42-0.80)	0.9	120.2 (<0.001)	96.7	4.64 (0.031)
Data sources								
WD-based	17	8,648	0.25-0.99	0.75 (0.62-0.85)	1.4	1745.2 (<0.001)	99.1	0.57(0.440)
WD-based & self-reported	9	17,956	0.42-0.94	0.66 (0.43-0.83)	1.4	134.9 (<0.001)	94.1	0.57 (0.449)
Data types								
Activity data	16	6,540	0.60-0.99	0.75 (0.73-0.90)		934.1 (<0.001)	98.9	
Activity data & others	8	1,808	0.40-0.94	0.68 (0.45-0.79)	1.0	104.5 (<0.001)	93.3	16.72 (0.083)
Non-activity data	3	18,306	0.25-0.65	0.56 (0.26-0.76)		562.5 (<0.001)	99.6	
Reference standards								
MADRS	16	5,428	0.59-0.99	0.77 (0.73-0.86)		902.0 (<0.001)	98.3	
PHQ-9	3	17,270	0.57-0.65	0.65 (0.49-0.77)	0.04	2.2 (0.512)	10.9	19.17 (0.101)
BDI-II	2	1,010	0.40-0.82	0.61 (0.42-0.76)		54.8 (<0.001)	98.2	
All studies	27	26,654	0.25-0.99	0.73 (0.62-0.82)	1.3	1909.2 (<0.001)	98.6	NA

Supplementary Table 9: Pooled mean estimates of lowest specificity by several factors. BDI-II: Beck Depression Inventory-II; CI: Confidence interval; MADRS: Montgomery-Asberg Depression Rating Scale; NA: Not applicable; PHQ-9: Patient Health Questionnaire-9; WD: Wearable device.

Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #
TITLE / ABSTRACT			
Title	1	Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.	1
Abstract	2	Abstract: See PRISMA-DTA for abstracts.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Clinical role of index test	D1	State the scientific and clinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for minimally acceptable test accuracy (or minimum difference in accuracy for comparative design).	3
Objectives	4	Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).	4
METHODS	•		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Definitions for data extraction	11	Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other characteristics (e.g. study design, clinical setting).	7
Risk of bias and applicability	12	Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.	7
Diagnostic accuracy	13	State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the	7
Jaynosiic accuracy	13	$\frac{1}{2}$	1

Supplementary Table 10: PRISMA-DTA Checklist. DTA: diagnostic test accuracy

measures		unit of assessment (e.g. per-patient, per-lesion).	
Synthesis of results	14	Describe methods of handling data, combining results of studies and describing variability between studies. This could include, but is not limited to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test readers, d) handling of indeterminate test results, e) grouping and comparing tests, f) handling of different reference standards	8

Supplementary Table 11: Search strategy

#	Searches	Results
1	exp Artificial Intelligence/	147056
2	"Artificial Intelligence".tw.	19111
3	exp Machine Learning/	45132
4	"Machine Learning".tw.	55796
5	exp Deep Learning/	11216
6	"Deep Learning".tw.	26682
7	"supervised learning".tw.	3641
8	"unsupervised learning".tw.	1715
9	"reinforcement learning".tw.	4214
10	"Decision tree".tw.	10101
11	"K-Nearest Neighbor*".tw.	3833
12	"Support vector machine*".tw.	20729
13	"Recurrent neural network*".tw.	3179
14	"convolutional neural network*".tw.	15429
15	"Artificial neural network*".tw.	14226
16	"Deep Neural Networks".tw.	3037
17	"Naïve Bayes".tw.	3
18	"Naive Bayes".tw.	2376
19	"Fuzzy Logic".tw.	2155
20	"K-Means".tw.	5574
21	"Random Forest".tw.	13210
22	"Long Short-Term Memory Networks".tw.	138
23	autoencoder.tw.	1529
24	"boltzmann machine".tw.	262
25	"deep belief network".tw.	252
26	"Gradient Boost*".tw.	3008
27	AdaBoost.tw.	963
28	"Multilayer Perceptron".tw.	1939
29	"Ensemble learning".tw.	1147
30	exp Wearable Electronic Devices/	16804
31	wearable*.tw.	19321
32	"smart watch*".tw.	182
33	smartwatch*.tw.	669
34	acceleromet*.tw.	19744
35	gyroscop*.tw.	2138
36	"inertial sensor".tw.	994
37	"inertial measurement unit*".tw.	2192
38	"fitness band*".tw.	20
39	"flexible band*".tw.	87
40	headband*.tw.	310
41	"head band*".tw.	72
42		630
43	"smart insole*".tw.	40
44	"Smart armband".tw.	1
45	bracelet*.tw.	599
46	Emotiv.tw.	80
47	NeuroSky.tw.	15

Database(s): Ovid MEDLINE(R) ALL 1946 to October 03, 2022.

48	Mindo.tw.	44
40 49	StarLab.tw.	2
-	EmSense.tw.	0
50 51	"B-Alert X24".tw.	0
-	Enobio.tw.	6
	BrainBit.tw.	0
		15
	NeuroSky.tw. Muse.tw.	568
	OpenBCI.tw.	14
	Neuroelectrics.tw.	2
	"G.tec nautilus".tw.	0
59	BioSemi.tw.	24
	"mBrainTrain".tw.	24
60 61		4
_		0
62		
		934
64	Garmin.tw.	213 23
	"Misfit shine".tw.	
	"Polar loop".tw. Jawbone.tw.	31 804
	Geneactiv.tw.	155
		71
	Empatica.tw.	0
	Amiigo.tw.	
	Actigraph.tw.	3259
	"Apple Watch".tw.	209
	Withings.tw.	58
74		525
	PowerWatch.tw.	0
76		4
77	Airofit.tw.	3
	Amazfit.tw.	5
	VivaLINK.tw.	0
80	"Wellue DuoEK".tw.	0
81	KardiaMobile.tw.	31
	"Philips Biosensor".tw.	1
	Biovitals.tw.	4
84	exp Mood Disorder/	103245
85	mood disorder*.tw.	230732
86	exp Depression/	141189
87	depress*.tw.	518893
88	exp Stress, Psychological/	147280
89	stress*.tw.	972389
90	exp Psychological Distress/	5901
91	distress*.tw.	148661
92	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29	233142
93	30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83	57765
	84 or 85 or 86 or 87 or 88 or 89 or 90 or 91	1709010
94		
	92 and 93 and 94	243

#	Searches	Results
1	exp Artificial Intelligence/	60065
2	"Artificial Intelligence".tw.	22589
3	exp Machine Learning/	307253
4	"Machine Learning".tw.	65455
5	exp Deep Learning/	24222
6	"Deep Learning".tw.	30305
7	"supervised learning".tw.	4168
8	"unsupervised learning".tw.	1992
9	"reinforcement learning".tw.	4871
10	"Decision tree".tw.	14273
11	"K-Nearest Neighbor*".tw.	4679
12	"Support vector machine*".tw.	25140
13		3588
14	"convolutional neural network*".tw.	18175
15	"Artificial neural network*".tw.	16577
16	"Deep Neural Networks".tw.	3396
17		17
18		3021
19	"Fuzzy Logic".tw.	2679
20	"K-Means".tw.	7642
21	"Random Forest".tw.	16726
22		308
23		1838
24		464
25		458
26		3835
27		1324
28		2237
29		1474
30	exp Wearable Electronic Devices/	6513
31	wearable*.tw.	21167
32		261
33		928
34		24388
35	gyroscop*.tw.	2214
36		1232
37		2475
38		24
39		268
40	headband*.tw.	518
41	"head band*".tw.	90
42		1024
43		180
44		1
44		936
45 46		191
40 47	NeuroSky.tw.	149

48	Mindo.tw.	146
49	StarLab.tw.	6
50	EmSense.tw.	0
51	"B-Alert X24".tw.	0
52	Enobio.tw.	14
53	BrainBit.tw.	0
54	NeuroSky.tw.	18
55	Muse.tw.	1223
56	OpenBCI.tw.	21
57	Neuroelectrics.tw.	42
58	"G.tec nautilus".tw.	0
59	BioSemi.tw.	95
60	"mBrainTrain".tw.	1
61	Cognionics.tw.	8
62	"CGX QUICK".tw.	0
63	Fitbit.tw.	1473
64	Garmin.tw.	300
65	"Misfit shine".tw.	17
66	"Polar loop".tw.	28
67	Jawbone.tw.	825
68	Geneactiv.tw.	216
69	Empatica.tw.	83
	Amiigo.tw.	3
	Actigraph.tw.	4977
72	"Apple Watch".tw.	319
73	Withings.tw.	91
74	Sensewear.tw.	1075
75	PowerWatch.tw.	0
76	"Samsung Galaxy Watch".tw.	4
77	Airofit.tw.	1
78	Amazfit.tw.	6
79		1
80	"Wellue DuoEK".tw.	0
81	KardiaMobile.tw.	52
82	"Philips Biosensor".tw.	2
83	Biovitals.tw.	3
84	exp Mood Disorder/	225092
85	mood disorder*.tw.	299011
86	exp Depression/	491389
87	depress*.tw.	575158
88	exp Stress, Psychological/	161707
89	stress*.tw.	1094813
90	exp Psychological Distress/	53522
91	distress*.tw.	184648
92	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29	372011
93	30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83	59418
94	84 or 85 or 86 or 87 or 88 or 89 or 90 or 91	2046432
95	92 and 93 and 94	353

96	limit 95 to (english language and yr="2015 -Current")	315	
97	limit 96 to exclude medline journals	68	

Database(s): APA PsycInfo 2002 to October Week 1 2022.

#	Searches	Results
1	exp Artificial Intelligence/	23781
2	"Artificial Intelligence".tw.	5106
3	exp Machine Learning/	12327
4	"Machine Learning".tw.	9660
5	exp Deep Learning/	0
6	"Deep Learning".tw.	2682
7	"supervised learning".tw.	1105
8	"unsupervised learning".tw.	728
9	"reinforcement learning".tw.	3117
10	"Decision tree".tw.	1395
11	"K-Nearest Neighbor*".tw.	577
12	"Support vector machine*".tw.	3176
13	"Recurrent neural network*".tw.	1081
14	"convolutional neural network*".tw.	1237
15	"Artificial neural network*".tw.	2025
	"Deep Neural Networks".tw.	647
17	· · · · · · · · · · · · · · · · · · ·	7
18		605
19	"Fuzzy Logic".tw.	846
20	"K-Means".tw.	1536
20	"Random Forest".tw.	1111
22	"Long Short-Term Memory Networks".tw.	27
23	autoencoder.tw.	328
23	"boltzmann machine".tw.	134
25	"deep belief network".tw.	65
26	"Gradient Boost*".tw.	215
20	AdaBoost.tw.	341
28	"Multilayer Perceptron".tw.	118
20	"Ensemble learning".tw.	152
30	exp Wearable Electronic Devices/	0
31	wearable Liectionic Devices/	2008
32	"smart watch*".tw.	45
33	smartwatch*.tw.	145
	acceleromet*.tw.	4211
35		108
36	"inertial sensor".tw.	53
37	"inertial measurement unit*".tw.	132
38	"fitness band*".tw.	2
39	"flexible band*".tw.	2
40	headband*.tw.	53
41	"head band*".tw.	3
42	wristband*.tw.	121
43	"smart insole*".tw.	1
44	"Smart armband".tw.	0
44		96
		30

46	Emotiv.tw.	28
47	NeuroSky.tw.	13
48	Mindo.tw.	0
49	StarLab.tw.	1
50		0
51	"B-Alert X24".tw.	0
52	Enobio.tw.	2
53		0
		13
55		301
56		2
57		1
58		0
59		15
60	"mBrainTrain".tw.	0
61	Cognionics.tw.	1
62	"CGX QUICK".tw.	0
63	Fitbit.tw.	245
64	Garmin.tw.	245
65	"Misfit shine".tw.	4
66	"Polar loop".tw.	4
67	Jawbone.tw.	
-	Geneactiv.tw.	23 21
		56
69 70		0
70	Amiigo.tw. Actigraph.tw.	1076
71	"Apple Watch".tw.	31
		7
73	Withings.tw.	
	PowerWatch.tw.	
76	"Samsung Galaxy Watch".tw. Airofit.tw.	0
77		-
78		1
79		0
80	"Wellue DuoEK".tw.	0
81	KardiaMobile.tw.	1
82	"Philips Biosensor".tw.	0
83		0
84	exp Mood Disorder/	55645
85	mood disorder*.tw.	155082
86	exp Depression/	9914
87	depress*.tw.	241746 0
88		
89	stress*.tw.	209395 0
90		
91	distress*.tw.	66195
92	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29	36989
93	30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83	7423

94	84 or 85 or 86 or 87 or 88 or 89 or 90 or 91	506879
95	92 and 93 and 94	53
96	6 limit 95 to (english language and yr="2015 -Current")	

CINHAL: Monday, October 3, 2022 4:10:26 PM

#	Query	Results
S91	Narrow by Language: - english	29
S90	Limiters - Date Published: 20150101-20221231	29
S89	S86 AND S87 AND S88	29
S88	(S78 OR S79 OR S80 OR S81 OR S82 OR S83 OR S84 OR S85)	487,103
S87	(S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40 OR S41 OR S42 OR S43 OR S44 OR S45 OR S46 OR S47 OR S48 OR S49 OR S50 OR S51 OR S52 OR S53 OR S54 OR S55 OR S56 OR S57 OR S58 OR S59 OR S60 OR S61 OR S62 OR S63 OR S64 OR S65 OR S66 OR S67 OR S68 OR S69 OR S70 OR S71 OR S72 OR S73 OR S74 OR S75 OR S76 OR S77)	13,841
S86	(S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29)	25,112
S85	AB distress	53,231
S84	MW distress	18,307
S83	AB stress	142,755
S82	MW stress	154,999
S81	AB depress*	148,574
S80	MW depression	138,522
S79	AB Mood Disorder*	87,122
S78	MW Mood Disorder	69,864
S77	AB Biovitals	2
S76	AB "Philips Biosensor"	0
S75	AB KardiaMobile	13
S74	AB "Wellue DuoEK"	0
S73	AB VivaLINK	0
S72	AB Amazfit	1
S71	AB Airofit	0
S70	AB "Samsung Galaxy Watch"	2

r		-
S69	AB PowerWatch	1
S68	AB Sensewear	237
S67	AB Withings	43
S66	AB "Apple Watch"	115
S65	AB Actigraph	1,779
S64	AB Amiigo	0
S63	AB Empatica	74
S62	AB Geneactiv	87
S61	AB Jawbone	230
S60	AB "Polar loop"	5
S59	AB "Misfit shine"	9
S58	AB Garmin	92
S57	AB Garmin	0
S56	AB Fitbit	459
S55	AB "CGX QUICK"	0
S54	AB Cognionics	0
S53	AB "mBrainTrain"	0
S52	AB BioSemi	4
S51	AB "G.tec nautilus"	0
S50	AB Neuroelectrics	46
S49	AB Mindo	0
S48	AB NeuroSky	3
S47	AB Emotiv	12
S46	AB bracelet*	254
S45	AB "armband*"	280
S44	AB "Smart armband*"	0
S43	AB "smart headband*"	0
S42	AB "smart insole*"	1
S41	AB wristband*	248
S40	AB "head band*"	21

S39	AB headband*	102
S38	AB "fitness band*"	12
S37	AB "inertial measurement unit*"	418
S36	AB "inertial sensor"	
S35	AB gyroscop	0
S34	AB acceleromet*	7,796
S33	AB smartwatch*	189
S32	AB "smart watch*"	59
S31	AB wearable*	3,069
S30	MW wearable devices	91
S29	AB "Ensemble learning"	103
S28	AB "Multilayer Perceptron"	195
S27	AB AdaBoost	131
S26	AB "Gradient Boost*"	564
S25	AB "deep belief network"	24
S24	AB "boltzmann machine"	10
S23	AB autoencoder	93
S22	AB "Long Short-Term Memory Networks"	15
S21	AB "Random Forest"	2,006
S20	AB "K-Means"	972
S19	AB "Fuzzy Logic"	207
S18	AB "Naive Bayes"	175
S17	AB "Naïve Bayes"	256
S16	AB "Deep Neural Networks"	147
S15	AB "Artificial neural network*"	1,195
S14	AB "convolutional neural network*"	1,359
S13	AB "Recurrent neural network*"	182
S12	AB "Support vector machine*"	2,429
S11	AB "K-Nearest Neighbor*"	412
S10	AB "Decision tree"	2,352

S9	AB "reinforcement learning"	
S8	AB "unsupervised learning"	107
S7	AB "supervised learning"	
S6	AB "deep Learning"	
S5	MW "deep Learning"	
S4	AB "Machine Learning"	
S3	MW "Machine Learning"	
S2	AB "Artificial Intelligence"	
S1	MW Artificial Intelligence	7,059

Database	Query	
Scopus	(TITLE-ABS-KEY ("Artificial Intelligence" OR "Machine Learning" OR "Deep Learning" OR "supervised learning" OR "unsupervised learning" OR "reinforcement learning" OR "Decision tree" OR "K-Nearest Neighbor*" OR "Support vector machine*" OR "Recurrent neural network*" OR "Convolutional neural network*" OR "Artificial neural network*" OR "Deep Neural Networks" OR "Naïve Bayes" OR "Naïve Bayes" OR "Fuzzy Logic" OR "K-Means" OR "Random Forest" OR "Long Short-Term Memory Networks" OR autoencoder OR "boltzmann machine" OR "deep belief network" OR "Gradient Boost*" OR adaboost OR "Multilayer Perceptron" OR "Ensemble learning")) AND (TITLE-ABS-KEY (wearable* OR "smart watch*" OR smartwatch* OR acceleromet* OR gyroscop* OR "inertial sensor" OR "inertial measurement unit*" OR "fitness band*" OR neurosky OR mindo OR starlab OR emsense OR "B-Alert X24" OR enobio OR brainbit OR muse OR openbci OR neuroelectrics OR "G.tec nautilus" OR biosemi OR "MBrainTrain" OR cognionics OR "CGX QUICK" OR fitbit OR garmin OR "Misfit shine" OR "Polar loop" OR Jawbone OR geneactiv OR empatica OR amigo OR actigraph OR "Apple Watch" OR withings OR sensewear OR powerwatch OR "Samsung Galaxy Watch" OR airofit OR amazfit OR vivalink OR "Wellue DuoEK" OR kardiamobile OR "Philips Biosensor" OR biovitals)) AND (TITLE-ABS- KEY (mood disorder* OR depress* OR stress* OR distress)) AND (LIMIT-TO (PUBYEAR , 2021) OR LIMIT-TO (PUBYEAR , 2020) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2018) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2015) AND (LIMIT-TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE , "cp") OR LIMIT-TO (DOCTYPE , "ch"))	775

IEEE Xplore	("Abstract":"Artificial Intelligence" OR "Abstract":"Machine Learning" OR "Abstract":"Deep Learning" OR "Abstract":"supervised learning" OR "Abstract":"unsupervised learning" OR "Abstract":"reinforcement learning" OR "Abstract":"Decision tree" OR "Abstract":"K-Nearest Neighbor" OR "Abstract":"Support vector machine" OR "Abstract":"Recurrent neural network" OR "Abstract":"convolutional neural network" OR "Abstract":"Artificial neural network" OR "Abstract":"Deep Neural Network" OR "Abstract":"Naive Bayes" OR "Abstract":"Deep Neural Network" OR "Abstract":"Naive Bayes" OR "Abstract":"Deep Neural Network" OR "Abstract":"Naive Bayes" OR "Abstract":"Deep Neural Network" OR "Abstract":"Long Short-Term Memory Networks" OR "Abstract":"ituzzy Logic" OR "Abstract":"K- Means" OR "Abstract":"Random Forest" OR "Abstract":"Long Short-Term Memory Networks" OR "Abstract":autoencoder OR "Abstract":"boltzmann machine" OR "Abstract":"Ensemble learning") AND ("Abstract":wearable OR "Abstract":"Ensemble learning") AND ("Abstract":smartwatch OR "Abstract":"smart watches" OR "Abstract":gyroscop OR "Abstract":acceleromet OR "Abstract":gyroscop OR "Abstract":inertial sensor" OR "Abstract":"Inertial measurement unit" OR "Abstract":"fitness band" OR "Abstract":"Inertial measurement unit" OR "Abstract":"fitness band" OR "Abstract":"Gradient OR "Abstract":headband OR "Abstract":"head band" OR "Abstract":wistband OR "Abstract":"Smart watches" OR "Abstract":"Gnent armband" OR "Abstract":"smart insole" OR "Abstract":"Gnent armband" OR "Abstract":"marinsole" OR "Abstract":"Gone OR "Abstract":"B-Alert X24" OR "Abstract":Cognonics OR "Abstract":"Reant":"Maive OR "Abstract":Cognonics OR "Abstract":"Gract":"Maindo StarLab OR "Abstract":BoiSem OR "Abstract":"Maindo StarLab OR "Abstract":BoiSem OR "Abstract":"Maindo StarLab OR "Abstract":Gramin OR "Abstract":"BrainTrain" OR "Abstract":Cognonics OR "Abstract":"BrainTrain" OR "Abstract":Cognonics OR "Abstract":"CGX QUICK" OR "Abstract":"Folar Ioop" OR "Abstract":BoiSem OR "Abstract":"Maine OR "Abst	35
	"Abstract":Biovitals) AND ("Abstract": mood disorder* OR "Abstract":depress* OR "Abstract":stress* or distress)	
ACM Digital library	[[Abstract: "artificial intelligence"] OR [Abstract: "machine learning"] OR [Abstract: "deep learning"] OR [Abstract: "supervised learning"] OR [Abstract: "unsupervised learning"] OR [Abstract: "reinforcement learning"] OR [Abstract: "decision tree"] OR [Abstract: "k-nearest neighbor*"] OR [Abstract: "support vector machine*"] OR [Abstract: "recurrent neural network*"] OR [Abstract: "convolutional neural network*"] OR [Abstract: "artificial neural network*"] OR [Abstract: "deep neural networks"] OR [Abstract: "naïve bayes"] OR [Abstract:	40

"naive bayes"] OR [Abstract: "fuzzy logic"] OR [Abstract: "k-means"] OR [Abstract: "random forest"] OR [Abstract: "long short-term memory networks"] OR [Abstract: autoencoder] OR [Abstract: "boltzmann machine"] OR [Abstract: ideep belief network"] OR [Abstract: "gradient boost*"] OR [Abstract: ideep belief network"] OR [Abstract: "gradient boost*"] OR [Abstract: ideaboost] OR [Abstract: wultilayer perceptron"] OR [Abstract: "ensemble learning"]] AND [[Abstract: wearable*] OR [Abstract: "smart watch*"] OR [Abstract: smartwatch*] OR [Abstract: acceleromet*] OR [Abstract: gyroscop*] OR [Abstract: "inertial sensor"] OR [Abstract: "inertial measurement unit*"] OR [Abstract: "fitness band*"] OR [Abstract: "flexible band*"] OR [Abstract: headband*] OR [Abstract: "head band*"] OR [Abstract: wristband*] OR [Abstract: "smart insole*"] OR [Abstract: "smart armband"] OR [Abstract: bracelet*] OR [Abstract: emotiv] OR [Abstract: neurosky] OR [Abstract: mindo starlab] OR [Abstract: brainbit] OR [Abstract: muse] OR [Abstract: openbci] OR [Abstract: neuroelectrics] OR [Abstract: "g.tec nautilus"] OR [Abstract: biosemi] OR [Abstract: "mbraintrain"] OR [Abstract: cognionics] OR [Abstract: "misfit shine"] OR [Abstract: "polar loop"] OR [Abstract: jawbone] OR [Abstract: geneactiv] OR [Abstract: ample watch"] OR [Abstract: withings] OR [Abstract: sensewear] OR [Abstract: powerwatch] OR [Abstract: samsung galaxy watch"] OR [Abstract: airofit] OR [Abstract: kardiamobile] OR [Abstract: willing OR [Abstract: avellue duoek"] OR [Abstract: kardiamobile] OR [Abstract: mod disorder*] OR [Abstract: depress*] OR [Abstract: stress* or distress]] AND [Publication Date: (01/01/2015 TO 12/31/2022]]	
("Artificial Intelligence" OR "Machine Learning" OR "Deep Learning") AND (wearable* OR smartwatch* OR Emotiv OR Mindo OR Muse OR Fitbit OR Garmin OR Geneactiv OR Empatica "Apple Watch" OR "Polar loop") AND (mood disorder* OR depress* OR stress* OR distress)	100
	[Abstract: "random forest"] OR [Abstract: "long short-term memory networks"] OR [Abstract: autoencoder] OR [Abstract: "boltzmann machine"] OR [Abstract: "deep belief network"] OR [Abstract: "gradient boost*"] OR [Abstract: adaboost] OR [Abstract: "multilayer perceptron"] OR [Abstract: "ensemble learning"]] AND [[Abstract: wearable*] OR [Abstract: "smart watch*"] OR [Abstract: smartwatch*] OR [Abstract: acceleromet*] OR [Abstract: gyroscop*] OR [Abstract: "inertial sensor"] OR [Abstract: "inertial measurement unit*"] OR [Abstract: "fitness band*"] OR [Abstract: "flexible band*"] OR [Abstract: "headband*] OR [Abstract: "head band*"] OR [Abstract: wristband*] OR [Abstract: "smart insole*"] OR [Abstract: "smart armband"] OR [Abstract: bracelet*] OR [Abstract: emotiv] OR [Abstract: neurosky] OR [Abstract: bracelet*] OR [Abstract: emotiv] OR [Abstract: neurosky] OR [Abstract: openbci] OR [Abstract: brainbit] OR [Abstract: "g.tec nautilus"] OR [Abstract: biosemi] OR [Abstract: memory] OR [Abstract: indo starlab] OR [Abstract: misfit shine"] OR [Abstract: "polar loop"] OR [Abstract: amiigo] OR [Abstract: actigraph] OR [Abstract: armation] OR [Abstract: misfit shine"] OR [Abstract: molar on [Abstract: amiigo] OR [Abstract: actigraph] OR [Abstract: aropentica] OR [Abstract: amiigo] OR [Abstract: actigraph] OR [Abstract: aropini OR [Abstract: withings] OR [Abstract: sensewear] OR [Abstract: amiigo] OR [Abstract: actigraph] OR [Abstract: aropini OR [Abstract: massung galaxy watch"] OR [Abstract: arofit] OR [Abstract: biovitals]] AND [[Abstract: mood disorder*] OR [Abstract: depress*] OR [Abstract: stress* or distress]] AND [Publication Date: (01/01/2015 TO 12/31/2022)] ("Artificial Intelligence" OR "Machine Learning" OR "Deep Learning") AND (wearable* OR smartwatch* OR Emotiv OR Mindo OR Muse OR Fibit OR Garmin OR Geneactiv OR Empatica "Apple Watch" OR "Polar loop") AND

Extracted data	Definition
Study Characteristics	
Author	The first author of the study.
Year of publication	The year in which the study was published.
Country of publication	The country where the study was published.
Type of publication	The venue where the study was published: peer-reviewed journal articles, book chapters, dissertations, or conference proceedings
Number of participants	What is the number of participants from which the data was collected?
Mean age (range)	What is the mean/range age of the participants?
Female percentage	What is the female percentage of the participants?
Participants Health Conditions	What is the health condition of the participants?
Wearable AI characteristics	
Name of the wearable	What is the name of the wearable device (e.g., Fitbit, Empatica,
device	ApplyWatch, ActiWatch, etc)?
Placement of the	Where the wearable device is worn during the experiment in paper or
wearable device	normally (wrist, chest, head, ears, forehead, eyes, fingers, foot, etc)?
Aim of AI algorithm	What was the algorithm used for (diagnosis, screening, monitoring,
_	treatment, prevention, etc.))?
Problem solving	What is the problem-solving approach that the algorithm follows
approaches	(Classification, regression)?
AI algorithm used	What are the main AI algorithms/models (e.g., RF, SVM, ANN, CNN, RNN, DNN, k-NN, MLP, DBN, DBM, DPN BN, CRT, DT, LASSO, LR, MFA, MLR, MDL, NB, NN, NSC, RBFN) used in the paper?
Data sources	What is the source of data that was used for developing the algorithms (open source or closed source)?
Data input	What is the data that was used for developing the algorithm?
Ground truth assessment	How the actual status (e.g., diagnosis) of the user was confirmed (questionnaire (PHQ-9), interview, test, etc)?
Type of validation	What is the approach that was used to validate the developed algorithm
	(e.g., Training-test split, K-fold cross-validation, Nested Cross-Validation,
Performance measures	Leave One Out cross-validation, Apparent validation, external validation)? What are the measures used to assess the performance of the algorithm
used	(accuracy, sensitivity (recall), specificity, precision, AUC, etc)?
Results	The highest and lowest results for each performance measure for each
incourto	algorithm. Calculate the measures if the confusion matrix is reported.

Supplementary Table 12: Data extraction form

Supplementary Table 13: The modified version of the Quality of Diagnostic Accuracy Studies 2 (QUADAS-2)

Participants	Signaling questions	Explanation
	1.1 Was a consecutive or random sample of patients enrolled?	-Yes: if a consecutive or random sample of eligible patients was enrolled.
		- No: if patients were selected by convenience;
		- Unclear: if the study did not report the manner in which participants were enrolled.
	1.2 Did the study avoid inappropriate exclusions?	- Yes: If inclusion and exclusion of participants were appropriate, so participants correspond to unselected participants of interest.
		- No: If participants are included who would already have been identified as having the outcome and so are no longer participants at suspicion of disease (diagnostic studies),
		or if specific subgroups are excluded that may have altered the performance of the prediction model for the intended target population.
		- Unclear: When there is no information on whether inappropriate inclusions or exclusions took place.
	1.3 Was the sample size sufficient?	 Yes: For model validation studies, if the number of participants is ≥100.
		- No: For model validation studies, if the number of participants with the outcome is <100.
		- Unclear: For model development studies, no information on the number of candidate predictor parameters or number of participants with the outcome, such that the EPV cannot be calculated.
		For model validation studies, no information on the number of participants with the outcome.
	1.4 Was there a balance in the number of patients between the subgroups	- Yes: if the percentage of participants in any group is 66.7 or less of the sample (≤2/3).
	(depressed vs. nondepressed)?	- No: if the percentage of participants in any group is more than 66.7 of the sample (>2/3).
		- Unclear: If no information was provided regarding the number of participants in the groups.
	Risk-of-bias assessment: Could the selection of	- Low risk of bias: If the answer to all signaling questions is 'Yes' then the risk of bias can be

	1	
	participants have introduced bias?	considered low. If one or more of the answers is 'No', the judgment could still be low risk of bias, but specific reasons why the risk of bias can be considered low should be provided.
		 High risk of bias: If the answer to any of the signaling questions is "No" there is a potential for bias, except if defined at low risk of bias above.
		- Unclear risk of bias: If relevant information is missing for all or some of the signaling questions, and none of the answers to signaling questions is
		judged to put this domain at high risk of bias.
	Concerns regarding	- Low concern for applicability: If the spectrum of
	applicability: Are there	participants (in- and exclusion criteria, setting, prior
	concerns that the included participants and setting do	testing) matches the pre-stated requirements in the review question
	not match the review	Utele and an english title of the an estimate of
	question?	- High concern for applicability: If the spectrum of
		participants does not fully match the pre-stated requirements in the review question
		 Unclear concern for applicability: If there is insufficient information available to make a judgment about the applicability
Index test (AI algorithms)	2.1 Were the Al models described in detail?	-Yes: if the model details were provided such as outputs, epoch, all intermediate layers and connections, pooling, normalization, regularization, and activation in the layers, etc. or if a previously published model is employed, the paper must cite a reference that meets the preceding standards and fully describe every modification made to the model.
		-No: if only the model's name was reported in the paper, or the study reported some information but other important information still missing.
	2.2 Were all features	-Yes: If all features (e.g., heart rate, inter-beat
	(predictors) used in the	interval, heart rate variation, number of sleep hours,
	model clearly identified?	etc.) used in each model were reported.
		-No: If any features used in any model were not reported. Or all features used in the paper were identified but
		it was not clear which features were used in each model.

		- Unclear concern for applicability: If relevant information about the predictors is not reported.
Reference	3.1 Was the reference	Is the used tool appropriate?
Standard (Ground truth)	standard likely to correctly classify the outcome (e.g., depressed vs. non- depressed)?	Any tool recommended by APA: BDI, PHQ-9, DSM-IV, DSM-5, HAM-D, GDS, MADRS, CDI, CDRS, BHS, CES- D, EQ-5D, BASC, CBCL, QIDS-SR, RFS, SF-36. Or any
		tool has reliability and validity of >=0.70.
		Were the assessors/annotators qualified?
		 Yes: If the study used well-recommended tools such as BDI, PHQ-9, DSM-IV, DSM-5, HAM-D, GDS, MADRS, CDI, CDRS, BHS, CES-D, EQ-5D, BASC, CBCL, QIDS-SR, RFS, SF-36. Or any tool has reliability and validity of >=0.70.
		Or an interview was conducted by a qualified assessor such as a psychologist or psychiatrist
		-No: if the outcome was assessed using only one question (e.g., how depressed do you feel today?). OR Unknown questionnaire with reliability and validity of <0.70 or unknown reliability and validity. OR an interview was conducted by unqualified assessors such as students.
		- Unclear: If no information was provided about the reference standard
	3.2 Was the outcome defined and determined in a similar way for all participants?	 Yes: If outcomes were defined and determined in a similar way for all participants. No: If outcomes were clearly defined and determined in a different way for some participants. Unclear: No information on whether outcomes were defined or determined in a similar way for all participants.
	3.3 Was the outcome determined without knowledge of predictor information?	 Yes: If predictor information was not known when determining the outcome status, or outcome status determination is clearly reported as determined without knowledge of predictor information. No: If it is clear that predictor information was used when determining the outcome status. Unclear: No information on whether the outcome was determined without knowledge of predictor information.
	3.4 Was there an	Check the period in which the reference standard
	appropriate interval	assesses symptoms of depression. For example, PHQ-9, HDRS-D, MADRS, DASS, GDS, and BDI assess

T	
between the index test and the reference standard?	symptoms of depression experienced over the past week. When such tools are used, then the interval between the index test and reference standard should not be more than 7 days.
	BDI-II: over the past 2 weeks
	- Yes: If the time interval between predictor assessment and outcome determination was appropriate to enable the correct type and representative number of relevant outcomes to be recorded, or if no information on the time interval is required to allow a representative number of the relevant outcome occur or if predictor assessment and outcome determination were from information taken within an appropriate time interval.
	- No: If the time interval between predictor assessment and outcome determination is too short or too long to enable the correct type and representative number of relevant outcomes to be recorded.
	 Unclear: If no information was provided on the time interval between predictor assessment and outcome determination.
Risk-of-bias assessment: Could the reference standard, its conduct, or its interpretation have introduced bias?	 Low risk of bias: If the answer to all signaling questions is 'Yes' then the risk of bias can be considered low. If one or more of the answers is 'No', the judgment could still be low risk of bias, but specific reasons why the risk of bias can be considered low should be provided e.g., when the outcome was determined with knowledge of predictor information but the outcome assessment did not require much interpretation by the assessor (e.g., death regardless of cause).
	- High risk of bias: If the answer to any of the signaling questions is "No" there is a potential for bias, except if defined at low risk of bias above.
	- Unclear risk of bias: If relevant information is missing for all or some of the signaling questions, and none of the answers to signaling questions is judged to put this domain at high risk of bias.

	Concerns regarding	- Low concern for applicability: Outcome definition,
	applicability: Are there	timing, and method of determination defines the
	concerns that the outcome	outcome as intended by the review question.
	definition, timing, or	, , ,
	determination do not	-High concern for applicability: Choice of outcome
	match the review question?	definition, timing, and method of outcome
		determination defines another outcome as intended
		by the review question.
		- Unclear concern for applicability: If relevant
		information about the outcome, timing, and method
		of determination is not reported.
Analysis	4.1 Were all participants	- Yes: If all participants enrolled in the study are
	included in the analysis?	included in the data analysis.
		- No: If some or a subgroup of participants are
		inappropriately excluded from the analysis.
		- Unclear: No information on whether all enrolled
		participants are included in the analysis.
	4.2 Was data preprocessing	- Yes: If there are no missing values of predictors or
	carried out appropriately?	outcomes and the study explicitly reports that
		participants are not excluded on the basis of missing
		data, or if missing values are handled using multiple
		imputation.
		- No: If participants with missing data are omitted
		from the analysis, or if the method of handling
		missing data is clearly flawed, e.g., missing indicator
		method or inappropriate use of last value carried
		forward, or if the study had no explicit mention of
		methods to handle missing data.
		- Unclear: If there is insufficient information to
		determine if the method of handling missing data is
		appropriate.
	4.3 Was the breakdown of	- Yes: if the study used an appropriate validation
	the training, validation, and	approach.
	_	
	test sets appropriate?	
		- No: if the study used an inappropriate validation
		approach.
		- Unclear: If no information was provided about the
		validation methods.
	4.4 Was the performance of	- Yes: If the confusion matrix was presented,
		•
	the model evaluated	Or more than one measure was used and the
	appropriately?	selected measures were appropriate.

	 No: If the confusion matrix was not presented, and only one measure was reported, Or the selected measures were not appropriate.
	 Unclear: If no information was provided on the performance measures
Risk-of-bias assessment: Could the analysis, its conduct, or its interpretation have introduced bias?	 Low risk of bias: If the answer to all signaling questions is 'Yes' then the risk of bias can be considered low. If one or more of the answers is 'No', the judgment could still be low risk of bias, but specific reasons why the risk of bias can be considered low should be provided. High risk of bias: If the answer to any of the signaling questions is "No" there is a potential for bias, except if defined at low risk of bias above. Unclear risk of bias: If relevant information is
	missing for all or some of the signaling questions, and none of the answers to signaling questions is judged to put the analysis at high risk of bias.