
  

Whole-genome analysis identifies novel drivers and high-risk double-hit 
events in relapsed/refractory myeloma 
 
Supplemental Methods and Data File 
 
Patient characteristics 
 
The Myeloma Genome Project is an ongoing initiative to assemble and analyse, in a uniform and 

innovative fashion, genetic data sets that have been generated on samples obtained from patients with 

myeloma who have been entered into clinical trials. The relapse/refractory multiple myeloma (rrMM) 

cohort comprised patients from the following clinical trials of immunomodulatoy agents 

(avadomide (CC-122), pomalidomide (CC-4047), or iberdomide (CC-220)) either alone or in 

combination): CC-4074-MM010 (STRATUS; NCT017127899)1, CC-4047-MM-007 

(OPTIMISMM; NCT0173492810)2, CC-4047-MM013 (NCT02045017)3, CC-4047-MM-014-

B (NCT01946477)4, CC220-MM001 (NCT0277303011)5 and CC122-ST-001-MM2 

(NCT01421524)6. The rrMM cohort was compared with 198 ndMM patients collected as part 

of the IFM/DFCI-2009 trial (NCT0119106012)7. Most tumor samples were collected at 

screening/study entry. All the rrMM trials included combination therapy with dexamethasone, 

the exception was CC122-ST-001-MM2 which was a cohort of MM patients in a trial 

investigating CC-122 monotherapy in cohorts of patients with advanced malignancies. Two of 

the pomalidomide (CC-4047) trials included other anti-MM agents, either bortezomib in CC-

4047-MM-007 or daratumumab in CC-4047-MM-014B. Patients from the CC-220-MM-001 

study were in dose escalation cohorts of either monotherapy or combination with 

dexamethasone. As most patients were from pomalidomide trials, which required either 

exposure or refractoriness to lenalidomide, the lenalidomide resistance (LENR) cohort was 

much larger than the pomalidomide resistance (POMR) cohort comprising samples from 

patients from the CC-122 or CC-220 trials, or patients in MM-010 with a sample at disease 

progression. The ndMM dataset comprised WGS data from patients in IFM2009 (n=198)8. 
Summary patient characteristics per clinical trial are described in Supplemental Table 1. All participants 

in the trials that have contributed to the Myeloma Genome Project gave consent for the use of their 

deidentified genetic and clinical data. Each trial received approval from the relevant ethical review 

committee.  
 
Genomic material preparation 
 
CD138+ plasma cells and matched germline controls (peripheral blood mononuclear cells) were 

stored in RLT buffer (Qiagen) and DNA was extracted using the Qiagen AllPrep DNA Mini Kit. 



  

WGS was performed on tumor/normal pairs at an average of 60X/30X depth. All sequencing was 

performed on Illumina HiSeq2500 instruments. 
 
Whole-genome sequence analysis, variant calling and annotation  
 
All whole-genome sequence analyses included herein is based on GATK best practices 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035894751-Pipeline-Index). A total of 418 

relapse/refractory and 198 newly diagnosed tumors were sequenced at the whole-genome level along 

with paired normal sample. All FASTQ files were aligned to the human genome assembly hg38 using 

BWA-mem. Duplicate reads were removed using Picard MarkDuplicates (v1.119; 

https://broadinstitute.github.io/picard/) and base recalibration of alignments was performed using 

BQSR according to GATK best practices (https://gatk.broadinstitute.org/hc/en-

us/articles/360035535912). Somatic variants in WGS data were called using MuTect2 (v4) under 

default parameters. Somatic SNVs and indels were annotated by ANNOVAR9 (version May2018; 

http://annovar.openbioinformatics.org/) to predict functional consequence of variants. In addition, 

variants were identified based on dbSNP (v150), and population frequency of variants were reported 

based on the Exome Aggregation Consortium dataset (ExAC v0.3; http://exac.broadinstitute.org/) and 

the Genome Aggregation Database (gnomAD v2.1.1; https://gnomad.broadinstitute.org/). 

 

Copy number aberration (CNA) analysis 
 
Genome-wide copy number aberration analysis was undertaken in the entire dataset by using 

Battenberg (v2.2.8; https://github.com/Wedge-lab/battenberg), which has been described in detail 

previously10. To handle hg38-based assembled genomes, germline SNP data underwent liftover to 

hg19 (https://genome.ucsc.edu/cgi-bin/hgLiftOver) for compatibility purposes. In addition to calling 

clonal and subclonal allele-specific CNAs, it was also used to estimate purity and average ploidy of 

each tumor. To identify significantly enriched CNA regions, first, CNA of each type – i.e. Gain, loss 

of heterozygosity (LOH) and homozygous deletion (HD) –  were aggregated across all rrMM samples 

along the chromosomes to obtain the frequency landscape of each CNA type based on all observed 

breakpoints. This was followed by a permutation test (n=1,000) which was then corrected for multiple 

testing (FDR<0.05). Regions that were significantly enriched above the random background rate for 

any CNA type were defined as enriched CNA11. Finally, the enriched regions that encompassed the 

HLA region (6p21), were specific to telomeric ends or present as a singleton were excluded. To 

estimate the overall LOH burden in each tumor, we calculated the proportion of genome altered 

(PGA) that could be assigned to LOH events (where nMinor is 0) at both clonal (frac1=1) and 

subclonal (frac1<1) levels.  

 
 



  

 
 
 
Clonality of somatic variants 
 
To estimate clonality, we calculated cancer cell fraction (CCF) of each variant by adjusting the variant 

allele frequency (VAF) for copy number status at the given locus, multiplicity of the variant and 

tumor purity12. To assign somatic mutations as clonal or subclonal, the CCF of each mutation was 

statistically assessed for clonal status. Briefly, the observed VAF was modelled using a binomial 

distribution (qbinom) by taking into account the total coverage at a given locus and VAFs 

representing the 95% interval boundaries (i.e. 2.5% and 97.5%) were used to generate the 95% 

confidence interval (CI) of the observed CCF by computing CCF for the VAF boundaries. Any 

variant with an upper CI above 1 was considered to not significantly deviate from a clonal state and a 

CCF value of 1 was thus assigned. Otherwise, variants were considered subclonal and the original 

estimated CCF value was retained. This allowed us to assess the clonality of all somatic mutations 

without the introduction of an arbitrary CCF cut-off.  

 

Mutational Drivers 
 
To identify potential drivers of relapse/refractory stage of MM, we used cDriver13 

(v0.4.2; https://github.com/hanasusak/cDriver), which not only relies on recurrence and functional 

consequence of variants, but also takes into account CCF of each mutation, which may lead to the 

identification of subclonal drivers. Genes mapping to immune hypermutated regions were excluded to 

avoid bias from mutation due to normal B cell development. Drivers not previously reported in newly 

diagnosed MM14 were checked against the COSMIC v92 cancer gene census (CGC; 

https://cancer.sanger.ac.uk/census) to identify known cancer drivers. Assignment of identified drivers 

into tumor suppressor gene (TSG) and oncogene (ONC) categories was undertaken using the 20/20 

principle15. We analyzed all drivers for gene essentiality as reported in DepMap16. A customised 

dataset of CRISPR effect scores was generated and downloaded from DepMap (https://depmap.org/) 

by limiting the genes to the drivers identified in this study and cell lines to multiple myeloma cell 

lines (N=21). The mutational landscape plot was generated using maftools17 

(v2.6.05; https://www.bioconductor.org/packages/release/bioc/html/maftools.html). 

 

Network and pathway enrichment analysis 

The interactome database STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 

v11.5 (http://string-db.org/)18 was used to extract all known and predicted protein–protein interactions 

(PPIs) among driver genes. Interactions based on only textmining data were removed. This filtering 



  

process was undertaken to remove possible spurious interactions that might result in misleading 

conclusions. Interactions with scores above the STRING default threshold (0.4) were analyzed. 

Enrichr19 was used to identify enriched pathways among the novel promising candidate gene set 

(N=10). The pathways were filtered with an enrichment P-value < 0.05 after adjusting with FDR 

multiple testing correction.  

 

Bi-allelic and double-hit analysis 

To test for somatic interactions at the individual tumor level and assess likely tumor suppression 

activity, we combined the CNA and mutation data to assess the rate of bi-allelic inactivation of driver 

genes. Biallelic events were defined as the occurrence of two independent events inactivating both 

alleles at the same locus, which could result from a combination of a non-silent mutation and loss of 

heterozygosity (LOH) or by homozygous deletion (HD) in a given tumor. Drivers with a bi-allelic 

inactivation rate above 1% in rrMM were retained for subsequent differential analysis. In addition, we 

identified double-hit events in each individual tumor based on the co-occurrence of two or more high-

risk genomic and clinical features20 and those above 1% frequency in rrMM were used for enrichment 

analysis. 

 
 
 
Mutational signature analysis 
 
De-novo extraction of single base substitution (SBS) signatures was independently implemented 

based on a non-negative matrix factorization (NNMF) framework using SigProfilerExtractor21 

(v1.0.19, https://github.com/AlexandrovLab/SigProfilerExtractor) and signeR22 which is an empirical 

Bayesian treatment of the NNMF model. Because de novo extraction of signatures is more accurate 

with a larger number of samples23, the entire rrMM dataset was combined with the ndMM dataset. 

During mutational spectrum quality control screening, an ndMM tumor showed substantial SBS53 

activity (likely artefact signature21) with high mutation burden and was removed from further 

analysis. The final input dataset for both SigProfilerExtractor and signeR thus comprised a total of 

616 tumors. De novo signatures extracted by both methods were each assigned to a specific SBS 

signature in the recently updated COSMIC catalogue 

(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/) by computing cosine similarities. The mutational 

signature profiles from both extraction methods were similar and identified the same set of COSMIC 

signatures in the dataset. To fit the mutational spectrum of each tumor with the identified COSMIC 

signatures, we used mmsig24. This was implemented to not only minimise mutational signature 

bleeding across samples25, but to also accurately estimate the relative contribution of COSMIC 

signatures. Finally, at the fitting stage, we also included the novel multiple myeloma signature (SBS-

MM126,27 to see whether its inclusion better reconstructs the observed mutational spectrum in 



  

each tumor and evaluate its activity across this large MM dataset with both ndMM and rrMM 

tumors. 

 

Detection of drivers based on non-coding variants 
 
We partitioned each chromosome in the genome into discrete bins of 100 kb and undertook a 

genome-wide screening of variant recurrence in each of the non-overlapping bins11. Similar 

to a genome-wide association study construct, we compared the rrMM cohort with the ndMM 

cohort for differential prevalence of non-coding variant recurrence using pairwise Fisher’s 

exact test followed by multiple testing correction to detect enriched non-coding mutation 

hotspots in or flanking coding genes in rrMM. This analysis was based only on SNVs since 

overall rate of SNV was not significantly different between the two groups. Therefore, no 

overall bias is present in the rate of SNVs and local over-representation signals are likely to 

be genuine relapse/refractory hotspot signals. 

 
Kataegis 
 
We followed previous studies in defining kataegis events11,28. KataegisPCF 

(https://github.com/nansari-pour/KataegisPCF) was used to accurately detect kataegis foci and 

visualize the events based on SNVs. A minimum of six consecutive SNVs with mean distance ≤1kb 

were required to call kataegis foci, which were identified systematically by applying piecewise 

constant fitting (PCF)29 on inter-variant distance of all SNVs per chromosome across the genome. 
 
Structural variant analysis 
 
Structural variants (SV) from whole genome data were detected using MANTA (v1.2.0)30 with default 

tumor-normal pair settings where tumor samples were compared against the germline control to detect 

somatic SVs. A custom script was then used to parse and summarise translocation (TL) events from 

the VCF output. All samples with TL events with a breakpoint within the immunoglobulin heavy 

(IgH) and light (IgL) chains were analysed further for molecular subtyping of MM. 

  

 
Statistical analysis 
 
All statistical calculations were implemented in R (v3.4.3; https://www.r-project.org/). For 

continuous data, we used Wilcoxon rank test (wilcox.test) or Student’s t-test (t.test) wherever 

appropriate. For categorical data, we used Fisher’s exact test (fisher.test). P-values were 

adjusted for multiple testing (p.adjust) based on the false discovery rate (FDR) proposed by 



  

Benjamini and Hochberg with FDR<0.05 considered significant, unless stated otherwise. 

This was done to not only reduce type I error, but to also minimize type II error31. The two-

sample Kolmogorov-Smirnov test (ks.test) was implemented to detect significant differences 

in the distribution of a variable across different groups. Due to the low frequencies of 

mutational drivers, we used Fisher's exact test as a non-parametric test to assess equality of 

proportions by using the fisher.test function in R. Such a test was undertaken when the 

mutational driver had a minimum frequency of 5% in at least one cohort. The Pearson 

correlation test (cor.test) was used to assess the magnitude and significance of pairwise 

correlation between mutation burden and mutational signature activity. Cox regression survival 

analysis (coxph) was undertaken to examine association between common rrMM-enriched events and 

progression free survival (PFS) and, in turn, identify aberrations with prognostic effect. 
 
Supplemental Results 
 
 
Kataegis 
 
We also analyzed all tumors for kataegis28 to see whether hypermutated genes can be identified 

at the individual tumor level, however, all events were mainly localized at immunoglobulin 

(IG) loci consistent with their likely link to the IG translocation events (Supplemental Figure 

11).   
 
Copy number analysis 
 
We saw a slight enrichment of whole-genome duplication (WGD) in rrMM (7.8% vs 5.5%, 

OR=1.5) but was not statistically significant. We also assessed the proportion of the genome 

altered due to LOH (PGALOH) in rrMM and whether it varies between LENR and POMR 

cohorts. We observed no significant difference in the rate of PGALOH between ndMM and 

rrMM, nor among ndMM, LENR and POMR (Kolmogorov-Smirnov test, P>0.40; 

Supplemental Figure 12).  

 
In a supervised analysis of the Cereblon locus from a subset of our rrMM dataset, we previously 

reported an increase in LOH of 3p26.3 (containing CRBN) in LENR and POMR patients 

compared to ndMM32, however 3p26.3 LOH was not significant in this genome-wide 

unsupervised analysis. Similarly, we have performed supervised analysis of chromosome 2q, 

which contains 2 members of the COPS9 signalosome which are required for Cereblon 

function, but this region was also not one of the significant LOH events at the genome-wide 



  

level33. This suggests that while 3p26.3 and 2q LOH play important roles in the acquisition of 

IMiD resistance, they are not among the most frequent copy number changes driving 

aggressive disease biology in rrMM. 
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Supplemental Figures 
 

 
 
Supplemental Figure 1. Bipartite graph between tumors negative for all mutational drivers and 
major copy number- and translocation-based genomic aberrations. Tumors with at least one 
major event are shown. WGD: whole-genome duplication, HRD: hyperdiploidy. 
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Supplemental Figure S2. MMRF CoMMpass-based driver frequency and enrichment 
comparison. A) Comparison of the cohort-level recurrence of mutational drivers in the WGS ndMM 
cohort and the WES MMRF CoMMpass cohort. B) Log-fold recurrence enrichment of drivers in rrMM 
compared between when the WGS ndMM cohort (x-axis) and the combined ndMM dataset (N=1199, 
y-axis) is used. Drivers with no enrichment against the WGS ndMM cohort are not shown. Genes 
previously detected in ndMM as drivers (Walker et al. 2018) are shown in blue and genes detected 
only in the rrMM cohort (labelled ‘Novel’) are shown in red. The dotted black line in both A) and B) 
represent y=x. 
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Supplemental Figure 3. Network analysis of novel promising candidate drivers in the context 
of known myeloma drivers. A) Functional interactions between novel and known drivers. B) MCL-
based clustering of drivers based on the network topology. 
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Supplemental Figure 4. Somatic association in individual tumors. Circos plot of double-hit drivers 
identified in individual tumors across the rrMM cohort. From inside, the first track represents the 
homozygous deletion (HD) frequency landscape (histogram height ranging from 0 to 2.5%), the 
second track represents the loss-of-heterozygosity (LOH) frequency landscape (histogram height 
ranging from 0 to 60%), and the third track represents the overall frequency of double-hit driver events 
through a combination of mutation and LOH and/or HD (histogram height ranging from 0 to 10%). 
Chromosome ideograms are represented and labelled on the outside. 
 
 



  

 
 
 
Supplemental Figure 5. Survival analysis of common rrMM-enriched CNA drivers with 
progression free survival (PFS). A) Cox regression analysis of 1q Gain in three trials with PFS data 
shows prognostic effect in the MM010 trial cohort. B) Cox regression analysis of 17p LOH in three 
trials with no significant association. C) Kaplan-Meier curve showing 1q Gain correlates with poor 
prognosis in the MM010 trial cohort. 
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Supplemental Figure 6. Somatic interactions of genomic aberrations in the ndMM dataset. 
Genomic events with at least one significant pairwise association (FDR<0.1) in the rrMM dataset are 
shown. 
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Supplemental Figure 7. Double-hit of high risk events observed in the rrMM dataset. Each row 
represents an rrMM patient with at least two high risk events (N=171; 44.3%). 
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Supplemental Figure 8. Frequency of double-hit events of high-risk features observed in the 
ndMM dataset. 
 
 

 
 
Supplemental Figure 9. Enrichment analysis of double-hit events in POMR compared with 
LENR. Frequency of each event was compared between POMR and LENR sub-groups using Fisher’s 
exact test. None were significant after multiple-testing correction (FDR<0.05).  
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Supplemental Figure 10. Differential analysis of genome-wide mutational signatures. A) Frequency landscape of single base substitution (SBS) 
signatures in both ndMM and rrMM cohorts. B) Shift in mutational signature activity between clonal and subclonal mutations in individual samples of the rrMM 
cohort. Each line represents a single tumor where the activity of a given signature increases or decreases at the subclonal stage when compared with the 
clonal activity level. SBS12 shows a strong signal of subclonal increase while SBS9 shows a decrease across the majority of tumors. 
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Supplemental Figure 11. Genome-wide landscape of kataegis events in the rrMM and ndMM datasets. The most frequent events are present at the 
immunoglobulin loci (IgK: 2q, IgH: 14q and IgL: 22q). 
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Supplemental Figure 12. Distribution of proportion of genome altered due to loss-of-heterozygosity (PGALOH) at different therapy stages. ndMM: 
newly diagnosed multiple myeloma, LENR: lenalidomide resistant, POMR: pomalidomide resistant. 
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Supplemental Table S1. The demographics of the newly diagnosed and relapse/refractory patients per clinical trial. 
 
 
Supplemental Table S2. Details of coding variants in the 44 driver genes identified in the rrMM cohort.  
[this is provided as a separate file due to size] 
 
 

 

Cohort IFM-2009 CC-122-ST-MM CC-220-MM-001 CC-4047-MM-007 CC-4047-MM-010 CC-4047-MM-013 CC-4047-MM-014-B CC-122-ST-MM CC-220-MM-001 CC-4047-MM-007 CC-4047-MM-010 CC-4047-MM-014-B CC-122-ST-MM CC-220-MM-001 CC-4047-MM-010
Number of patients (Number of samples) 198 (198) 11 (11) 38 (51) 64 (64) 223 (242) 18 (18) 32 (32) 3 (3) 14 (17) 34 (34) 188 (189) 30 (30) 7 (7) 23 (33) 25 (43)

Mean study entry age ( 95% CI) 57.2 (56.3 - 58.2) 70.5 (67.4 - 73.6) 63.2 (60.5 - 65.9) 68.5 (66.8 - 70.2) 66.3 (65.3 - 67.3) 71.4 (67.6 - 75.2) 66.6 (64.2 - 69) 65.7 (62.4 - 69) 65.4 (61.2 - 69.5) 68.6 (66.4 - 70.7) 66.8 (65.7 - 67.9) 66.3 (63.8 - 68.8) 71.7 (67.6 - 75.8) 62 (58.3 - 65.7) 62.6 (60.1 - 65.1)

Mean time since diagnosis in years (95% CI) - 6.2 (4.4 - 8.1) 7.1 (6.3 - 7.9) 6.0 (5.2 - 6.9) 5.9 (5.6 - 6.3) 5.4 (3.8 - 7.0) 4.0 (3.2 - 4.9) 8.3 (2.7 - 13.8) 7.6 (6.2 - 9.1) 5.9 (4.7 - 7.0) 5.8 (5.4 - 6.2) 4.0 (3.2 - 4.9) 6.1 (5.2 - 7.0) 6.7 (5.7 - 7.7) 7.1 (6.0 - 8.3)

Sex
Male / total patients with data (%) 93/149 (62.4) 6/11 (54.5) 21/38 (55.3) 33/64 (51.6) 122/223 (54.7) 9/18 (50) 22/32 (68.8) 0/3 (0) 6/14 (42.9) 18/34 (52.9) 103/188 (54.8) 20/30 (66.7) 5/7 (71.4) 14/23 (60.9) 12/25 (48)

Female / total patients with data  (%) 56/149 (37.6) 5/11 (45.5) 17/38 (44.7) 31/64 (48.4) 101/223 (45.3) 9/18 (50) 10/32 (31.2) 3/3 (100) 8/14 (57.1) 16/34 (47.1) 85/188 (45.2) 10/30 (33.3) 2/7 (28.6) 9/23 (39.1) 13/25 (52)

ISS
I / total patients that had data(%) 55/156 (35.3) 0/11 (0) 13/38 (34.2) 20/48 (41.7) 59/174 (33.9) 0/18 (0) 5/26 (19.2) 0/3 (0) 7/14 (50) 11/34 (32.4) 54/150 (36) 5/25 (20) 0/7 (0) 6/23 (26.1) 3/16 (18.8)
II / total patients that had data(%) 66/156 (42.3) 4/11 (36.4) 17/38 (44.7) 17/48 (35.4) 58/174 (33.3) 3/18 (16.7) 14/26 (53.8) 1/3 (33.3) 4/14 (28.6) 14/34 (41.2) 49/150 (32.7) 14/25 (56) 3/7 (42.9) 12/23 (52.2) 9/16 (56.2)
III / total patients that had data(%) 35/156 (22.4) 7/11 (63.6) 8/38 (21.1) 11/48 (22.9) 57/174 (32.8) 15/18 (83.3) 7/26 (26.9) 2/3 (66.7) 3/14 (21.4) 9/34 (26.5) 47/150 (31.3) 6/25 (24) 4/7 (57.1) 5/23 (21.7) 4/16 (25)

Number of patients that received stem cell 
Transplants / total patients that had data (%) 87/187 (46.5) 8/11 (72.7) 32/38 (84.2) 29/48 (60.4) 143/223 (64.1) 6/18 (33.3) 14/14 (100) 3/3 (100) 12/14 (85.7) 18/34 (52.9) 118/188 (62.8) 14/14 (100) 5/7 (71.4) 19/23 (82.6) 19/25 (76)

BORT
Exposed / total patients that had data (%) - 10/10 (100) 38/38 (100) 60/60 (100) 212/212 (100) - - 3/3 (100) 14/14 (100) 34/34 (100) 188/188 (100) - 7/7 (100) 23/23 (100) 24/24 (100)

Refractory / total patients that had data (%) - - 14/38 (36.8) 5/60 (8.3) 212/212 (100) - - - 4/14 (28.6) 3/34 (8.8) 188/188 (100) - - 9/23 (39.1) 24/24 (100)
DAR
Exposed / total patients that had data (%) - - 38/38 (100) - - - - - 14/14 (100) - - - - 23/23 (100) -

Refractory / total patients that had data (%) - - 21/38 (55.3) - - - - - 4/14 (28.6) - - - - 17/23 (73.9) -

Translocation
t(4;14) / total patients that had data (%) 24/198 (12.1) 2/11 (18.2) 2/38 (5.3) 8/64 (12.5) 29/223 (13) 1/18 (5.6) 3/32 (9.4) 1/3 (33.3) 0/14 (0) 7/34 (20.6) 27/188 (14.4) 3/30 (10) 1/7 (14.3) 2/23 (8.7) 2/25 (8)
t(8;14) / total patients that had data(%) 12/198 (6.1) 2/11 (18.2) 3/38 (7.9%) 3/64 (4.7) 14/223 (6.3) 1/18 (5.6) 2/32 (6.3) 0/3 (0) 1/14 (7.1) 2/34 (5.9) 13/188 (6.9) 2/30 (6.7) 1/7 (14.3) 2/23 (8.7) 0/25 (0)

t(11;14) / total patients that had data(%) 41/198 (20.7) 3/11 (27.3) 5/38 (13.2) 12/64 (18.8) 47/223 (21.1) 6/18 (33.3) 7/32 (21.9) 0/3 (0) 0/14 (0) 6/34 (17.6) 39/188 (20.7) 7/30 (23.3) 2/7 (28.6) 5/23 (21.7) 7/25 (28)
t(14;16) / total patients that had data(%) 5/198 (2.5) 0/11 (0) 0/38 (0) 0/64 (0) 5/223 (2.2) 0/18 (0) 1/32 (3.1) 0/3 (0) 0/14 (0) 0/34 (0) 4/188 (2.1) 1/30 (3.3) 0/7 (0) 0/23 (0) 1/25 (4)
t(14;20) / total patients that had data(%) 0/198 (0) 0/11 (0) 0/38 (0) 0/64 (0) 0/223 (0) 0/18 (0) 0/32 (0) 0/3 (0) 0/14 (0) 0/34 (0) 0/188 (0) 0/30 (0) 0/7 (0) 0/23 (0) 0/25 (0)
t(6;14) / total patients that had data(%) 5/198 (2.5) 0/11 (0) 3/38 (7.9%) 1/64 (1.6) 2/223 (0.9) 0/18 (0) 0/32 (0) 0/3 (0) 1/14 (7.1) 0/34 (0) 1/188 (0.5) 0/30 (0) 0/7 (0) 2/23 (8.7) 0/25 (0)
t(8;22) / total patients that had data (%) 11/198 (5.5) 0/11 (0) 1/38 (2.6) 1/64 (1.6) 9/223 (4) 0/18 (0) 1/32 (3.1) 0/3 (0) 1/14 (7.1) 0/34 (0) 7/188 (3.7) 1/30 (3.3) 0/7 (0) 0/23 (0) 2/25 (8)

ndMM rrMM
TOTAL LENR POMR



  

 
 
Supplemental Table 3. Enriched pathways based on the ten novel rrMM drivers. 

ID Term P.value Adjusted.P.value Odds.Ratio Combined.Score Genes
BioPlanet_2019 Cleavage of a damaged pyrimidine 0.002497708 0.041251454 555.1666667 3326.770642 TDG

BioPlanet_2019 Resolution of AP sites via the single-nucleotide replacement pathway 0.005985094 0.041251454 201.8080808 1032.951295 TDG

BioPlanet_2019 NICD trafficking to the nucleus 0.006482395 0.041251454 184.9814815 932.0597464 MAML3

BioPlanet_2019 PRC2 complex long-term gene silencing through modification of histone tails 0.007476328 0.041251454 158.5396825 776.2124253 EZH2

BioPlanet_2019 Glycosylphosphatidylinositol (GPI) biosynthesis 0.008469366 0.041251454 138.7083333 661.8190143 PIGO

BioPlanet_2019 Resolution of abasic sites (AP sites) 0.009461511 0.041251454 123.2839506 574.5677164 TDG

BioPlanet_2019 Cell differentiation pathway 0.009957248 0.041251454 116.7894737 538.3357754 EZH2

BioPlanet_2019 Post-translational modification: biosynthesis of GPI-anchored proteins 0.014408847 0.045535866 79.21428571 335.8616723 PIGO

BioPlanet_2019 MicroRNAs in muscle cell differentiation 0.014902355 0.045535866 76.4789272 321.6884166 EZH2

BioPlanet_2019 Fluoropyrimidine activity 0.016381548 0.045535866 69.29861111 284.9281499 TDG

BioPlanet_2019 Base excision repair 0.017366565 0.045535866 65.21568627 264.3327714 TDG

BioPlanet_2019 Striated muscle contraction 0.018842427 0.045535866 59.91891892 237.9766259 MYH3

BioPlanet_2019 Regulation of transcription by NOTCH1 intracellular domain 0.023258053 0.050204947 48.17391304 181.1870902 MAML3

BioPlanet_2019 Muscle contraction 0.024236871 0.050204947 46.16203704 171.7172484 MYH3

BioPlanet_2019 Pre-NOTCH expression and processing 0.028143323 0.054410424 39.5515873 141.2167736 MAML3

BioPlanet_2019 Viral myocarditis 0.03494576 0.061265111 31.61904762 106.0489619 MYH3

BioPlanet_2019 Signaling by NOTCH1 0.035914031 0.061265111 30.73765432 102.2527178 MAML3

BioPlanet_2019 NOD signaling pathway 0.041705318 0.067191901 26.33068783 83.65592939 DUOX2

BioPlanet_2019 DNA repair 0.051287922 0.078281565 21.2457265 63.1061812 TDG

BioPlanet_2019 Signaling by NOTCH 0.057944341 0.081326797 18.71186441 53.29648635 MAML3

BioPlanet_2019 Notch signaling pathway 0.058891819 0.081326797 18.39814815 52.10453246 MAML3

BioPlanet_2019 Tight junction 0.064558698 0.085100102 16.71548822 45.8034535 MYH3

KEGG_2021_Human Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 0.012926986 0.070822859 88.73333333 385.8514207 PIGO

KEGG_2021_Human Base excision repair 0.016381548 0.070822859 69.29861111 284.9281499 TDG

KEGG_2021_Human Notch signaling pathway 0.029117734 0.070822859 38.18390805 135.0338735 MAML3

KEGG_2021_Human Lysine degradation 0.031063919 0.070822859 35.71326165 123.9860269 EZH2

KEGG_2021_Human Thyroid hormone synthesis 0.036881427 0.070822859 29.9039039 98.68429377 DUOX2

KEGG_2021_Human B cell receptor signaling pathway 0.039778377 0.070822859 27.65277778 89.16449602 LILRA6

KEGG_2021_Human Th1 and Th2 cell differentiation 0.045069092 0.070822859 24.2967033 75.30905521 MAML3

KEGG_2021_Human Osteoclast differentiation 0.061729109 0.084877525 17.51675485 48.78415662 LILRA6

WikiPathway_2021_Human Thyroid hormones production and their peripheral downstream signaling effects 0.000980033 0.024500814 53.48655914 370.550857 KDM3B;DUOX2

WikiPathway_2021_Human Cytosine methylation 0.004491844 0.042325613 277.5277778 1500.174168 TDG

WikiPathway_2021_Human Interactome of polycomb repressive complex 2 (PRC2) 0.007972959 0.042325613 147.962963 714.9125872 EZH2

WikiPathway_2021_Human Cell Differentiation - Index expanded 0.009461511 0.042325613 123.2839506 574.5677164 EZH2

WikiPathway_2021_Human GPCRs, Class B Secretin-like 0.011937965 0.042325613 96.4589372 427.1232267 ADGRL3

WikiPathway_2021_Human Canonical and non-canonical Notch signaling 0.013421162 0.042325613 85.31623932 367.791702 MAML3

WikiPathway_2021_Human Tumor suppressor activity of SMARCB1 0.015395642 0.042325613 73.92592593 308.5424793 EZH2

WikiPathway_2021_Human Base Excision Repair 0.015395642 0.042325613 73.92592593 308.5424793 TDG

WikiPathway_2021_Human Fluoropyrimidine Activity 0.016381548 0.042325613 69.29861111 284.9281499 TDG

WikiPathway_2021_Human FBXL10 enhancement of MAP/ERK signaling in diffuse large B-cell lymphoma 0.017366565 0.042325613 65.21568627 264.3327714 EZH2

WikiPathway_2021_Human Striated Muscle Contraction Pathway 0.018842427 0.042325613 59.91891892 237.9766259 MYH3

WikiPathway_2021_Human Nucleotide-binding Oligomerization Domain (NOD) pathway 0.020316294 0.042325613 55.41666667 215.9217342 DUOX2

WikiPathway_2021_Human Notch Signaling 0.022278351 0.042842983 50.36868687 191.6095305 MAML3

WikiPathway_2021_Human Notch Signaling Pathway Netpath 0.030091266 0.051572801 36.90740741 129.3058522 MAML3

WikiPathway_2021_Human Pathways affected in adenoid cystic carcinoma 0.032035694 0.051572801 34.59375 119.0337919 MAML3

WikiPathway_2021_Human Histone Modifications 0.033006592 0.051572801 33.54208754 114.4136696 EZH2

WikiPathway_2021_Human MECP2 and Associated Rett Syndrome 0.035430005 0.052102948 31.17214397 104.1210777 EZH2

WikiPathway_2021_Human ncRNAs involved in Wnt signaling in hepatocellular carcinoma 0.042186509 0.057535271 26.01960784 82.36909635 EZH2

WikiPathway_2021_Human GPCRs, Other 0.044589205 0.057535271 24.56790123 76.41264641 ADGRL3

WikiPathway_2021_Human LncRNA involvement in canonical Wnt signaling and colorectal cancer 0.046028217 0.057535271 23.77180406 73.18151447 EZH2

WikiPathway_2021_Human Thermogenesis 0.05271785 0.062759346 20.64693666 60.75982922 KDM3B

WikiPathway_2021_Human DNA Repair Pathways Full Network 0.058418187 0.066384304 18.55368814 52.69484947 TDG

WikiPathway_2021_Human Endoderm differentiation 0.068319537 0.074260367 15.75396825 42.27671122 EZH2

WikiPathway_2021_Human Epithelial to mesenchymal transition in colorectal cancer 0.077197051 0.080413595 13.85814116 35.49615996 EZH2

WikiPathway_2021_Human Circadian rhythm related genes 0.09609492 0.09609492 10.99444444 25.75359368 EZH2


