Appendix The data presented in summary tables 2–17 have been condensed substantially from what was reported in the papers. For each table there is one row per paper, detailing the setting and population samples in the study, and the outcomes reported according to whether the data were in favour of a single-room design, a shared-room design, or neither in favour nor against either design. Where statistical analyses were conducted the statistical significance is reported in the tables however no other numerical data is presented. Where no formal analysis was reported only the label pertaining to the outcome data are presented. For example, if the proportion of deaths was lower in the single-room design then "% deaths" is reported in the table under the heading "Data favours single-room design because is it more sociable then "Qualitative (patient preference, social)" is reported in the table under the heading "Data favours shared-room design". ## List of tables | Table 1. Summary of study quality scores | 2 | |--|----| | Table 2. Summary of studies reporting mortality data | 7 | | Table 3. Summary of studies reporting data on patient care and disease management | 9 | | Table 4. Summary of studies reporting data on maternity and neonatal care | 12 | | Table 5. Summary of studies reporting data on complications of disease | 20 | | Table 6. Summary of studies reporting data on prevention of infection | 25 | | Table 7 Summary of studies reporting data on patient safety | 35 | | Table 8. Summary of studies reporting data on readmissions and reinterventions | 37 | | Table 9. Summary of studies reporting views on privacy | 38 | | Table 10. Summary of studies reporting views on patients' loneliness/isolation and family contact | 44 | | Table 11. Summary of studies reporting patient's views on noise, disturbance and sleep | 56 | | Table 12. Summary of studies reporting patients' views on satisfaction with care | 63 | | Table 13. Summary of studies reporting data on patient monitoring and safeguarding | 75 | | Table 14. Summary of studies reporting views on patient confidentiality | 78 | | Table 15. Summary of studies reporting data on availability of beds, space requirements, and capital costs | 80 | | Table 16. Summary of studies reporting data on length of stay | 83 | | Table 17. Summary of studies reporting data on costs of care | 89 | | References | | | ! | | ## Key and abbreviations a=adjusted u=univariate analysis m=multivariate analysis NS=not statistically significant (p<0.05 is considered statistically significant) BSI, bloodstream infection; LOS=length of stay; PEMR=physician estimate of mortality risk; SFR=Single family room; SRMC=Single room maternity care Text is in italics if it is unclear where the true benefit lies, for example where the data is significantly greater for one room type compared to another but the interpretation of benefit may be subjective. Cells coloured in blue are where a formal comparative statistical analysis was reported. Table 1. Summary of study quality scores | Citation | Study methodology | QA score | |---|---|----------| | Adamson 2003 ¹ | SLR | 82% | | Anåker et al 2017 ² | Prospective observational, before and after hospital relocation | 59% | | Anåker et al 2019 ³ | Qualitative, before and after hospital relocation | 90% | | Apple 2014 ⁴ | Prospective observational, qualitative | 52% | | Bevan et al 2016 ⁵ | Prospective observational | 59% | | Blandfort et al 2019 ⁶ | Prospective observational, before and after hospital relocation | 67% | | Blandfort et al 2019 ⁷ | Prospective observational, before and after hospital relocation | 67% | | Boardman & Forbes 20118 | Economic analysis | 91% | | Bocquet et al 2021 ⁹ | Retrospective observational, case-control | 74% | | Bodack et al 2016 ¹⁰ | Prospective observational | 56% | | Bonizzoli et al 2011 ¹¹ | Retrospective observational, before and after hospital relocation | 30% | | Boztepe et al 2017 ¹² | Prospective observational | 63% | | Bracco et al 2007 ¹³ | Prospective observational | 74% | | Bradbury-Jones et al 2013 ¹⁴ | SLR | 86% | | Campbell-Yeo et al 2021 ¹⁵ | Prospective case–control, before and after hospital relocation | 74% | | Cantoni et al 2009 ¹⁶ | Retrospective observational, before and after hospital relocation | 67% | | Carlson et al 2006 ¹⁷ | Prospective observational, before and after hospital relocation | 33% | | Carter et al 2008 ¹⁸ | Prospective observational, before and after hospital relocation | 33% | | Caruso et al 2014 ¹⁹ | Retrospective observational | 74% | | Cobo et al 2001 ²⁰ | Retrospective case–control | 74% | | Cusack et al 2013 ²¹ Observational before hospital relocation 55% Darcy Mahoney et al 2020 ²³ Prospective observational, before and after hospital relocation 55% Davis et al 2019 ²⁵ Retrospective observational, before and after hospital relocation 67% Davis et al 2010 ²⁶ Qualitative 9700 Qu | Curtis & Northcott 2017 ²¹ | Qualitative, before and after hospital relocation | 80% | |---|---|---|------| | Darley et al 2018 ²⁴ Retrospective observational, before and after hospital relocation 56% | Cusack et al 2019 ²² | Observational before hospital relocation | 56% | | Davis et al 2019 ³⁶ Retrospective observational, before and after hospital relocation 99% de Matos et al 2020 ²⁷ Prospective observational before and after hospital relocation 63% Domanico et al 2011 ²⁸ Prospective observational, before and after hospital relocation 63% Dowalico et al 2011 ²⁹ Prospective observational, before and after hospital relocation 63% Dowalico et al 2011 ²⁹ Prospective observational, before and after hospital relocation 63% Dowalico et al 2012 ³⁰ Prospective observational, before and after hospital relocation 63% Dowalico et al 2012 ³¹ SLR 90willia et al 2012 ³² Prospective case—control, before and after hospital relocation 63% Dowalico et al 2012 ³² Prospective case—control of 59% Dowalico et al 2012 ³³ Prospective case—control 59% Edell-Gustafsson et al 2015 ³⁴ Qualitative 90% Edell-Gustafsson et al 2015 ³⁵ Retrospective observational 78% Erdeve et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2009 ³⁶ Prospective case—control 78% Erdeve et al 2009 ³⁷ Prospective case—control 78% Erdeve et al 2009 ³⁷ Prospective case—control 78% Erdeve et al 1996 ³⁹ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational 67% Everts et al 1996 ³⁹ Prospective case—control 78% Erdeve et al 2011 ³⁸ Prospective case—control 78% Erdeve et al 2015 ⁴⁰ Retrospective case—control 78% Erdeve et al 2015 ⁴¹ Qualitative, before and after hospital relocation 78% Ford-Jones et al 2015 ⁴¹ Retrospective observational 78% Frankel et al 2015 ⁴² Retrospective case—control, before and after hospital relocation 79% Gregors et al 2012 ⁴⁶ Retrospective observational, before and after hospital relocation 79% Gregors et al 2011 ⁴⁸ Retrospective observational, before and after hospital relocation 79% Gregors et al 2011 ⁴⁸ Retrospective observational, before and after hospital relocation 79% Gregors et al 2011 ⁴⁸ Retrospective observational, before and after hospital relocation 79% Harris et al 2006 ⁴⁹ Prospective case—control, before | | Prospective observational | 59% | | Deitrick
et al 2010 ²⁶ Qualitative 90% de Matos et al 2020 ²⁷ Prospective observational 63% Domanico et al 2011 ²⁰ Prospective observational, before and after hospital relocation 63% Domanico et al 2011 ²⁰ Prospective observational, before and after hospital relocation 63% Douglas & Douglas 2005 ³⁰ Qualitative 990% Dowdeswell et al 2004 ³¹ SLR 900% Dowdeswell et al 2004 ³¹ SLR 900% Dowdeswell et al 20004 ³¹ SLR 900% Dowdeswell et al 20004 ³¹ SLR 900% Dowdeswell et al 20003 ³² Prospective case—control, before and after hospital relocation 63% Eberhard-Gran et al 2000 ³³ Prospective case—control 90% Dowdeswell et al 2015 ³⁴ Qualitative 90% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2009 ³⁶ Prospective case—control 74% Erdeve et al 2009 ³⁷ Prospective case—control 74% Erdeve et al 2008 ³⁸ Prospective case—control 74% Erdeve et al 2009 ³⁷ Prospective case—control 75% Everts et al 1996 ³⁹ Prospective observational 86% Prospective observational 86% Prospective observational 86% Prospective observational 86% Prospective case—control observational | Darley et al 2018 ²⁴ | Retrospective observational, before and after hospital relocation | 56% | | de Matos et al 2020 ²⁷ Prospective observational 63% Domanico et al 2010 ²⁸ Prospective observational, before and after hospital relocation 63% Domanico et al 2011 ²⁹ Prospective observational, before and after hospital relocation 63% Douglas & Douglas 2005 ³⁰ Qualitative 99% Dowdeswell et al 2004 ³¹ SLR 36% Dowling et al 2012 ³² Prospective case-control, before and after hospital relocation 63% Dowling et al 2012 ³² Prospective case-control, before and after hospital relocation 63% Dowling et al 2012 ³³ Prospective case-control 59% Edéll-Gustafsson et al 2003 ³³ Prospective case-control 59% Edéll-Gustafsson et al 2015 ³⁴ Qualitative 90% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case-control 74% Erdeve et al 2009 ³⁷ Prospective case-control 78% Erdeve et al 2009 ³⁷ Prospective case-control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ³² Retrospective case-control 78% Foo 2022 et al ³⁹ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 74% Frankel et al 2018 ⁴⁵ Retrospective case-control 67% Gregersen et al 2021 ⁴⁶ Retrospective case-control 67% Gregersen et al 2021 ⁴⁷ Prospective observational, before and after hospital relocation 70% Grund et al 2021 ⁴⁸ Retrospective case-control, before and after hospital relocation 74% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 74% Halaby et al 2021 ⁵² Prospective observational 74% | Davis et al 2019 ²⁵ | Retrospective observational, before and after hospital relocation | 67% | | Domanico et al 2011 ²⁸ Prospective observational, before and after hospital relocation 63% Domanico et al 2011 ²⁹ Prospective observational, before and after hospital relocation 63% Douglas 2005 ³⁰ Qualitative 90% Dowless & Douglas 2005 ³⁰ Qualitative 90% Dowless & Douglas 2005 ³¹ SLR 36% Dowling et al 2004 ³¹ SLR 36% Dowling et al 2012 ³² Prospective case-control, before and after hospital relocation 63% Eberhard-Gran et al 2000 ³³ Prospective case-control 90% Eberhard-Gran et al 2000 ³⁴ Qualitative 90% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case-control 78% Erdeve et al 2008 ³⁷ Prospective case-control 78% Erdeve et al 2009 ³⁷ Prospective case-control 78% Erickson et al 2011 ³⁸ Prospective case-control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³³ Prospective observational 952% Prospective case-control observational 952% Prospective case-control 952% Prospective case-control 952% Prospective observational 952% Prospective case-control 967% Prospective observational 967% Prospective case-control Prospec | Deitrick et al 2010 ²⁶ | Qualitative | 90% | | Domanico et al 2011 ²⁹ Prospective observational, before and after hospital relocation 93% Douglas & Douglas 2005 ³⁰ Qualitative 99% 99% 99% 99% 99% 99% 99% 99% 99% 99 | de Matos et al 2020 ²⁷ | Prospective observational | 63% | | Douglas & Douglas 2005 ³⁰ Qualitative 90% Dowdeswell et al 2004 ³¹ SIR Dowling et al 2012 ³² Prospective case-control, before and after hospital relocation 63% Eberhard-Gran et al 2000 ³³ Prospective case-control 90% Edéll-Gustafsson et al 2015 ³⁴ Qualitative 90% Edéll-Gustafsson et al 2015 ³⁴ Qualitative 90% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case-control 74% Erdeve et al 2009 ³⁷ Prospective case-control 74% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational 952% Felice Tong et al 2014 ⁴⁰ Retrospective case-control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 967% Florey et al 2009 ⁴² Retrospective case-control, before and after hospital relocation 967% Florey et al 2009 ⁴² Retrospective case-control, before and after hospital relocation 97% Ford-Jones et al 1990 ⁴⁴ Prospective observational 97% Gregersen et al 2018 ⁴⁵ Retrospective case-control 97% Gregersen et al 2021 ⁴⁶ Retrospective observational 92% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 97% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 97% Harris et al 2004 ⁵⁹ Retrospective observational, before and after hospital relocation 97% Harris et al 2004 ⁵⁰ Retrospective observational, before and after hospital relocation 97% Harris et al 2004 ⁵⁰ Retrospective observational 967% Harris et al 2004 ⁵⁰ Retrospective observational 97% Hosseini & Bagberi 2017 ⁵² Prospective observational 963% Hyun et al 2021 ⁵⁴ Retrospective observational 963% | Domanico et al 2010 ²⁸ | Prospective observational, before and after hospital relocation | 63% | | Dowleswell et al 2004 ³¹ Dowling et al 2012 ³² Prospective case—control, before and after hospital relocation 63% Eberhard-Gran et al 2000 ³³ Prospective case—control 59% Edéll-Gustafsson et al 2015 ³⁴ Qualitative 90% Erlauder et al 2009 ³⁵ Retrospective observational Erdeve et al 2009 ³⁶ Prospective case—control 78% Erdeve et al 2009 ³⁷ Prospective case—control 67% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational before and after hospital relocation 78% Felice Tong et al 2018 ⁴⁰ Retrospective case—control 78% For et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation 44% Foor 2022 et al ⁴³ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 74% Gregersen et al 2018 ⁴⁵ Retrospective case—control Gregersen et al 2018 ⁴⁶ Retrospective case—control 67% Gregersen et al 2021 ⁴⁷ Prospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case—control 48% Harris et al 2004 ⁵⁹ Retrospective observational, before and after hospital relocation 48% Harris et al 2006 ⁵⁰ Retrospective observational, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Hauris et al 2006 ⁵¹ Retrospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational Forein et al 2018 ⁵³ Prospective observational Forein et al 2018 ⁵³ Prospective observational Forein et al 2018 ⁵³ Retrospective observational Forein et al 2018 ⁵³ Retrospecti | Domanico et al 2011 ²⁹ | Prospective observational, before and after hospital relocation | 63% | | Dowling et al 2012 ³² Prospective case—control, before and after hospital relocation 53% Eberhard-Gran et al 2000 ³³ Prospective case—control 59% Edéll-Gustafsson et al 2015 ³⁴ Qualitative 99% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case—control 74% Erdeve et al 2009 ³⁷ Prospective case—control 74% Erdeve et al 2009 ³⁷ Prospective case—control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational 95% Prospective case—control 78% Felice Tong et al 2018 ⁴⁰ Retrospective case—control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective observational 74% For 2022 et al ⁴³ Prospective observational 74% Fraenkel et al 2018 ⁴⁵ Retrospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective observational 52% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case—control 75% Retrospective observational, before and after hospital relocation 74% Harris et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 74% Retrospective observational 75% | Douglas & Douglas 2005 ³⁰ | Qualitative | 90% | | Eberhard-Gran et al 2000 ³³ Prospective case–control 99% Edéll-Gustafsson et al 2015 ³⁴ Qualitative 99% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case–control 74% Erideve et al 2008 ³⁷ Prospective case–control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational before and after hospital relocation 78% Felice Tong et al 2018 ⁴⁰ Retrospective case–control 78% Ferri et al 2015 ⁴¹
Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case–control, before and after hospital relocation 100% Ford-Jones et al 1990 ⁴⁴ Prospective observational 74% Ford-Jones et al 2018 ⁴⁵ Retrospective case-control 52% Fraenkel et al 2018 ⁴⁵ Retrospective case-control 76% Gregersen et al 2021 ⁴⁶ Retrospective case-control 77% Gregersen et al 2021 ⁴⁷ Prospective case-control 77% Halaby et al 2001 ⁴⁸ Retrospective observational, before and after hospital relocation 78% Harris et al 2001 ⁴⁹ Prospective observational, before and after hospital relocation 74% Harris et al 2001 ⁴⁷ Retrospective observational, before and after hospital relocation 74% Harris et al 2001 ⁴⁸ Retrospective observational, before and after hospital relocation 74% Harris et al 2001 ⁴⁹ Prospective observational, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 75% Harris et al 2006 ⁵¹ Retrospective observational 75% Hosveini & Bagheri 2017 ⁵² Prospective observational 763% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 78% Hyun et al 2015 ⁵⁴ Retrospective observational, before and after hospital relocation 78% | Dowdeswell et al 2004 ³¹ | SLR | 36% | | Edéll-Gustafsson et al 2015 ³⁴ Qualitative 90% Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case-control 74% Erdeve et al 2009 ³⁷ Prospective case-control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 78% Everts et al 1996 ³⁹ Prospective observational 952% Felice Tong et al 2018 ⁴⁰ Retrospective case-control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case-control 100% Florey et al 2009 ⁴² Retrospective observational 952% Ford-Jones et al 1990 ⁴⁴ Prospective observational 952% Fraenkel et al 2018 ⁴⁵ Retrospective observational 952% Fraenkel et al 2018 ⁴⁵ Retrospective case-control 952% Fraenkel et al 2018 ⁴⁵ Retrospective observational 952% Fraenkel et al 2018 ⁴⁵ Retrospective case-control 967% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 97% Grundt et al 2021 ⁴⁷ Prospective case-control 97% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 97% Harris et al 2004 ⁵⁹ Prospective observational 1 pefore and after hospital relocation 974% Harris et al 2006 ⁵⁰ Retrospective observational 963% Harris et al 2006 ⁵¹ Retrospective observational 963% Hourigan et al 2018 ⁵³ Prospective observational 963% Hourigan et al 2018 ⁵³ Prospective observational 963% Hourigan et al 2018 ⁵³ Prospective observational 96096 Hyun et al 2021 ⁵⁴ Retrospective observational 96096 | Dowling et al 2012 ³² | Prospective case–control, before and after hospital relocation | 63% | | Ehrlander et al 2009 ³⁵ Retrospective observational 78% Erdeve et al 2008 ³⁶ Prospective case-control 74% Erdeve et al 2009 ³⁷ Prospective case-control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational 52% Felice Tong et al 2018 ⁴⁰ Retrospective case-control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case-control, before and after hospital relocation 44% For 2022 et al ⁴³ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case-control 67% Harris et al 2006 ⁵⁰ Retrospective observational Harris et al 2006 ⁵¹ Retrospective observational Hosseini & Bagheri 2017 ⁵² Prospective observational Hourigan et al 2018 ⁵³ Prospective observational Hourigan et al 2018 ⁵³ Prospective observational Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% | Eberhard-Gran et al 2000 ³³ | Prospective case–control | 59% | | Erdeve et al 2009 ³⁷ Prospective case—control 74% Erdeve et al 2009 ³⁷ Prospective case—control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 67% Everts et al 1996 ³⁹ Prospective observational 52% Felice Tong et al 2018 ⁴⁰ Retrospective case—control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation 44% Foo 2022 et al 43 Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective case—control Gregersen et al 2021 ⁴⁶ Retrospective case—control Grundt et al 2021 ⁴⁷ Prospective case—control Halaby et al 2017 ⁴⁸ Retrospective case—control Harris et al 2004 ⁴⁹ Prospective observational, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hourigan et al 2018 ⁵³ Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational 63% Hourigan et al 2018 ⁵³ Retrospective observational | Edéll-Gustafsson et al 2015 ³⁴ | Qualitative | 90% | | Erdeve et al 2009 ³⁷ Prospective case-control 78% Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 57% Everts et al 1996 ³⁹ Prospective observational 52% Felice Tong et al 2018 ⁴⁰ Retrospective case-control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case-control, before and after hospital relocation 44% Foo 2022 et al ⁴³ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective case-control 67% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case-control 67% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case-control 74% Harris et al 2004 ⁵⁰ Retrospective observational 52% Harris et al 2006 ⁵⁰ Retrospective observational 63% Hosseini & Bagheri 2017 ⁵² Prospective observational 52% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective observational 63% Hyun et al 2021 ⁵⁴ Retrospective case-control | Ehrlander et al 2009 ³⁵ | Retrospective observational | 78% | | Erickson et al 2011 ³⁸ Prospective observational before and after hospital relocation 52% Everts et al 1996 ³⁹ Prospective case—control 78% Felice Tong et al 2018 ⁴⁰ Retrospective case—control 100% Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation 44% For 2022 et al ⁴³ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective case—control 67% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case—control 67% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective observational 63% Retrospective observational 63% Retrospective observational 63% | Erdeve et al 2008 ³⁶ | Prospective case–control | 74% | | Everts et al 1996 ³⁹ Prospective observational 52% Felice Tong et al 2018 ⁴⁰ Retrospective case—control 78% Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation 44% Foo 2022 et al ⁴³ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective case—control 67% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grund et al 2021 ⁴⁷ Prospective observational, before and after hospital relocation 70% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation 63% | Erdeve et al 2009 ³⁷ | Prospective case–control | 78% | | Felice Tong et al 2018 ⁴⁰ Retrospective case—control Qualitative, before and after hospital relocation Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation Foo 2022 et al ⁴³ Prospective observational Ford-Jones et al 1990 ⁴⁴ Prospective observational Fraenkel et al 2018 ⁴⁵ Retrospective case—control Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation Fraenkel et al 2021 ⁴⁷ Prospective case—control Fraenkel et al
2021 ⁴⁷ Prospective observational, before and after hospital relocation Fraenkel et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation Fraenkel et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation Fraenkel et al 2004 ⁴⁹ Retrospective observational Fraenkel et al 2006 ⁵⁰ Retrospective observational Fraenkel et al 2006 ⁵¹ Retrospective observational Fraenkel et al 2005 ⁵¹ Retrospective observational Fraenkel et al 2001 ⁵² Prospective observational Fraenkel et al 2017 ⁵² Prospective observational Fraenkel et al 2017 ⁵² Prospective observational Fraenkel et al 2018 ⁵³ Prospective observational Fraenkel et al 2018 ⁵³ Prospective observational, before and after hospital relocation Fraenkel et al 2018 ⁵³ Fraenkel et al 2018 ⁵⁴ Retrospective observational, before and after hospital relocation Fraenkel et al 2021 ⁵⁴ Fraenkel et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation Fraenkel et al 2021 ⁵⁴ Fraenkel et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation Fraenkel et al 2021 ⁵⁴ Fraenkel et al 2021 ⁵⁴ Retrospective observational Fraenkel et al 2021 ⁵⁴ Fraenkel et al 2021 ⁵⁴ Retrospective case—control Fraenkel et al 2021 ⁵⁴ | Erickson et al 2011 ³⁸ | Prospective observational before and after hospital relocation | 67% | | Ferri et al 2015 ⁴¹ Qualitative, before and after hospital relocation 100% Florey et al 2009 ⁴² Retrospective case-control, before and after hospital relocation 44% Foo 2022 et al ⁴³ Prospective observational 74% Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective case-control 67% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case-control 67% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case-control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation 63% | Everts et al 1996 ³⁹ | Prospective observational | 52% | | Florey et al 2009 ⁴² Retrospective case—control, before and after hospital relocation Foo 2022 et al ⁴³ Prospective observational Ford-Jones et al 1990 ⁴⁴ Prospective observational Ford-Jones et al 2018 ⁴⁵ Retrospective case—control Gregersen et al 2018 ⁴⁶ Retrospective observational, before and after hospital relocation Grundt et al 2021 ⁴⁶ Prospective case—control Grundt et al 2021 ⁴⁷ Prospective case—control Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation Harris et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation Harris et al 2006 ⁵⁰ Retrospective observational Harris et al 2006 ⁵¹ Retrospective observational Hosseini & Bagheri 2017 ⁵² Prospective observational Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation Hyun et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective observational, before and after hospital relocation 78% | Felice Tong et al 2018 ⁴⁰ | Retrospective case–control | 78% | | Foo 2022 et al43Prospective observational74%Ford-Jones et al 199044Prospective observational52%Fraenkel et al 201845Retrospective case-control67%Gregersen et al 202146Retrospective observational, before and after hospital relocation70%Grundt et al 202147Prospective case-control67%Halaby et al 201748Retrospective observational, before and after hospital relocation48%Harris et al 200449Prospective case-control, before and after hospital relocation74%Harris et al 200650Retrospective observational63%Harris et al 200651Retrospective observational52%Hosseini & Bagheri 201752Prospective observational63%Hourigan et al 201853Prospective observational, before and after hospital relocation63%Hyun et al 202154Retrospective case-control78% | Ferri et al 2015 ⁴¹ | Qualitative, before and after hospital relocation | 100% | | Ford-Jones et al 1990 ⁴⁴ Prospective observational 52% Fraenkel et al 2018 ⁴⁵ Retrospective case-control 67% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case-control 67% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case-control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case-control 78% | | Retrospective case–control, before and after hospital relocation | 44% | | Fraenkel et al 2018 ⁴⁵ Retrospective case-control 67% Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation 70% Grundt et al 2021 ⁴⁷ Prospective case-control 67% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case-control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case-control 78% | Foo 2022 et al ⁴³ | Prospective observational | 74% | | Gregersen et al 2021 ⁴⁶ Retrospective observational, before and after hospital relocation Grundt et al 2021 ⁴⁷ Prospective case-control Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation Harris et al 2004 ⁴⁹ Prospective case-control, before and after hospital relocation Harris et al 2006 ⁵⁰ Retrospective observational Harris et al 2006 ⁵¹ Retrospective observational Hosseini & Bagheri 2017 ⁵² Prospective observational Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case-control 78% | Ford-Jones et al 1990 ⁴⁴ | Prospective observational | 52% | | Grundt et al 2021 ⁴⁷ Prospective case-control 67% Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case-control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case-control 78% | Fraenkel et al 2018 ⁴⁵ | Retrospective case-control | 67% | | Halaby et al 2017 ⁴⁸ Retrospective observational, before and after hospital relocation 48% Harris et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case—control 78% | Gregersen et al 2021 ⁴⁶ | Retrospective observational, before and after hospital relocation | 70% | | Harris et al 2004 ⁴⁹ Prospective case—control, before and after hospital relocation 74% Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case—control 78% | l . | Prospective case-control | 67% | | Harris et al 2006 ⁵⁰ Retrospective observational 63% Harris et al 2006 ⁵¹ Retrospective observational 52% Hosseini & Bagheri 2017 ⁵² Prospective observational 63% Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case—control 78% | Halaby et al 2017 ⁴⁸ | Retrospective observational, before and after hospital relocation | 48% | | Harris et al 2006 ⁵¹ Retrospective observational52%Hosseini & Bagheri 2017 ⁵² Prospective observational63%Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation63%Hyun et al 2021 ⁵⁴ Retrospective case-control78% | Harris et al 2004 ⁴⁹ | Prospective case–control, before and after hospital relocation | 74% | | Hosseini & Bagheri 201752Prospective observational63%Hourigan et al 201853Prospective observational, before and after hospital relocation63%Hyun et al 202154Retrospective case—control78% | Harris et al 2006 ⁵⁰ | Retrospective observational | 63% | | Hourigan et al 2018 ⁵³ Prospective observational, before and after hospital relocation 63% Hyun et al 2021 ⁵⁴ Retrospective case—control 78% | Harris et al 2006 ⁵¹ | Retrospective observational | 52% | | Hyun et al 2021 ⁵⁴ Retrospective case–control 78% | Hosseini & Bagheri 2017 ⁵² | Prospective observational | 63% | | | Hourigan et al 2018 ⁵³ | Prospective observational, before and after hospital relocation | 63% | | Jansen et al 2021 ⁵⁵ Retrospective observational, before and after hospital relocation 63% | Hyun et al 2021 ⁵⁴ | Retrospective case–control | 78% | | | Jansen et al 2021 ⁵⁵ | Retrospective observational, before and after hospital relocation | 63% | | Janssen et al 2000 ⁵⁶ | Prospective case–control, before and after hospital relocation | 56% | |---
--|------| | Janssen et al 2006 ⁵⁷ | Prospective observational | 59% | | Jones et al 2016 ⁵⁸ | Qualitative, before and after hospital relocation | 100% | | Jongerden et al 2013 ⁵⁹ | Prospective observational, before and after hospital relocation | 67% | | Jou et al 2015 ⁶⁰ | Retrospective case–control | 74% | | Julian et al 2015 ⁶¹ | Retrospective observational | 78% | | Jung et al 2022 ⁶² | Retrospective observational, before and after hospital relocation | 67% | | Kainiemi et al 2021 ⁶³ | Prospective observational, before and after hospital relocation | 59% | | Kinnula et al 2008 ⁶⁴ | Prospective observational | 63% | | Kinnula et al 2012 ⁶⁵ | Prospective observational | 67% | | Knight & Singh 2016 ⁶⁶ | Prospective observational | 59% | | Kosuge et al 2013 ⁶⁷ | Prospective observational, before and after hospital relocation | 41% | | Labarère et al 2004 ⁶⁸ | Prospective observational | 70% | | Lawson & Phiri 2000 ⁶⁹ | Prospective observational, before and after hospital relocation | 41% | | Lazar et al 2015 ⁷⁰ | Prospective observational, before and after hospital relocation | 48% | | Lehtonen et al 2020 ⁷¹ | Prospective observational | 74% | | Lester et al 2014 ⁷² | Prospective observational, before and after hospital relocation | 63% | | Lester et al 2016 ⁷³ | Prospective observational, before and after hospital relocation | 59% | | Liu et al 2019 ⁷⁴ | Qualitative | 100% | | Lorenz & Dreher 2011 ⁷⁵ | Retrospective case–control | 78% | | Maben et al 2015 ⁷⁶ | Report, before and after hospital relocation with control hospitals | 78% | | Maben et al 2016 ⁷⁷ | Prospective observational, before and after hospital relocation with control hospitals | 67% | | Malcolm 2005 ⁷⁸ | Qualitative | 80% | | Mattner et al 2007 ⁷⁹ | Prospective observational | 74% | | McDonald et al 201980 | Prospective observational, before and after hospital relocation | 48% | | McKeown et al 2015 ⁸¹ | Retrospective observational | 48% | | Mental Welfare Commission Scotland 199182 | Report | 30% | | Meyer et al 1994 ⁸³ | Prospective observational | 59% | | Milford et al 2008 ⁸⁴ | Prospective observational, before and after hospital relocation | 30% | | Miller et al 1998 ⁸⁵ | Prospective observational | 59% | | Monson et al 2018 ⁸⁶ | Prospective case–control | 78% | | Morgan 2010 ⁸⁷ | Prospective observational | 44% | | Munier-Marion et al 2016 ⁸⁸ | Prospective observational | 74% | | Nahas et al 2016 ⁸⁹ | Retrospective observational | 56% | | | | | | Nash et al 2021 ⁹⁰ | Prospective observational/ qualitative | 63% | |---|---|------| | Nassery & Landgen 2019 ⁹¹ | Qualitative | 90% | | OECD & World Health Organization | Report | 14% | | 2019 ⁹² | | | | Olson & Smith1992 ⁹³ | Prospective observational | 52% | | O'Neill et al 2018 ⁹⁴ | Retrospective observational | 74% | | Park et al 2020 ⁹⁵ | Retrospective observational | 63% | | Pease & Finlay 2002 ⁹⁶ | Prospective observational | 48% | | Persson & Määttä 2012 ⁹⁷ | Qualitative | 90% | | Persson et al 2015 ⁹⁸ | Qualitative | 90% | | Pilmis et al 2020 ⁹⁹ | Prospective observational | 63% | | Pineda et al 2012 ¹⁰⁰ | Prospective case–control | 70% | | Poncette et al 2021 ¹⁰¹ | Retrospective observational | 56% | | Puumala et al 2020 ¹⁰² | Retrospective observational, before and after hospital relocation | 67% | | Pyrke et al 2017 ¹⁰³ | Prospective observational, before and after hospital relocation | 59% | | Quach et al 2018 ¹⁰⁴ | Retrospective case–control | 59% | | Real et al 2018 ¹⁰⁵ | Prospective observational, before and after hospital relocation | 56% | | Reed & Shmid 1986 ¹⁰⁶ | Narrative report, before and after hospital relocation | 10% | | Reid et al 2015 ¹⁰⁷ | Prospective observational, before and after hospital relocation | 48% | | Roos et al 2020 ¹⁰⁸ | Qualitative, before and after hospital relocation | 90% | | Rosbergen et al 2020 ¹⁰⁹ | Prospective observational, before and after hospital relocation | 74% | | Rowlands & Noble 2008 ¹¹⁰ | Qualitative | 90% | | Sadatsafavi et al 2016 ¹¹¹ | Retrospective economic analysis | 100% | | Sadatsafavi et al 2019 ¹¹² | Retrospective economic analysis, before and after hospital relocation | 100% | | Sakr et al 2021 ¹¹³ | Prospective observational | 74% | | Schalkers et al 2015 ¹¹⁴ | Qualitative | 100% | | Scottish Intercollegiate Guidelines Network 2014 ¹¹⁵ | Guideline | 73% | | Singh et al 2015 ¹¹⁶ | Retrospective observational, before and after hospital relocation | 70% | | Singh et al 2016 ¹¹⁷ | Prospective observational | 70% | | Søndergaard et al 2022 ¹¹⁸ | SLR | 91% | | Song et al 2018 ¹¹⁹ | Retrospective observational, before and after hospital relocation | 63% | | Stelwagen et al 2021 ¹²⁰ | Qualitative | 100% | | Stevens et al 2011 ¹²¹ | Prospective observational, before and after hospital relocation | 52% | | Stevens et al 2012 ¹²² | Prospective observational, before and after hospital relocation | 44% | | - | | | | Stevens et al 2014 ¹²³ | Prospective observational, before and after hospital relocation | 56% | |--|---|-----| | Stiller et al 2017 ¹²⁴ | Retrospective observational | 59% | | Swanson et al 2013 ¹²⁵ | Prospective observational, before and after hospital relocation | 37% | | Tandberg et al 2018 ¹²⁶ | Prospective observational | 70% | | Tandberg et al 2019 ¹²⁷ | Prospective case–control | 67% | | Tandberg et al 2019 ¹²⁸ | Prospective observational | 67% | | Taylor et al 2018 ¹²⁹ | SLR | 91% | | Tegnestedt et al 2013 ¹³⁰ | Prospective observational | 70% | | Teltsch et al 2011 ¹³¹ | Retrospective case–control, before and after hospital relocation | 67% | | Toivonen et al 2017 ¹³² | Prospective case–control, before and after hospital relocation | 63% | | Vaisman et al 2018 ¹³³ | Retrospective case–control | 67% | | van de Glind et al 2008 ¹³⁴ | Prospective observational | 74% | | van der Hoeven et al 2022 ¹³⁵ | Retrospective observational, before and after hospital relocation | 63% | | Van Enk & Steinberg 2011 ¹³⁶ | Prospective observational, before and after hospital relocation | 44% | | van Veenendaal et al 2020 ¹³⁷ | Retrospective observational, before and after hospital relocation | 70% | | Van Veenendaal et al 2022 ¹³⁸ | Prospective observational | 70% | | Vietri et al 2004 ¹³⁹ | Prospective case–control, before and after hospital relocation | 59% | | Vohr et al 2017 ¹⁴⁰ | Prospective observational, before and after hospital relocation | 67% | | Voigt et al 2018 ¹⁴¹ | SLR | 86% | | Walsh et al 2006 ¹⁴² | Prospective observational, before and after hospital relocation | 33% | | Washam et al 2018 ¹⁴³ | Retrospective case–control | 78% | | Watson et al 2014 ¹⁴⁴ | Prospective observational, before and after hospital relocation | 44% | | Zaal et al 2013 ¹⁴⁵ | Prospective observational | 67% | Quality is graded by colour: green, good; orange, medium; red, poor. Abbreviation: SLR, systematic literature review. Table 2. Summary of studies reporting mortality data | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---|------------|-------------------|-----------------|--|------------------------------------|-------------------|---------------|------------------------------|---|------------------------------| | Before and after a h | ospital re | elocation | | | | | | | | | | Cantoni 2009 ¹⁶ | 67% | Switzerland | Adults | 227 patients,
1 hospital | Stem cell transplant | Elective | Routine | | % deaths | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital | Orthopaedic | Elective | Routine | | p=0.664 | | | Domanico 2010, ²⁸
Domanico 2011 ²⁹ | 63% | United
States | Neonates | 161 carers,
1 hospital, 2 units | Paediatric | NR | NICU | % deaths | | | | Jansen 2021 ⁵⁵ | 63% | Netherlands | Neonates | 712 patients,
1 hospital, 2 units | Premature
neonates | Maternity
care | NICU | | p=0.38 all-cause
mortality
p=0.96 infection-
related mortality | | | Jongerden 2013 ⁵⁹ | 67% | Netherlands | Adults | 323 patients,
1 hospital | Mixed,
Adults | Mixed | ICU | | p=0.98 | | | Jung 2022 ⁶² | 67% | South Korea | Adults | 901 patients,
1 hospital | Mixed | Unclear | ICU | | p=0.168 | | | Lazar 2015 ⁷⁰ | 48% | Israel | Children | 4162 patients,
1 hospital | Children | Mixed | PICU | | p=0.22 | | | Puumala 2020 ¹⁰² | 67% | United
States | Neonates | 9995 patients,
1 hospital | Premature neonates | Emergency | NICU | | | % deaths | | Singh 2015 ¹¹⁶ | 70% | United
Kingdom | Adults, Elderly | 1749 patients,
1 hospital | Internal
medicine,
Geriatric | Mixed | Routine | | p=0.12 one-year
mortality
p=0.35 inpatient
mortality
p=0.29 30-day
discharge mortality | | | Contemporaneous o | ompariso | on | | | | | | | | | | Bracco 2007 ¹³ | 74% | Canada | Adults | 2522 patients (of
whom 207 known
MRS carriers at | Mixed, Post
surgery, | Mixed | ICU | p<0.001 | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|-------------------|--------------|---|----------------------------------|-------------------|---------------|--
---|------------------------------| | | | | | admission), 1
hospital, 1 ward | Medical admission | | | | | | | Caruso 2014 ¹⁹ | 74% | Brazil | Adults | 1253 patients, 1
hospital | Adults | Mixed | ICU | | p=0.18 | | | Harris 2006 ⁵⁰ | 63% | United
States | Neonates | 21 parents,
75 HCPs,
11 hospitals | Neonates | Emergency | NICU | | | % deaths | | Hyun 2021 ⁵⁴ | 78% | South Korea | Adults | 666 patients,
1 hospital | Respiratory,
COVID-19 | Emergency | ICU | | | % deaths | | Julian 2015 ⁶¹ | 78% | United
States | Neonates | 1823 patients
1 hospital,
1 unit | Neonates | Mixed | NICU | | p=0.56 CLOS or
mortality | | | Knight 2016 ⁶⁶ | 59% | United
Kingdom | Elderly | 100 patients,
2 hospitals | Geriatric,
Dementia | Mixed | Routine | | p>0.95 inpatient
mortality
p=0.33 30-day
mortality | | | Lehtonen 2020 ⁷¹ | 74% | 10 countries | Neonates | 4662 patients,
331 units | Neonates | Emergency | ICU | OR 0.76, 0.64-0.89,
major morbidity or
mortality | OR 0.85, 0.70-1.02, mortality only | | | Zaal 2013 ¹⁴⁵ | 67% | Netherlands | Older Adults | 156 patients
1 hospital | Older Adults
with
dementia | Mixed | ICU | | p=0.72, % deaths | | Table 3. Summary of studies reporting data on patient care and disease management | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|----------------|-------------------|-----------------|--|--|------------------------|---------------|--|---|--| | Before and after a ho | spital relocat | tion plus Contemp | oraneous compa | rison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital relocation,
2 control hospitals | Mixed | Unclear | Mixed | | Medication errors 9 months after the move | Fewer medication errors immediately after the move | | Before and after a ho | spital relocat | tion | | | | | | | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital relocation | Orthopaedic | Elective | Routine | Lower % medical
deterioration
requiring rapid
response or clinical
review | | | | Lawson 2000 ⁶⁹ | 41% | United Kingdom | Adults | 424 patients, 2
hospitals, 4 wards
relocation | Orthopaedic
patients | Unclear | Routine | Lower use of painkillers % responders % verbal outbursts % threatening behaviour | | | | Contemporaneous co | mparison | • | | | • | | • | | | | | Ehrlander 2009 ³⁵ | 78% | United States | Adults | 117 patients,
1 hospital | Mixed | Unclear | Routine | | | Qualitative (feelings of safety) | | McKeown 2015 ⁸¹ | 48% | Ireland | Unclear | 880 patients.
24 hospitals | End of life | Emergency,
Elective | Routine | Perceived
acceptability of
patient's death
Symptom
management
Symptom
experience
Patient care | | | | Nahas 2016 ⁸⁹ | 56% | United Kingdom | Adults, Elderly | 60 patients,
2 hospitals | Orthopaedic
(elective hip/
knee
arthroplasty) | Elective | Routine | p=0.020, cleanliness
p=0.015, staff pain
management | p=0.190, toileting
help given | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------------|---------------|---------------|------------|----------------------------------|---------------------|-------------------|---------------|---|---|------------------------------| | | | | | | | | | p<0.001, pain
control | | | | Van de Glind 2008 ¹³⁴ | 74% | Netherlands | Adults | 52 encounters, 1
hospital | Urology | Unclear | Routine | p=0.003, greater duration of physician-patient encounter % encounter time patient speaks is greater Patients disclose more emotional cues, and information cues p=0.031, more physician responses to the patient cues | % encounter time
physician speaks
was no different
Patients disclose
more emotional
cues | | | Evidence synthesis | | | | | | | | | | | | Dowdeswell 2004 ³¹ | SLR
36% | International | Unclear | Unclear | Mixed | Mixed | Mixed | Hospital acquired infection treatment; Hand-hygiene; Cleaning and decontamination; Recovery; In situ medical treatment Family involvement Environment match the patient's progress | | | | OECD WHO 2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | | Pain scores | | | Søndergaard 2022 ¹¹⁸ | SLR
91% | International | NR | NR | Acute,
Surgical, | Unclear | Routine | Sleep quality
Personal control
Environment | | | | Citation | QA | Location | Population | Number of patients/
hospitals | | Type of admission | | | | Data that favour shared room | |----------------------------|------------|---------------|------------|----------------------------------|----------------------|-------------------|---------|---------------|-----------------------------|------------------------------| | | | | | | Internal
medicine | | | Recovery time | | | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR | Mixed | Mixed | Mixed | | | Restraint use e.g., rails | | Voigt 2018 ¹⁴¹ | SLR
86% | International | NR | NR | NR | Unclear | Routine | | Medication errors and usage | | Table 4. Summary of studies reporting data on maternity and neonatal care | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------|------------|---------------|------------|---|--------------|-------------------|---------------|---|--|------------------------------| | Before and after a hos | pital relo | cation | | | | | | | | | | Campbell-Yeo 2021 ¹⁵ | 74% | Canada | Neonates | 71 mothers, 2
wards | Neonates | Emergency | ICU | Parental presence
and involvement
(mother and
partner feeding) | | | | Carter 2008 ¹⁸ | 33% | United States | Adults | 1 hospital 53 parents | Neonates | Emergency | ICU | All p's<0.05 parent perceptions of access to staff | | | | Domanico 2011 ²⁹ | 63% | United States | Neonates | 162 patients
(PEMRs
2/3=150,
PEMRs 4=12), 1
hospital, 2 units | Paediatric | NR | NICU | PEMR 2-3: patient progress: p<0.001, total apnoea events p<0.001, apnoea events/day p=0.031, days on mother's breastmilk; p=0.001, days on mother's breastmilk per LOS; p=0.003, interval to enteral feeding; p<0.001, interval to breastmilk feeding; p=0.048, days on parenteral nutrition; p=0.004, days on parenteral nutrition per LOS | PEMR 2-3 p=0.94, gestational age p=0.92, admission weight p=NS, acuity p=0.45, weight gain p=0.17, length gain p=0.17, head circumference gain p=0.84, total CPAP days p=0.7, CPAP days/LOS p=0.17, total caffeine days p=0.11, total caffeine days p=0.11, total caffeine days p=0.765, interval to formula feeding | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that
favour shared
room | |----------|----|----------|------------|------------------------------|--------------|-------------------|---------------|------------------------------|----------------------------|------------------------------------| | | | | | | | | | | p=0.47, | | | | | | | | | | | | gestational age | | | | | | | | | | | | p=0.49, admission | | | | | | | | | | | | weight | | | | | | | | | | | | p=NS, acuity | | | | | | | | | | | | p=0.76, weight | | | | | | | | | | | | gain | | | | | | | | | | | | p=0.47, length | | | | | | | | | | | | gain | | | | | | | | | | | | p=0.70, head | | | | | | | | | | | | circumference | | | | | | | | | | | | gain | | | | | | | | | | | | p=0.59, total CPAP | | | | | | | | | | | | days | | | | | | | | | | | | p=0.94, CPAP | | | | | | | | | | | | days/LOS | | | | | | | | | | | | p=0.82, total | | | | | | | | | | | | caffeine days | | | | | | | | | | | | p=0.94, total | | | | | | | | | | | | caffeine days/LOS | | | | | | | | | | | | p=0.70, total | | | | | | | | | | | | apnoea events | | | | | | | | | | | | p=0.18, apnoea | | | | | | | | | | | | events/day | | | | | | | | | | | | <i>p</i> =0.937, interval | | | | | | | | | | | | to enteral feeding | | | | | | | | | | | | <i>p</i> =0.571, interval | | | | | | | | | | | | to formula feeding |
| | | | | | | | | | | <i>p</i> =0.818, days on | | | | | | | | | | | | parenteral | | | | | | | | | | | | nutrition | | | | | | | | | | | | <i>p</i> =0.937, days on | | | | | | | | | | | | parenteral | | | | | | | | | | | | nutrition per LOS | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|---------------|------------|---|---------------------|-------------------|---------------|--|---|---| | Dowling 2012 ³² | 63% | United States | Neonates | 40 mothers, 1
hospital | Neonates | Emergency | ICU | | p=NS., all
breastfeeding
measures | | | Erickson 2011 ³⁸ | 67% | United States | Neonates | 73 patients,
1 hospital | Preterm
neonates | Emergency | NICU | p=0.04, time to
enteral nutrition | p=0.05, weight gain/day p=0.30, weight gain/day normalized to kg birth weight p=0.47, time to parenteral nutrition | | | Harris 2004 ⁴⁹ | 74% | Canada | Adults | 976 patients, 1
new hospital
unit established | Pregnant
women | Maternity | Routine | p=0.04,
continuous or
intermittent
electronic foetal
monitoring
p=0.03, IV
therapy
p=0.01, 1-minute
Apgar <7 | p=NS for
augmentation of
labour, 20-
minutes initial
electronic foetal
monitoring at
admission,
epidural,
narcotics, mode of
delivery, and
episiotomy | | | Hourigan 2018 ⁵³ | 63% | United States | Neonates | 32 patients,
1 hospital | Neonates | Emergency | ICU | | p=0.30, receiving
some maternal or
donor breastmilk | p=0.04,
primarily
receiving
maternal or
donor
breastmilk | | Janssen 2000 ⁵⁶ | 56% | Canada | Adults | 426 patients, 1
hospital
relocation | Pregnant
women | Maternity | Routine | p<0.001,
patient
satisfaction with
amount of nurse
interaction for
physical,
emotional, and | p=0.10, baby
received
supplementation
with water
p=0.25, p=0.05
clear discharge
instructions of | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that
favour shared
room | |----------|----|----------|------------|----------------------------------|--------------|-------------------|---------------|------------------------------|----------------------------|------------------------------------| | | | | | | | | | spiritual needs, in | when to call the | | | | | | | | | | | labour, and | doctor, and when | | | | | | | | | | | postpartum | to make an | | | | | | | | | | | p<0.001, | appointment | | | | | | | | | | | patient | respectively | | | | | | | | | | | satisfaction with | | | | | | | | | | | | nurse response | | | | | | | | | | | | time, teaching | | | | | | | | | | | | time, information | | | | | | | | | | | | received, feeding | | | | | | | | | | | | related teaching | | | | | | | | | | | | p<0.001, number | | | | | | | | | | | | of babies who | | | | | | | | | | | | received | | | | | | | | | | | | supplementation | | | | | | | | | | | | with formula | | | | | | | | | | | | p<0.001, number | | | | | | | | | | | | breastfeeding | | | | | | | | | | | | p=0.044, number | | | | | | | | | | | | breastfed within | | | | | | | | | | | | 1-2 hours post- | | | | | | | | | | | | delivery | | | | | | | | | | | | p=0.01, clear | | | | | | | | | | | | discharge | | | | | | | | | | | | instructions of | | | | | | | | | | | | when expect a | | | | | | | | | | | | call from the | | | | | | | | | | | | community health | | | | | | | | | | | | nurse | | | | | | | | | | | | p<0.001, clear | | | | | | | | | | | | instructions of | | | | | | | | | | | | how to use car | | | | | | | | | | | | seat, and nurse | | | | | | | | | | | | reviewed | | | | | | | | | | | | handouts | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that
favour shared
room | |-----------------------------|-----|---------------|---------------------------|---|-------------------|-------------------|---------------|---|---|--| | Lester 2014 ⁷² | 63% | United States | Neonates | 403 patients, 1
hospital
relocation | Neonates | Emergency | ICU | Narrative - reduced stress p<0.0001, reduced pain | | | | Puumala 2020 ¹⁰² | 67% | United States | Neonates | 9995 patients, 1
hospital | Neonates | Emergency | ICU | p<0.001, interval
to oral feeding | | | | Olson 1992 ⁹³ | 52% | United States | Adults | 351 patients, 28
HCP, 1 hospital | Pregnant
women | Maternity | Routine | p<0.05, nurse preferred single rooms p<0.01, nurse think single room is better for premature neonates | p>0.05, nurses
think open rooms
are better for
ventilated/
critically ill infant | | | Stevens 2012 ¹²² | 44% | United States | Neonates | 73 patients, 1
hospital
relocation | Neonates | Emergency | ICU | p=0.04, interval to enteric nutrition | p=NS., other
nutrition
parameters | | | Swanson 2013 ¹²⁵ | 37% | United States | Neonates,
Carers, HCPs | 55 parent
surveys,
42 AP surveys,
151 NN surveys
1 hospital
relocation | Neonates | Emergency | NICU | p<0.05, Advanced neonatal practitioner perceptions of development, facility and privacy p<0.05, Neonatal nurses perceptions of development, facility and privacy. | Advanced neonatal practitioners: p=NS., teamwork, communication, safety Neonatal nurses: p=NS., communication, safety Parents: p=NS, development and safety | Neonatal
nurses:
p<0.05,
teamwork | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of
care | Data that favour single room | Data showing no difference | Data that
favour shared
room | |---------------------------------------|----------|-------------|---------------------|--|-----------------------|-------------------|------------------|---|--|--| | Toivonen 2017 ¹³² | 63% | Finland | Neonates | 20 nurses, 1
hospital
relocation | Neonates | Emergency | ICU | p=0.001, duration
of nurse-parent
interactions
p<0.0001,
duration of nurse-
family
interactions | p=0.349, number
of nurse-parent
interactions
p=0.471, number
of nurse-infant
interactions
p=0.073, duration
of nurse-infant
interactions
p=0.488, number
of nurse-family
interactions | | | Van der Hoeven
2022 ¹³⁵ | 63% | Netherlands | Infants | 1293 infants, 1
hospital | Infants | Unclear | ICU | p<0.001, weight
at discharge
p=0.003, rate of
weight gain | p=0.13,
gestational age at
full enteral
feeding | | | Contemporaneous co | mparison | | | | | | | | | | | Bodack 2016 ¹⁰ | 55% | Germany | Neonates | 35 sets of parents | Premature neonates | Maternity care | NICU | Qualitative
(quality of care) | Qualitative (communication) | | | Erdeve 2008 ³⁶ | 74% | Turkey | Adults,
Neonates | 60 infants,
49 mothers,
1 hospital | Preterm
neonates | Emergency | NICU | | p=0.084, Routine
visits
p=0.046, acute
care visits
p=0.154, number
of breastfed
infants | p=0.005, more
total
applications to
health services
p=0.001, more
consultations
by phone | | Grundt 2021 ⁴⁷ | 67% | Norway | Neonates | 77 patients,
66 mothers, 2
hospitals, 2
units | Premature
neonates | Maternity | NICU | p=0.08, p=0.06,
volume
breastmilk
produced 7, 14,
days post-
delivery,
respectively
p<0.001, p=0.02, | p=0.71, number of sessions at the breast p=0.46, mother breastfeeding self-efficacy p=0.51, p=0.33, | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that
favour shared
room | |-------------------------------|------|---------------|------------|----------------------------------|--------------------|-------------------|---------------|--
--|--| | | | | | | | | | infants breastfed directly and exclusively at discharge, at term, respectively p<0.001, p=0.003, p=0.00, infants partly directly breastfed at discharge, at term, and 4 months corrected age, respectively p=0.00° use of nipple shields | infants exclusively directly breastfed, or on solids, at 4 months corrected age, respectively $p=0.33$, $p=0.61$, use of nipple shields adjusted for post-menstrual age 33 weeks, 34 weeks, respectively | | | Lester 2014 ⁷² | 63% | United States | Neonates | 403 patients, 1
hospital | Neonates | Emergency | ICU | p=0.005, weight
at discharge
p=0.017, rate of
weight gain
p=0.015, interval
to full enteral
feeding | | | | Pineda 2012 ¹⁰⁰ | 70% | United States | Neonates | 81 patients, 1
hospital | Premature neonates | Emergency | NICU | | p=0.75,
breastmilk feeding
at discharge | | | Stelwagen 2021 ¹²⁰ | 100% | Netherlands | Adults | 1 hospital
36 parents | Neonates | Emergency | ICU | Narrative -
apnoea and
periodic
breathing | | | | Tandberg 2019 ¹²⁸ | 67% | Norway | Neonates | 77 patients, 2
hospitals | Neonates | Emergency | ICU | Greater birth
weight, length,
and head
circumference | p=0.45, p=0.42,
breastmilk feeding
exclusively at
discharge, and
term +4 months | Greater weight
at term +4
months | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that
favour shared
room | |--------------------------|-----|---------------|------------|---|--------------|-------------------|---------------|---|----------------------------|--| | | | | | | | | | | | greater length
at term +4
months | | Vohr 2017 ¹⁴⁰ | 67% | United States | Neonates | 651 patients,
1 hospital
relocation | Neonates | Emergency | NICU | p<0.001, weight gain per day p<0.001, weight gain at discharge p=0.002, human milk at 1 week p=0.001, human milk at 4 weeks p<0.001, volume of milk | | | Table 5. Summary of studies reporting data on complications of disease | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|------------|--------------------|-----------------|---|-------------------------|-----------|---------------|---|---|--| | Before and after | a hospital | relocation plus Co | ntemporaneous | comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | | | Pressure ulcers per 1,000 patient-days | | Before and after | a hospital | relocation | | | | | | | | | | Blandfort 2019 ⁷ | 67% | Denmark | Adults, Elderly | 1014 patients,
2 hospitals | Geriatric,
Dementia | Elective | Routine | p=0.02, incidence
of delirium | p=0.57, duration of
first episode of
delirium | | | Cantoni 2009 ¹⁶ | 67% | Switzerland | Adults | 227 patients, 1
hospital | Stem cell
transplant | Elective | Routine | Number of patients with infections (total, pneumonia, CMV-reactivation, CMV-primary, invasive mould, other) Infection rates (pneumonia: clinical diagnosis) | | Number of patients with infections (microbiologically documented, primary sepsis) Infection rates (sepsis, pneumonia, pneumonia: microbiological diagnosis) | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | | p=0.243, hospital-
acquired pressure
injuries | | | Harris 2004 ⁴⁹ | 74% | Canada | Adults | 976 patients, 1
new hospital unit
established | Pregnant
women | Maternity | Routine | | p=NS for rates of
postpartum
haemorrhage,
pyrexia, rates of
thick meconium,
and cases of
meconium
aspiration | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|----------------|-----------------|--|------------------------------------|-------------------|---------------|--|---|--| | Lester 2014 ⁷² | 63% | United States | Neonates | 403 patients, 1
hospital
relocation | Neonates | Emergency | ICU | Less stress (some related to increased maternal involvement) p<0.0001, maternal involvement related to lower pain scores p<0.0001, increased maternal involvement in care of the neonate p<0.0001, reduction in pain due to the SFR NICU alone | | | | Singh 2015 ¹¹⁶ | 70% | United Kingdom | Adults, Elderly | 1749 patients,
1 hospital
relocation | Internal
medicine,
Geriatric | Mixed | Routine | | | p<0.01, hip
fractures due to
falls | | Stevens 2012 ¹²² | 44% | United States | Neonates | 73 patients, 1
hospital
relocation | Neonates | Emergency | ICU | | OR 1.267, 0.929-
1.730, serious
adverse outcomes | | | Lester 2016 ⁷³ | 59% | United States | Neonates | 216 patients, 1
hospital
relocation | Premature
neonates | Maternity | ICU | | p=0.90, periventricular leukomalacia p=0.80, retinopathy of prematurity (stage 3, 4, 5) p=0.16, sepsis p=0.13, bronchopulmonary dysplasia | p=0.09, necrotising
enterocolitis
p=0.08,
intraventricular
haemorrhage
(grade3/4) | | Monson 2018 ⁸⁶ | 78% | United States | Neonates | 90 preterm
infants, 15 term- | Preterm
neonates | Emergency | NICU | | p=0.35,
bronchopulmonary
dysplasia | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---|-------------|-----------|---------------------|--|---------------------|-------------------|---------------|--|--|------------------------------| | | | | | born control infants, 1 hospital | | | | | p=0.38, infection | | | Contemporane | ous compari | ison | | | | | | | | | | Bracco 2007 ¹³ | 74% | Canada | Adults | | | Mixed | ICU | Organ failure | | | | Caruso 2014 ¹⁹ | 74% | Brazil | Adults | 1253 patients, 1
hospital | Adults | Mixed | ICU | p<0.01
delirium prevalence
p<0.01
medical admissions
p<0.01
postoperative
admissions | p=0.33
number of days
with delirium | | | Erdeve 2008, ³⁶
Erdeve 2009 ³⁷ | 74% | Turkey | Adults,
Neonates | 60 infants,
49 mothers,
1 hospital | Preterm
neonates | Emergency | NICU | | p=0.720
clinical risk index
for babies
p=0.673
neonatal
therapeutic
intensity scoring
system | | | Felice Tong
2018 ⁴⁰ | 78% | Australia | Adults | 185 patients,
1 hospital | Orthopaedic | Elective | Routine | | p=0.70 thromboembolic events within 30- days p=0.21 superficial wound infection within 30- days Deep wound infections p=0.70 | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------|-----|--|------------|---|------------------------|-------------------|---------------|--|---|--| | | | | | | | | | | medical
complications
within 30-days | | | Knight 2016 ⁶⁶ | 59% | United Kingdom | Elderly | 100 patients,
2 hospitals |
Geriatric,
Dementia | Mixed | Routine | | p>0.95, patients with hip fracture as result of inpatient fall | | | Lehtonen
2020 ⁷¹ | 74% | Canada,
Australia, New
Zealand,
Finland, Israel,
Japan, Spain,
Sweden,
Switzerland,
Italy | Neonates | 4662 patients,
331 units | Preterm
neonates | Emergency | ICU | OR 0.76, 0.64-0.89,
death or any major
morbidity | OR 0.95, 0.84-1.08, composite of mortality or any morbidity OR 0.84, 0.71-1.00, sepsis OR 1.10, 0.95-1.27, Broncho-pulmonary dysplasia OR 1.14, 0.95-1.37, Intraventricular haemorrhage / Periventricular leukomalacia OR 0.81, 0.66-0.99, Retinopathy of prematurity treatment | | | Vohr 2017 ¹⁴⁰ | 67% | United States | Neonates | 651 patients,
1 hospital
relocation | Neonates | Emergency | NICU | Bayley composites:
p=0.02 Cognitive
p=0.04 Language
p=0.006 Expressive
communication
p=0.08 Motor
p=0.04 Fine motor
Bayley III composite
scores: | p=0.14 receptive
communication
p=0.67 gross motor
p=0.11 normal
neurologic
examination | Suspicious
neurological
examination
Abnormal
neurological
examination | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---|---------------|----------------|--------------|------------------------------|----------------------------------|-------------------|---------------|--|-----------------------------------|------------------------------| | | | | | | | | | p=0.05, cognitive
p=0.02, language
p=0.07, motor | | | | Lester 2014 ⁷² | 63% | United States | Neonates | 403 patients, 1
hospital | Neonates | Emergency | ICU | p=0.05, sepsis | | | | Zaal 2013 ¹⁴⁵ | 67% | Netherlands | Older Adults | 156 patients
1 hospital | Older Adults
with
dementia | Mixed | ICU | | p=0.53, crude risk
of delirium | | | Evidence synthe | esis | | | | | | | | | | | OECD WHO 2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05
Reduced medical
errors | | | | Scottish
Intercollegiate
Guidelines
Network
2019 ¹¹⁵ | Report
73% | United Kingdom | Adults | NR | At risk for
delirium | NR | Routine | Managing patients
with delirium | | | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR | Mixed | Mixed | Mixed | ICU delirium | | | Table 6. Summary of studies reporting data on prevention of infection | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------|-----------|-------------------|----------------|---|--------------|-------------------|---------------|---|--|--| | Before and aft | er a hosp | ital relocation p | us Contemporar | neous comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | Clostridium difficile
in older people's
ward (Control new-
build hospital) | | Clostridium difficile
in older people's
ward (Study
hospital) | | Before and aft | er a hosp | ital relocation | | | | | | | | | | Bonizzoli
2011 ¹¹ | 30% | Italy | Unclear | 818 patients,
1 unit | Trauma | Unclear | ICU | Isolates of MRSA, Proteus mirabilis, Escherichia coli, Serratia marcescens, and Enterobacter spp p<0.01, amoxicillin/ clavulanate use, ceftriaxone use p<0.05 oxacillin use, vancomycin use | | | | Darley 2018 ²⁴ | 56% | United
Kingdom | Unclear | 1 hospital relocation | Unclear | Unclear | Routine | p=0.04, Escherichia
coli bacteraemia
p=0.01, hospital-
acquired
Clostridium difficile
infection | p=0.22, hospital
acquired
methicillin-
sensitive
Staphylococcus
aureus
bacteraemia | | | Domanico
2011 ²⁹ | 63% | United States | Neonates | 162 patients
(PEMRs 2/3=150,
PEMRs 4=12), 1
hospital, 2 units | Paediatric | NR | NICU | Incidence of nosocomial sepsis (Candida albicans, CONS, Enterococcus | Incidence of
nosocomial sepsis
(Escherichia coli) | Incidence of
nosocomial sepsis
(Enterobacter
cloacae, Klebsiella
pneumoniae) | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------|------|-------------|------------|--|--------------|-------------------|---------------|--|---|------------------------------| | | | | | | | | | faecalis, MRSA,
Staphylococcus
aureus, total) | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | | p=0.251, hospital
acquired MRSA
infections
p=0.865, MRSA
present on
admission | | | Ferri 2015 ⁴¹ | 100% | Canada | Adults | 39 HCPs, of
which 13 nurses,
7 respiratory
therapists,
5 HCPS (other),
6 physicians,
4 family
members
4 support staff, 1
hospital | Unclear | Unclear | ICU | Patient perception
(6 patients
perceived better
infection
prevention) | | | | Gregersen
2021 ⁴⁶ | 70% | Denmark | Elderly | 446 patients,
1 hospital
relocation | Geriatric | Unclear | Routine | % hospital-
acquired infections
p=0.01, p=0.03°a
time from
admission to first
hospital-acquired
infection
p=0.004 urinary
tract infections | p=0.74, pneumonia
p=0.50, gastritis
p=0.09, sepsis
p=0.22, other
(wound infection,
nephritis, and
erysipelas) | | | Halaby 2017 ⁴⁸ | 48% | Netherlands | Unclear | 16 beds,
1 hospital | Unclear | Unclear | ICU | p=0.001,
transmission of any
Multidrug resistant
bacteria
p=0.0015, | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------|-----|---------------|------------|--|-----------------------|-------------------|---------------|--|--|------------------------------| | | | | | | | | | transmission of
Citrobacter spp
p=0.0005
transmission of
Enterobacter spp | p=0.99,
transmission of
Proteus spp
p=0.25,
transmission of
Serratia spp
p=0.39,
transmission of
Pseudomonas spp | | | Hourigan
2018 ⁵³ | 63% | United States | Neonates | 32 patients,
1 hospital | Premature
neonates | Emergency | NICU | p=0.0001, fewer positive skin swabs p=0.0003, fewer positive environmental swab samples Presence of antibiotic resistance genes (including resistome and virulome) | p=NS comparison of the entire bacterial community at the genus level Potential human pathogenic viruses in 2-week stool, discharge stool and skin samples Species alpha diversity | | | Jansen 2021 ⁵⁵ | 63% | Netherlands | Neonates | 712 patients
1 hospital,
2 units | Premature
neonates | Maternity care | NICU | | p=0.62, incidence
density per 1000
patient-days
p=0.59, cumulative
incidence per 100
infants
p=0.66, skin and/or
soft tissue infection
p=0.15,
conjunctivitis | | | Jung 2022 ⁶² | 67% | South Korea | Adults | 901 patients,
1 hospital | Mixed | Unclear | ICU | p<0.001 ^a , CRAB acquisition | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------|-----|---------------|------------|--------------------------------|-----------------------|-------------------|---------------|--|--|---| | Lazar 2015 ⁷⁰ | 48% | Israel | Children | 4162 patients,
1
hospital | Children | Mixed | PICU | p=0.01, incidence
of BSI
p=0.03, nosocomial
BSI | p=0.26,
community-
acquired BSI | | | McDonald
2019 ⁸⁰ | 48% | Canada | Unclear | 1 hospital relocation | Mixed | Mixed | Mixed | Enterococcus,
MRSA, and
Clostridium difficile
infections per
10,000 patient-,
days | p=NS, decline in
rates of <i>Clostridium</i>
<i>difficile</i> and MRSA
infection | | | Puumala
2020 ¹⁰² | 67% | United States | Neonates | 9995 patients,
1 hospital | Premature
neonates | Emergency | NICU | p=0.02, sepsis in
preterm infants
(<28 weeks
preterm) | p=0.43, sepsis in
preterm infants (28
– 32 weeks
preterm)
p=0.42, sepsis in
preterm infants (32
– 37 weeks
preterm) | p=0.001
sepsis in
term/post-term
infants (>37 weeks) | | Song 2018 ¹¹⁹ | 63% | United States | Neonates | 171 patients,
1 hospital | Premature neonates | Emergency | NICU | hospital-acquired
ESBL-E incidence | | | | Teltsch
2011 ¹³¹ | 67% | Canada | Adults | 19343 patients,
2 hospitals | Unclear | Unclear | ICU | positive cultures
per 10,000 patient-
days for yeast,
coagulase-negative
Staphylococcus
spp, Enterococcus
spp,
Staphylococcus
aureus, Escherichia
spp, Pseudomonas
spp, Klebsiella spp,
Clostridium difficile,
Corynebacterium
spp, | | Positive cultures per 10,000 patient- days for Enterobacter spp, Haemophilus spp, MRSA, Streptococcus viridans, Acinetobacter spp, Streptococcus pneumoniae, Group B Streptococcus spp, Neisseria spp | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--|-----|---------------|------------|------------------------------|-----------------------|-------------------|---------------|---|--|---| | | | | | | | | | Stenotrophomonas
maltophilia,
Citrobacter spp,
Proteus mirabilis,
Serratia spp, fungi,
VRE, Lactobacillus
spp, anaerobic
cocci, Morganella
spp, Bacteroides
spp, Moraxella spp | | | | Van der
Hoeven
2022 ¹³⁵ | 63% | Netherlands | Neonates | 1293 patients,
1 hospital | Premature
neonates | Unclear | NICU | Infection of multidrug-resistant organisms Colonisation of third-generation cephalosporin resistant bacteria | Multidrug-resistant organisms: Bacteraemia Colonisation of third-generation cephalosporin resistant bacteria Third-generation cephalosporin resistant bacteria: Bacteraemia | Colonisation of multidrug-resistant organisms | | Van
Veenendaal
2020 ¹³⁷ | 70% | Netherlands | Neonates | 1152 patients,
1 hospital | Neonates | Emergency | NICU | % treated for early-
onset sepsis
Overall late-onset
sepsis
OR 0.55, 0.34-0.90
OR ^a 0.49, 0.30-0.81
Late-onset
probable sepsis
OR 0.64, 0.38-1.08
OR ^a 0.56, 0.32-0.96 | Culture-proven
late-onset sepsis
OR 0.83, 0.44-1.56
OR ^a 0.74, 0.39-1.41
Symptoms of late-
onset sepsis
OR 0.22, 0.05-1.01
OR ^a 0.24, 0.05-1.08
Late-onset sepsis
OR 0.40, 0.16-1.03
OR ^a 0.34, 0.13-1.91 | | | Vietri 2004 ¹³⁹ | 59% | United States | Adults | 261 patients,
1 hospital | Mixed | Unclear | Routine | | Positive MRSA culture | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------|---------|-------------------|---------------------|---|---|------------------------|---------------|---|---|------------------------------| | Vohr 2017 ¹⁴⁰ | 67% | United States | Neonates | 651 patients, 1
hospital | Premature
neonates | Emergency | NICU | p=0.09, sepsis or
necrotizing
enterocolitis ≥ Bell
stage IIA | p=0.052, late-onset sepsis | | | Walsh 2006 ¹⁴² | 33% | United States | Neonates | 127 nurses,
1 hospital | Neonates | Emergency | NICU | p<0.05, catheter-
related BSI | | | | Contemporane | ous com | parison | | | | | | | | | | Bevan 2016 ⁵ | 59% | United
Kingdom | Adults, Elderly | 50 patients,
2 hospitals | Acute medical illness | Emergency | Routine | Patient perception of hygiene and infection risk | | | | Bocquet 2021 ⁹ | 74% | France | Adults,
Children | 233 patients,
1 hospital | Mixed,
Influenza | Elective,
Emergency | Routine | Nosocomial cases
Community-
acquired cases | | | | Bracco 2007 ¹³ | 74% | Canada | Adults | 2522 patients (of
whom 207
known MRSA
carriers at
admission), 1
hospital, 1 ward | Mixed, Post
surgery,
Medical
admission | Mixed | ICU | p<0.001 ^{u,m} , risk of
BSI
p<0.05 ^{u,m} , risk of
MRSA acquisition
p=0.001 ^{u,m} , risk of
<i>Pseudomonas</i> spp
acquisition
p<0.001 ^u
p<0.03 ^m , risk of
<i>Candida</i> spp
acquisition | | | | Caruso 2014 ¹⁹ | 74% | Brazil | Adults | 1253 patients, 1
hospital | Adults | Mixed | ICU | | p=0.19
acquired infections | | | Cobo 2001 ²⁰ | 74% | Spain | Adults | 50 patients,
1 hospital,
2 wards | Respiratory,
HIV | Unclear | Routine | | p=0.052,
likelihood of multi-
drug resistant
tuberculosis due to | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------------|-----|---------------|---------------------------------|---|---|-------------------|---------------|--|--|--| | | | | | | | | | | Mycobacterium
bovis | | | Everts 1996 ³⁹ | 52% | New Zealand | Elderly | 27 patients,
1 hospital | Unclear | Rehabilitation | Routine | Cases of clinical influenza | | | | Ford-Jones
1990 ⁴⁴ | 52% | Canada | Children | 1530 patients | Cardiological,
General
admission,
Neurosurgical | Unclear | Routine | Cases of
nosocomial
diarrhoea (GA and
neurosurgical unit) | Cases of
nosocomial
diarrhoea
(cardiological unit) | | | Fraenkel
2018 ⁴⁵ | 67% | Sweden | Adults,
Children,
Elderly | 251 patients,
8 hospitals | Mixed (all
hospitalised
patients who
acquired
norovirus
during
admission) | Unclear | Routine | p<0.01, norovirus | | | | Harris 2006 ⁵⁰ | 63% | United States | Neonates | 21 parents,
75 HCPs,
11 hospitals | Neonates | Emergency | NICU | | Nosocomial BSI | Nosocomial pneumonia | | Julian 2015 ⁶¹ | 78% | United States | Neonates | 1823 patients
1 hospital, 1 unit | Neonates | Mixed | NICU | p=0.039, MRSA
colonization rate
for each additional
one patient | p=0.10, incidence
of MRSA
colonization
p=0.89, Clostridium
difficile infection
rate | | | Jou 2015 ⁶⁰ | 74% | United States | Adults | 225 patients,
1 hospital | Mixed | Elective | Mixed | | | p=0.001,
nosocomial
Clostridium difficile
infection
p<0.001,
malignancy | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------|------|-------------------------------------|-------------------------------------|---|--|-------------------|---------------|---|---|------------------------------| | Kinnula 2008 ⁶⁴ | 63% | Finland | Children | 1927 patients, 1
hospital | Children,
infectious
disease | Mixed | Routine | p=0.03, risk for
hospital acquired
infection | | | | Kinnula 2012 ⁶⁵ | 67% | Finland,
Switzerland | Children | 5119 patients, 3
hospitals, 4
wards | Children, mixed | Mixed | Routine | p<0.001, risk for
hospital acquired
infection during
hospitalization (1
hospital) | p=0.56, risk for
hospital acquired
infection during
hospitalization (1
hospital)
p=NS, risk of
hospital acquired
infection after
discharge (3
hospitals) | | | Liu 2019 ⁷⁴ | 100% | Canada | Adults | 1 hospital
15 parents of
hospitalised
infants | Neonates | Emergency | ICU | Parents'
perception
(reduced spread of
infection) | | | | Lorenz 2011 ⁷⁵ | 78% | United States | Adults, Elderly | 166 patients,
1 hospital | Medical,
Surgical,
Oncologic | Unclear | Routine | | p=NS, hospital-
acquired infections | | | Mattner
2007 ⁷⁹ | 74% | Germany | Adults | 336 patients,
1 hospital | Cardiovascular,
Thoracic
surgery | Mixed | ICU | | Enterococci
OR 1.06, 0.36-3.12
p=0.91 | | | Monson
2018 ⁸⁶ | 78% | United States | Neonates | 90 preterm
infants, 15 term-
born control
infants, 1
hospital | Preterm
neonates | Emergency | NICU | | p=0.38, infection | | | Morgan
2010 ⁸⁷ | 44% | United
Kingdom,
United States | Adolescents,
Adults,
Children | 146 patients, 114
HCP,
2 hospitals | Unclear | Mixed | Routine | HCP preference for isolation and infection control | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------------|------|--------------------------|------------|--|-------------------------------|-------------------|---------------|---|--|------------------------------| | Munier-
Marion 2016 ⁸⁸ | 74% | France | Adults | 93 patients,
1 hospital | Geriatric,
Mixed, Surgical | Unclear | Routine | p=0.028, p=0.039 ^a ,
risk of hospital-
acquired influenza | p=0.16, influenza
vaccination
coverage | | | O'Neill 2018 ⁹⁴ | 74% | United States | Mixed | >1 million
patients, 218
hospitals with
>50% private
rooms, 117 with
>50% bay rooms | Mixed | Mixed | Mixed | p<0.001, p=0.005 ^a ,
central-line-
associated BSIs
p<0.001, central-
line-associated BSIs
related mortality | | | | Park 2020 ⁹⁵ | 63% | United States | Mixed | 2,670,855
discharges,
340 hospitals | Mixed | Mixed | Mixed | p<0.001, p<0.001 ^a ,
hospital-acquired
MRSA infections | | | | Pilmis 2020 ⁹⁹ | 63% | France | Adults | 107 patients,
1 hospital | Mixed | Unclear | Routine | p=0.13 ^u ,
p=0.0005 ^m ,
contamination | | | | Quach 2018 ¹⁰⁴ | 59% | Canada,
United States | Children | 83,334 patient-
days, 2 hospitals | Mixed | Mixed | Mixed | p<0.0001, hospital-
acquired
respiratory viral
infections | | | | Sadatsafavi
2016 ¹¹¹ | 100% | Canada | Unclear | 8811 patient-
days, 1 hospital
(simulation) | Medical,
Surgical | Unclear | ICU | Annual cases of
MRSA acquisition,
Pseudomonas
species acquisition,
and Candida
species
colonization | | | | Stiller 2017 ¹²⁴ | 59% | Germany | Unclear | 534 units | Unclear | Unclear | ICU | Polymicrobial BSI
OR 0.66, 0.51-0.86 | | | | Tandberg
2019 ¹²⁸ | 67% | Norway | Neonates | 77 patients,
2 hospitals | Premature neonates | Emergency | NICU | | p=0.36,
septicaemia | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------|---------------|---------------|------------|--|--------------|-------------------|---------------|---|--|------------------------------| | Vaisman
2018 ¹³³ | 67% | United States | Adults | 189 patients,
512/515 controls,
1 hospital | Unclear | Unclear | Routine | | P=NS, hospital-
onset <i>Clostridium</i>
<i>difficile</i> | | | Washam
2018 ¹⁴³ | 78% | United States | Neonates | 1751 patients,
1 hospital | Neonates | Emergency | NICU | p=0.03 ^u , p=0.03 ^m ,
MRSA | | | | Evidence synth | esis | | | | | | | | | | | OECD WHO
2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05, hospital-
acquired infections | | | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR | Mixed | Mixed | Mixed | 7 studies found advantages only | 3 studies found
mixed results
4 studies found no
difference | | | Voigt 2018 ¹⁴¹ | SLR
86% | International | NR | NR | NR | Unclear | Routine | 10 studies | 5 studies | 16 studies | Table 7 Summary of studies reporting data on patient safety | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no
difference | Data that favour shared room | |---------------------------|-----------|--------------------|-----------------|---|------------------------------------|-------------------|---------------|------------------------------|---|---| | Before and afte | r a hospi | tal relocation plu | us Contemporane | eous comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | | | Falls per 1,000
patient-days | | Before and afte | r a hospi | tal relocation | | | | | | | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | | p=0.599
Falls in hospital
p=0.491
Unwitnessed fall
p=0.082
Second fall | | | Reid 2015 ¹⁰⁷ | 48% | United
Kingdom | Adult, Elderly | 89 patients,
1 hospital
relocation | Geriatric | Rehabilitation | Routine | | Falls per 1,000 occupied bed days | | | Singh 2015 ¹¹⁶ | 70% | United
Kingdom | Adults, Elderly | 1749 patients,
1 hospital
relocation | Internal
medicine,
Geriatric | Mixed | Routine | | | p<0.01, p<0.01 ^a ,
falls per 1,000
patient-bed days
p<0.001, falls per
in-patient faller | | Contemporane | ous com | parison | | | | | | | | | | Knight 2016 ⁶⁶ | 59% | United
Kingdom | Elderly | 100 patients,
2 hospitals | Geriatric,
Dementia | Mixed | Routine | | p=0.83, number of
patients who
sustained
inpatient falls | p=0.035, falls per
inpatient faller | | Lorenz 2011 ⁷⁵ | 78% | United States | Adults, Elderly | 166 patients,
1 hospital | Medical,
Surgical,
Oncologic | Unclear | Routine | | p=0.37, likelihood
of falls | | | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------|---------------|---------------|------------|-------------------------------|--------------|-------------------|---------------|------------------------------|-------------------------------|----------------------------------| | Poncette
2021 ¹⁰¹ | 55% | Germany | Unclear | 21 beds,
1 hospital | Unclear | Unclear | ICU | | | Alarms raised per bed | | Evidence synthe | esis | | | | | | | • | | | | OECD WHO
2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05, patient falls | | | | Taylor 2018 ¹²⁹ | SLR
91% | International | Adults | NR | Mixed | Mixed | Mixed | | No difference | 1 study found disadvantages only | | Voigt 2018 ¹⁴¹ | SLR
86% | International | NR | NR | NR | Unclear | Routine | | 5 studies found no difference | | Table 8. Summary of studies reporting data on readmissions and reinterventions | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour
shared room | |-----------------------------------|---------|-----------|------------|-------------------------------|---------------------|-------------------|---------------|------------------------------|----------------------------|--| | Contemporane | ous com | parison | | | | | | | | | | Erdeve 2008 ³⁶ | 74% | Turkey | Infants | 60 infants,
1 hospital | Preterm
neonates | Emergency | ICU | p<0.05,
hospitalisation | | | | Felice Tong
2018 ⁴⁰ | 78% | Australia | Adults | 185 patients,
1 hospital | Orthopaedic | Elective | Routine | | | p=0.03, return to
theatre within 6
weeks | Table 9. Summary of studies reporting views on privacy | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|---------|-------------------|-------------|---|--------------|-------------------|---------------|--|---|------------------------------| | Before and after a | hospita | l relocation plus | Contemporan | eous comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | Qualitative (privacy,
comfort, personal
control, visitor
flexibility) | | | | Before and after a | hospita | l relocation | | | | | | | | | | Anåker 2019 ³ | 90% | Sweden | Adults | 16 patients,
1 hospital |
Stroke | Rehabilitation | Routine | Qualitative (privacy, personal control) | | | | Carlson 2006 ¹⁷ | 33% | United States | Neonates | 1 hospital,
Patients unclear | Neonates | Emergency | ICU | Parent-reported privacy | | | | Carter 2008 ¹⁸ | 33% | United States | Adults | 1 hospital 53 parents | Neonates | Emergency | ICU | p<0.001, patients'
perception of
privacy | | | | Curtis 2017 ²¹ | 80% | United
Kingdom | Children | 1 hospital, 4
wards
17 patients,
60 caregivers,
60 HCPs | Paediatric | Unclear | Routine | Qualitative (privacy) | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | Perception of privacy | | | | Domanico 2010 ²⁸ | 63% | United States | Parents | 1 hospital, 2 units
161 caregivers | Paediatric | NR | NICU | | p=NS, privacy for
bonding (short stay)
p=0.111 (short stay)
p=0.076 (long stay),
privacy for
breastfeeding | | | Dowling 2012 ³² | 63% | United States | Parents | 1 hospital
40 mothers | Neonates | Emergency | ICU | | p=NS, comfortable
pumping breastmilk | | | Ferri 2015 ⁴¹ | 100% | Canada | Unclear | 1 hospital, 39
HCPs (13 nurses, | Unclear | Unclear | ICU | Qualitative (privacy) | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|------|-------------------|---------------------|--|--|-------------------|---------------|--|----------------------------------|------------------------------| | | | | | 7 respiratory
therapists), 5
HCPs (other),
6 physicians,
4 family members
4 support staff | | | | | | | | Florey 2009 ⁴² | 44% | United
Kingdom | Adults | 2 hospitals, 1
before and after
move, 80 patients | Medical and surgical, Adults | Unclear | Routine | p<0.001, discussing
personal matters
p<0.001, patient
preference | | | | Harris 2004 ⁴⁹ | 74% | Canada | Adults | 1 hospital,
976 patients | Pregnant
women | Maternity | Routine | p=0.01, physicians'
perception of
privacy | | | | Janssen 2000 ⁵⁶ | 56% | Canada | Adults | 1 hospital, 426 patients | Pregnant
women | Maternity | Routine | p<0.001, respect
shown by caregiver
for privacy
p<0.001, greater
number of different
nurses, doctors, and
staff who interacted
with the patient | | | | Jones 2016 ⁵⁸ | 100% | Australia | Adults,
Neonates | 1 hospital
relocation
66 mothers,
51 nurses | Adults, Mothers
of premature
neonates,
Nurses | Maternity | NICU | Qualitative (privacy) | | | | Milford 2008 ⁸⁴ | 30% | United States | Neonates | 1 hospital, patients unclear | Neonates | Emergency | ICU | Staff perceptions of privacy | | | | Real 2018 ¹⁰⁵ | 56% | United States | Unclear | 111 patients,
77 nurses,
1 hospital | Cardio-vascular | Unclear | Routine | Privacy | Communication
Help from staff | | | Reid 2015 ¹⁰⁷ | 48% | United
Kingdom | Adult, Elderly | 89 patients,
1 hospital
relocation | Geriatric | Rehabilitation | Routine | Qualitative (privacy) | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|----------|-------------------|---------------------------|--|---|-----------------------|---------------|---|----------------------------|------------------------------| | Roos 2020 ¹⁰⁸ | 90% | Norway | Adults | 39 patients,
1 hospital
relocation | Internal
medicine,
Surgical,
Maternity | Maternity,
Unclear | Routine | Qualitative (privacy) | | | | Stevens 2011 ¹²¹ | 52% | United States | Adults | 1 hospital,
147 patients | Neonates | Emergency | ICU | Patient-reported privacy | | | | Swanson 2013 ¹²⁵ | 37% | United States | Adults | 1 hospital
55 parents | Neonates | Emergency | ICU | p<0.05, nurses',
patients', and
advanced
practitioners'
perceptions of
privacy | | | | Contemporaneou | s compar | ison | | | | | | | | | | Apple 2014 ⁴ | 52% | Sweden | Adults | 3 ICUs
81 HCP | Mixed | Unclear | ICU | Staff perceptions of privacy | | | | Bevan 2016 ⁵ | 59% | United
Kingdom | Adults, elderly | 2 hospitals
50 patients | Aged 65+ years
with acute
illness | Emergency | Routine | Qualitative
(privacy) | | | | Bodack 2016 ¹⁰ | 56% | Germany | Adults | 1 hospital
35 pairs of
parents of 40
neonates | Neonates | Emergency | ICU | Patient reported privacy | | | | Boztepe 2017 ¹² | 63% | Turkey | Children | 1 hospital, 1 ward
130 | Children | Mixed | Routine | | | Lack of privacy | | Deitrick 2010 ²⁶ | 90% | United States | Adults | 24 patients, 29
HCP, 2 hospitals,
2 wards | Orthopaedic,
Neurological,
Surgical | Unclear | Routine | Patient preference
for privacy | | | | Douglas 2005 ³⁰ | 90% | United
Kingdom | Adults | 1 hospital
785 patients (post
discharge) | Adults | Unclear | Routine | | Mixed results | | | Ehrlander 2009 ³⁵ | 78% | United States | Adults, elderly
Adults | 1 hospital
117 patients | Adults | Unclear | Routine | p<0.01, adequate privacy | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|------|-------------------------------------|--------------------|---|--|-------------------|------------------|---|----------------------------|------------------------------| | Harris 2006 ⁵⁰ | 63% | United States | Adults | 5 NICU units
SFR=2
Open-bay=3
HCPs=75
Parents=21 | Neonates | Maternity | Level 3,
NICU | Parent preference
for privacy | | | | Hosseini 2017 ⁵² | 63% | Iran | Adults | 2 hospitals
132 patients | Adults, Medical or surgical | Unclear | Routine | p<0.001, adequate privacy | | | | Janssen 2006 ⁵⁷ | 59% | Canada | Adults | 1 hospital, 2
wards
415 patients | Pregnant
women | Maternity | Routine | Patient satisfaction with for respect for privacy | | | | Liu 2019 ⁷⁴ | 100% | Canada | Adults | 1 hospital
15 parents of
hospitalised
infants | Neonates | Emergency | ICU | Privacy enabled the learning and practice of caregiving skills | | | | Malcolm 2005 ⁷⁸ | 80% | New Zealand | Adults | Hospitals unclear,
12 former
patients | Mixed surgery,
orthopaedic,
medical,
obstetric, ENT | Mixed | Routine | Qualitative (privacy) | | Qualitative
(supportive) | | Morgan 2010 ⁸⁷ | 44% | United
Kingdom,
United States | Children | 2 hospitals
146 patients,
114 HCP | Children | Mixed | Routine | Patient perception
(privacy)
HCP perception
(privacy, dignity,
confidentiality) | | | | Nahas 2016 ⁸⁹ | 56% | United
Kingdom | Adults,
Elderly | 60 patients,
2 hospitals | Orthopaedic | Elective | Routine | p=0.004, better
privacy | | | | Nash 2021 ⁹⁰ | 63% | Australia | Adults | 4 hospitals
602 patients | Indigenous
Adults | Theoretical | Routine | Qualitative (privacy) | | | | Nassery 2019 ⁹¹ | 90% | Sweden | Adults | 1 hospital,
13 interviews (9
individual parents
and 4 pairs of
parents) | Children | Unclear | Mixed | Qualitative (privacy, comfort) | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---|---------------|-------------------|--------------------|---|---|-------------------|---------------|---|---|--| | Olson 1992 ⁹³ | 52% | United States | Adults | 1 hospital
351 patients,
28 HCP | Pregnant
women | Maternity | Routine | Patient preference
(privacy) | | | | Persson 2012 ⁹⁷ | 90% | Sweden | Adults,
Elderly | 16 patients,
10 nurses
1 hospital | Orthopaedic,
Surgical | Unclear | Routine | Patients in shared rooms signalled their need for privacy | | | | Persson 2015 ⁹⁸ | 90% | Sweden | Adults | 16 patients,
1 hospital | Surgical | Unclear | Routine | Feelings of homeliness | | | | Rowlands 2008 ¹¹⁰ | 90% | United
Kingdom | Adults | 1 hospital
12 | Adults with advanced cancer | Unclear | Routine | Patient preference
(privacy) | | | | Schalkers 2015 ¹¹⁴ | 100% | Netherlands | Children | 8 hospitals
63 patients | Children | Mixed | Routine | Qualitative
(children's
preferences for
privacy) | | | | Stelwagen 2021 ¹²⁰ | 100% | Netherlands | Adults | 1 hospital
36 parents | Neonates | Emergency | ICU | | | Privacy violations
felt more in single
rooms | | Van de Glind
2008 ¹³⁴ | 74% | Netherlands | Adults | 1 hospital
52 encounters | Urology | Unclear | Routine | |
Frequency or content of intimate communications | | | Evidence synthesi | S | 1 | I. | · | L | | | | l | l | | Bradbury-Jones
2013 ¹⁴ | SLR
86% | International | Adults | NR | Mixed,
Vulnerable,
Learning
difficulties | Unclear | Unclear | Side rooms ensure privacy | | | | Dowdeswell
2004 ³¹ | SLR
36% | International | Unclear | Unclear | Mixed | Mixed | Mixed | More privacy, which contributes to better outcomes | No quantifiable evidence of improved outcomes | | | Mental Welfare
Commission
Scotland 1991 ⁸² | Report
30% | United
Kingdom | Unclear | 258 patients,
28 hospitals | Psychiatric | Unclear | Routine | Easier to meet with visitors | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------------|---------------|---------------|------------|----------------------------------|--|-------------------|---------------|--|---|------------------------------| | OECD WHO
2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05, improved patient privacy | | | | Søndergaard
2022 ¹¹⁸ | SLR
91% | International | NR | | Acute, Surgical,
Internal
medicine | Unclear | Routine | Privacy, personal control and self-empowerment | | | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR | Mixed | Mixed | Mixed | | All studies reported advantages and disadvantages | | Table 10. Summary of studies reporting views on patients' loneliness/isolation and family contact | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour
shared room | |--------------------------|--------------|-------------------|-------------------|---|--|-------------------|---------------|---------------------------------------|--|---| | Before and after | a hospital r | elocation plus (| Contemporaneous c | omparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed (all
patients in
hospital) | Unclear | Mixed | | Mixed findings regarding communication | Not isolated More interactions with other patient | | Before and after | hospital r | elocation | | | _ | | | | | | | Anåker 2017 ² | 59% | Sweden | Adults | 59 patients,
1 hospital | Stroke | Rehabilitation | Routine | | | Not isolated Availability of interactions with physicians, nurses, nurse assistants, physiotherapists, occupational therapists, speech and language therapist, significant other, other team member, and interpreters | | Anåker 2019 ³ | 90% | Sweden | Adults | 16 patients,
1 hospital | Stroke | Rehabilitation | Routine | | | Less feeling of
loneliness and
emptiness
Have company to
talk to | | Bevan 2016 ⁵ | 59% | United
Kingdom | Adults, Elderly | 50 patients,
2 hospitals | Acute
illness | Emergency | Routine | Private toilet and showing facilities | | Less feeling of
loneliness and
isolation
Greater
companionship
and goodwill | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------------|-----|----------------|-------------|---|--------------|-------------------|---------------|--|--|---| | Campbell-Yeo
2021 ¹⁵ | 74% | Canada | Neonates | 71 mothers, 2
wards | Neonates | Emergency | icu | More parental presence and involvement, including time with skin-to-skin contact, singing/ talking/ reading to infant, bathing, diaper changes, and providing comfort during painful procedures. More time partner spent holding infants clothed Partner attended rounds at least once during stay | Mothers'
attendance at
rounds
Time mothers
spent bathing
infants | More time mothers
spent holding
infants clothed | | Curtis 2017 ²¹ | 80% | United Kingdom | Children | 17 patients, 60
caregivers, 60
HCPs, 1 hospital, 4
wards | Paediatric | Unclear | Routine | Enhanced family support | | Socialisation
Not isolated | | Cusack 2019 ²² | 56% | Australia | Adults, HCP | 43 nurses,
15 patients,
1 hospital | Unclear | Unclear | Routine | | | Not isolated | | Domanico 2010 ²⁸ | 63% | United States | Neonates | 161 caregivers, 1
hospital, 2 units | Paediatric | NR | NICU | p=0.012, ability to
relax with child
(long stay) | p=0.065,
perceptions of
meeting other
parents (short
stay)
p=0.142 (short
stay), p=0.542
(long stay), other | Socialisation
p=0.036,
perceptions of
meeting other
parents (long stay) | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|------|----------------|------------|---|---|-------------------|---------------|--|--|---| | | | | | | | | | | parents made stay
easier
p=0.879, ability to
relax with child
(short stay) | | | Ferri 2015 ⁴¹ | 100% | Canada | Adults | 39 HCPs, of which
13 nurses,
7 respiratory
therapists,
5 HCPS (other),
6 physicians,
4 family members
4 support staff, 1
hospital | Unclear | Unclear | ICU | Increased visitor presence Increased visitor-provider interaction Accommodates Routine and emergency care Patient satisfaction Confidentiality/privacy | | Socialisation
Camaraderie | | Florey 2009 ⁴² | 44% | United Kingdom | Adults | 80 patients, 2
hospitals, 1 Before
and after move | Medical and surgical, Adults | Unclear | Routine | p=0.002, better for visitors | | p<0.001, less
loneliness | | Janssen 2000 ⁵⁶ | 56% | Canada | Adults | 426 patients, 1
hospital | Pregnant
women | Maternity | Routine | | Patient satisfaction regardless of room design: p=0.005, time spent with support person p=0.007, time spent with baby p=0.39, amount of rest | | | Jones 2016 ⁵⁸ | 100% | Australia | Neonates | 66 mothers, 51
nurses, 1 hospital
relocation | Adults,
Mothers of
premature
neonates,
Nurses | Maternity | NICU | Qualitative
(personal control,
homeliness,
accommodates
overnight stay,
facilitates mother- | | p<0.05, more
support
Qualitative
objections to single
rooms | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------|-----|-------------------|-----------------|--|---|------------------------------|---------------|---|---|---| | | | | | | | | | infant connection,
confidence,
parental skills,
breastfeeding, and
bonding) | | (inconsistent or
lack of
information, poor
interpersonal skills,
loneliness,
isolation; shared
rooms - shared
information from
other patients, and
other patient-
nurse interactions) | | Kainiemi 2021 ⁶³ | 59% | Finland | Neonates | 61 families, 1
hospital, 1 unit
(pre-post-
restructuring) | Pre-term
infants (<35
weeks) | Unclear | NICU | p<0.0001, parents',
mother's, and
father's presence | p=NS, skin-to-skin
contact with either
parent, mother, or
father | | | Real 2018 ¹⁰⁵ | 56% | United States | Unclear | 111 patients,
77 nurses,
1 hospital | Cardio-
vascular | Unclear | Routine | Qualitative (visitor comfort, better family dynamic) | | | | Reid 2015 ¹⁰⁷ | 48% | United
Kingdom | Adult, Elderly | 89
patients,
1 hospital
relocation | Geriatric | Rehabilitation | Routine | | % feeling lonely | | | Roos 2020 ¹⁰⁸ | 90% | Norway | Adults | 39 patients,
1 hospital
relocation | Internal
medicine,
Surgical,
Maternity | Maternity,
Unclear | Routine | Visiting hours | | Less boredom
Not isolated | | Rosbergen 2020 ¹⁰⁹ | 74% | Australia | Adults, Elderly | 73 patients,
1 hospital
relocation | Stroke,
Neurological | Emergency,
Rehabilitation | Routine | p=0.02,
physical activity | P=NS, social
activity
Cognitive activity | Less feeling of loneliness | | Singh 2016 ¹¹⁶ | 70% | United Kingdom | Adults, Elderly | 100 patients,
1 hospital
relocation | Internal
medicine,
Geriatric | Mixed | Routine | | | p=0.03 ^a , less
feeling of
loneliness | | Stevens 2011 ¹²¹ | 52% | United States | Neonates | 147 patients, 1
hospital Before | Neonates | Emergency | ICU | Space for family
Accommodations
for parents | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------------|-----------|---------------------------------|------------|--|-------------------------|-------------------|---------------|---|--|--| | | | | | and after relocation | | | | | | | | Stevens 2012 ¹²² | 44% | United States | Neonates | 73 patients, 1
hospital Before
and after
relocation | Neonates | Emergency | ICU | p=0.017, family-
centred care | | | | Toivonen 2017 ¹³² | 63% | Finland | Neonates | 20 nurses, 1
hospital Before
and after
relocation | Neonates | Emergency | ICU | | p=NS, total nurse—
infant interaction
time | | | Contemporaneous of | omparisor | n | | | | | | | | | | Apple 2014 ⁴ | 52% | Sweden | Unclear | 81 HCP, 3 ICUs | Mixed | Unclear | ICU | Qualitative support
for single rooms
(family
involvement,
family presence
during care) | | | | Bodack 2016 ¹⁰ | 56% | Germany | Neonates | 35 pairs of parents
of 40 neonates, 1
hospital | Neonates | Emergency | ICU | More secure/
confident caring
for baby | | Contact and exchange of knowledge with other parents | | Darcy Mahoney
2020 ²³ | 59% | United States,
International | Neonates | NR, 277 units | Paediatric,
new-born | NR | NICU | presence following
COVID-19
restrictions
p=0.013, parental
presence during
rounds prior to
COVID-19 | p=NS, parental
presence prior to
COVID-19
restrictions
p=0.6, parental
presence during
rounds prior to
COVID-19
restrictions | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---|------|---------------|------------------------|---|---|-------------------|---------------|--|--|---| | De Matos 2020 ²⁷ | 63% | Brazil | Unclear | 176 family visitors,
1 hospital, 4 ICU
units | Cancer | Unclear | ICU | | p=0.52, stress
within 24 hrs
p=0.15, stress
within 7 days | | | Ehrlander 2009 ³⁵ | 78% | United States | Adults | 117 patients, 1
hospital | Adults | Unclear | Routine | Accommodates visitors | p=0.913, loneliness | >50% enjoy
conversation with
room mate and
gave help to room
mate | | Erdeve 2008 ³⁶ | 74% | Turkey | Infants | 60 infants
1 hospital | Preterm
neonates | Emergency | ICU | | | Time spent with infants during non-hospitalised time | | Harris 2006, ⁵⁰ Harris
2006 ⁵¹ | 63% | United States | Neonates | 75 HCP, 21
parents, 5 NICU
units (SFR=2, open
bay=3) | Neonates | Unclear | Level 3, NICU | | Contact with other parents | | | Hosseini 2017 ⁵² | 63% | Iran | Adults | 132 patients,
2 hospitals | Medical,
Surgical | Unclear | Routine | p<0.001, visitor convenience | | p<0.001, less
feeling of
loneliness | | Liu 2019 ⁷⁴ | 100% | Canada | Neonates | 15 parents, 1
hospital | Neonates | Emergency | ICU | Qualitative
(engage in
parenting activities
beyond basic
caregiving) | Qualitative
(isolation) | | | Malcolm 2005 ⁷⁸ | 80% | New Zealand | Adolescents,
Adults | 12 former
patients | Mixed
surgery,
orthopaedic
, medical,
obstetric,
ENT | Mixed | Routine | | | Qualitative
(camaraderie and
support) | | Milford 2008 ⁸⁴ | 30% | United States | Neonates | No. of patients
unclear,
1 hospital | Neonates | Emergency | ICU | Staff perception of discussions with families | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|-----|-------------------|-----------------|---------------------------------------|---|-------------------|---------------|---|---|--| | Morgan 2010 ⁸⁷ | 44% | UK, US | Children | 146 patients, 114
HCP, 2 hospitals | Children | Mixed | Routine | Patients' privacy
Visitor times
Undisturbed sleep
Personal control | | Patients:
Communication
Company
Entertainment | | | | | | | | | | | | HCPs:
Interaction with
other patients
Company | | Nahas 2016 ⁸⁹ | 56% | United
Kingdom | Adults, Elderly | 60 patients,
2 hospitals | Orthopaedic | Elective | Routine | | p=0.754, isolation
p=0.638, loneliness | | | Nash 2021 ⁹⁰ | 63% | United Kingdom | Adults, Elderly | 100 patients, | Adults >65
years,
recovering
from acute
illness | Emergency | Routine | Company of family,
not strangers | | Qualitative (not isolated, social interactions) | | Nassery 2019 ⁹¹ | 90% | Sweden | Children | 13 parents, 1
hospital | Children | Unclear | Mixed | Qualitative
(patient
preference,
privacy, stress,
quieter) | | Qualitative (shared experience and advice) | | Olson 1992 ⁹³ | 52% | United States | Adults | 351 patients, 28
HCP, 1 hospital | Pregnant
women | Maternity | Routine | | Mothers satisfied with visiting hours | | | Pease 2002 ⁹⁶ | 48% | United Kingdom | Unclear | 50 patients, 1
hospital | Oncologic,
Terminal | Unclear | Routine | | | Qualitative (not isolated) | | Persson 2012 ⁹⁷ | 90% | Sweden | Adults, Elderly | 16 patients, 10 nurses, 1 hospital | Orthopaedic
, Surgical | Unclear | Routine | | | Qualitative (not isolated) | | Persson 2015 ⁹⁸ | 90% | Sweden | Adults | 16 patients,
1 hospital | Surgical | Unclear | Routine | | | Qualitative (not isolated, company, social contact) | | Pineda 2012 ¹⁰⁰ | 70% | United States | Neonates | 81 patients, 1
hospital | Premature
neonates | Emergency | NICU | p=0.021 ^a , time
parents spent | p=NS, time parents
spent holding the
infant | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | | Data that favour shared room | |------------------------------|-----|----------------|------------|------------------------------|-----------------------------|-------------------|---------------|---|--|-----------------------------------| | | | | | TOSPICAIS | | | | visiting the infant (week 1-2) p=0.039, time spent cuddling, visiting, and with skin-to-skin contact (week 1-2) p=0.026, p=0.017³, time parents spent visiting the infant during weeks 3-4 p=0.062, p=0.047³, time parents spent visiting the infant by LOS | spent cuddling
infant (week 1–2)
p=0.548, days
spent cuddling | | | | | | | | | | | | skin-to-skin
contact by LOS | | | Rowlands 2008 ¹¹⁰ | 90% | United Kingdom | Adults | 12 patients, 1
hospital | Adults with advanced cancer | Unclear | Routine | Qualitative
(privacy) | | Qualitative (social interactions) | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------|------|---------------|---------------------|---|------------------------------------|-------------------|---------------|--|----------------------------|--| | Schalkers 2015 ¹¹⁴ | 100% | Netherlands | Children | 8
hospitals
63 patients | Children | Mixed | Routine | | | Qualitative
(company, patient
preference if they
have similarities
with other
patients) | | Stelwagen 2021 ¹²⁰ | 100% | Netherlands | Neonates | 36 parents, 1
hospital Before
and after
relocation | Neonates | Emergency | ICU | Qualitative (family
communication
and closeness,
personal control,
privacy,
tranquillity,
comfort, practicing
parenting skills) | | Qualitative (not isolated, ability to distance themselves from invasive procedures) | | Swanson 2013 ¹²⁵ | 37% | United States | Neonates,
Carers | 55 parents,
1 hospital | Neonates | Emergency | NICU | p<0.05 advanced
practitioners'
satisfaction with
communication | | p<0.05, nurse
satisfaction with
communication
p<0.05, nurse
satisfaction with
team | | Tandberg 2018 ¹²⁶ | 70% | Norway | Neonates | 64 patients, 115
parents, 2
hospitals | Neonates,
Premature
neonates | Emergency | ICU | mother and father
present during first
14 days
p=0.02, mother's
skin-to-skin | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data that favour shared room | |------------------------------|-----|----------|------------|--|--------------|-------------------|---------------|---|------------------------------| | | | | | | | | | p=0.04, mothers
felt their opinions
were considered
p<0.001 (mothers),
p=0.01 (fathers),
participation in
doctor visits,
respectively
p=0.05 (mothers),
p<0.001 (fathers),
emotion support
received from staff | | | Tandberg 2019 ¹²⁷ | 67% | Norway | Infants | 77 infants, 132
parents, 2
hospitals | Infants | Emergency | ICU | p<0.0001,
mother's and
father's presence
in week 1
p<0.0001,
mother's and
father's presence
per day up to week
34 | | | Tandberg 2019 ¹²⁸ | 67% | Norway | Neonates | 77 patients, 2
hospitals | Neonates | Emergency | ICU | p<0.001, mother's presence in week 1 p value<0.001, father's presence in week 1 p<0.001, mother's presence overall and continuous p<0.001, father's presence overall and continuous p<0.001, father's presence overall and continuous p<0.001, skin-to-skin contact per day in week 1 | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------------|---------------|---------------------------------|------------|------------------------------|---------------------|-------------------|---------------|---|---|------------------------------| | | | | | | | | | p<0.001, total skin-
to-skin contact per
day | | | | Van Veenendaal
2022 ¹³⁸ | 70% | Netherlands | Neonates | 182 parents, 3
hospitals | Fathers of neonates | Emergency | ICU | p<0.001, p<0.001³, total presence p<0.001, p<0.001³, presence >8 h p<0.001, p=0.009³, total participation p<0.001, p=0.005³, participation in medical care p=0.23, p=0.04³, information gathering p<0.001, p=0.005³, advocacy and leadership p=0.006, p=0.005³, time spent with neonate | participation in
daily care
p=0.69, p=0.57 ^a ,
time spent
comforting | | | Evidence synthesis | | • | • | | | | • | | • | | | Adamson 2003 ¹ | SLR
82% | United States,
International | Mixed | Unclear | Mixed | Mixed | Mixed | Interaction with
family members
and flexibility for
accommodating
family members | | | | Dowdeswell 2004 ³¹ | SLR
36% | International | Unclear | Unclear | Mixed | Mixed | Mixed | Qualitative
(frequency of
visitors, privacy) | | | | OECD WHO 2019 92 | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05, social
support
Communication
with family | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------|------------|---------------|------------|------------------------------|---|-------------------|---------------|--|--|------------------------------| | Søndergaard 2022 ¹¹⁸ | SLR
91% | International | NR | NR | Acute,
Surgical,
Internal
medicine | Unclear | Routine | Quiet, private,
better /easier
communication | | Not isolated and not lonely | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR | Mixed | Mixed | Mixed | | All studies
reported
advantages and
disadvantages | | Table 11. Summary of studies reporting patient's views on noise, disturbance and sleep | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | | | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|----------|--------------------|-------------------|---|--------------|-----------|---------|---|---|------------------------------| | Before and after a l | hospital | relocation plus Co | ontemporaneous co | omparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | Patient
perceptions
(comfort, noise
levels, privacy) | | | | Before and after a l | hospital | relocation | | | | | | | | | | Carlson 2006 ¹⁷ | 33% | United States | Neonates | Unclear, 1
hospital | Neonates | Emergency | ICU | Patient perceptions (noise levels) | | | | Carter 2008 ¹⁸ | 33% | United States | Neonates | 53 parents, 1
hospital | Neonates | Emergency | NICU | p<0.001, noise
level
p<0.001, lighting | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | Adequate sleep reported but no comparison with shared room | | | | Domanico 2010 ²⁸ | 63% | United States | Neonates | 161 caregivers, 1
hospital, 2 units | Paediatric | NR | NICU | Actual noise levels | Patient perceptions (noise levels) p=0.890, noise disturbance (short stay) p=0.657, noise disturbance (long stay) | | | Ferri 2015 ⁴¹ | 100% | Canada | Adults | 39 HCPs (13
nurses, 7
respiratory
therapists),
5 HCPS (other), | Unclear | Unclear | ICU | Qualitative (less disruption) | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|-----|----------------|------------|--|------------------------------------|-------------------|---------------|---|--|------------------------------| | | | | | 6 physicians,
4 family members
4 support staff,
1 hospital | | | | | | | | Florey 2009 ⁴² | 44% | United Kingdom | Adults | 80 patients, 2
hospitals, 1
Before and after
move | Medical and
surgical,
Adults | Unclear | Routine | p=0.019, noise
disturbance | | | | Harris 2004 ⁴⁹ | 74% | Canada | Adults | 976 patients, 1
hospital, Before
and after new unit
established | Pregnancy | Maternity | Routine | p<0.001,
physicians'
perceptions of
noise | | | | Janssen 2000 ⁵⁶ | 56% | Canada | Adults | 426 patients, 1
hospital, Before
and after
relocation | Pregnant
women | Maternity | Routine | p<0.001, any
noise disturbance
p<0.001, talking/
visiting by hospital
neighbours
p=0.08, staff
talking at the
nursing station
p<0.001, crying
babies | p=0.30,
talking/visiting by
hospital staff
p=0.28, women in
labour | | | Maben 2015 ⁷⁶ | 78% | United Kingdom | Unclear | 24 staff, 32
patients, 1
hospital
(relocated), 2
control hospitals | All patients
in hospital | Mixed | Mixed | Patient perceived
benefit | | | | Milford 2008 ⁸⁴ | 30% | United States | Neonates | Unclear, 1
hospital | Neonates | Emergency | ICU | Higher staff satisfaction | | | | Pyrke 2017 ¹⁰³ | 59% | Canada | Adults | 47 patients,
1 hospital
relocation | Psychiatric | Emergency | Routine | | p=0.399, sleep
disturbed
p=0.065, time
spent asleep | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|---------------
------------|---|---------------------|-------------------|---------------|---|---|--| | Real 2018 ¹⁰⁵ | 56% | United States | Unclear | 111 patients,
77 nurses,
1 hospital,
1 ward | Cardio-
vascular | Unclear | ICU, Routine | Perceived noise
level | | | | Stevens 2011 ¹²¹ | 52% | United States | Neonates | 147 patients, 1
hospital Before
and after
relocation | Neonates | Emergency | ICU | Restfulness | | | | Stevens 2012 ¹²² | 44% | United States | Neonates | 73 patients, 1
hospital Before
and after
relocation | Neonates | Emergency | ICU | p<0.001, actual
noise level
p<0.05, lighting | Noise level
adjacent to baby's
ear | | | Van Enk 2011 ¹³⁶ | 44% | United States | Neonates | 90 beds, 1
hospital | Neonates | Emergency | NICU | p=0.04, actual noise level (day time) p=0.05, less illumination (day time) p=0.01, lower temperature (night time) p=0.001, lower temperature (day and night combined) p<0.0001, lower humidity (night time) | p=0.35, actual noise level (night time) p=0.08, actual noise level (day or night time) p=0.49, illumination (night time) p=0.60, temperature (day time) | p<0.0001, lower
humidity (day
time)
p<0.0001, lower
humidity (day and
night combined) | | Walsh 2006 ¹⁴² | 33% | Unclear | Neonates | 127 nurses, 1
hospital | Neonates | Emergency | NICU | Actual noise levels | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--|-----|----------------|-----------------|---|---|-------------------|---------------|---|--|---| | Apple 2014 ⁴ | 52% | Sweden | Unclear | 81 HCP, 3 ICUs | Mixed | Unclear | ICU | Qualitative
(privacy, fewer
disturbances) | | | | Bevan 2016 ⁵ | 59% | United Kingdom | Adults, elderly | 50 patients, 2
hospitals | Acute illness | Emergency | Routine | Qualitative (less noise disturbance) | | | | Bodack 2016 ¹⁰ | 56% | Germany | Neonates | 35 pairs of
parents of 40
neonates, 1
hospital | Neonates | Emergency | ICU | Qualitative (fewer disturbances) | | | | Deitrick 2010 ²⁶ | 90% | United States | Adults | 24 patients,
29 HCP,
2 hospitals,
2 wards | Orthopaedic,
Neurological,
Surgical | Unclear | Routine | | | Qualitative
(adequate rest and
sleep due to the
presence of a
roommate) | | Douglas 2005 ³⁰ | 90% | United Kingdom | Unclear | 785 patients (post
discharge), 1
hospital | Surgical,
Acute care,
Maternity,
Geriatric | Unclear | Routine | Fewer night-time disturbances | | | | Eberhard-Gran
2000 ³³ | 59% | Norway | Adults | 160 patients,
Unclear (one
municipality) | Adults,
Pregnant
women | Maternity | Routine | More sleep/ rest
Enough sleep/ rest
(women ≥ 30 years
old)
OR 8.1, 1.7-39.3
amount of sleep
and rest at
Akershus | Enough sleep/rest
OR 2.9, 0.3-30.3
amount of sleep
and rest at
Kongsvinger | | | Edéll-Gustafsson
2015 ³⁴ | 90% | Sweden | Neonates | 12 parents, 1 unit | Neonates | Emergency | ICU | Qualitative
(privacy, personal
control) | | Qualitative (not confined) | | Ehrlander 2009 ³⁵ | 78% | United States | Adults | 117 patients, 1
hospital | Adults | Unclear | Routine | Qualitative (peace and quiet) | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|----------------|-----------------|---|---|-------------------|---------------|---|--|--| | Foo 2022 ⁴³ | 74% | Australia | Adults | 60 patients,
1 hospital | Cardio-
respiratory,
Obstetric,
Sleep
disorders,
Other | Unclear | Routine | | p>0.05, number of interruptions in 24-h p>0.05, number of disturbances at night p=0.11, other measures of discomfort | | | Harris 2006 ⁵¹ | 52% | United States | Neonates | 21 parents, 75
HCPs | Neonates | Maternity | ICU | Parent satisfaction with physical environment | | | | Hosseini 2017 ⁵² | 63% | Iran | Adults | 132 patients, 2
hospitals | Medical,
surgical | Unclear | Routine | | | p<0.001, better
scores for sleep
disorders | | Meyer 1994 ⁸³ | 59% | United States | Unclear | Unclear, 1
hospital | Mixed | Mixed | Mixed | p<0.05, actual
noise levels (day
time)
p<0.05, actual
noise levels (night
time)
lower maximum
illumination (day
and night time) | Maximum period
of uninterrupted
sleep | | | Morgan 2010 ⁸⁷ | 44% | UK, US | Children | 146 patients, 114
HCP, 2 hospitals | Children | Mixed | Routine | Qualitative (quiet sleep) | | | | Nahas 2016 ⁸⁹ | 56% | United Kingdom | Adults, Elderly | 60 patients,
2 hospitals | Orthopaedic
(elective hip/
knee
arthroplasty) | Elective | Routine | p=0.003, good
sleep at night | p=0.127, noise
level | | | Nassery 2019 ⁹¹ | 90% | Sweden | Children | 13 interviews (9 individual parents, 4 pairs of | Children | Unclear | Mixed | Less stress sleeping alone | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------|------|----------------|-----------------|---|-----------------------------------|-------------------|---------------|---|--|--| | | | | | parents), 1
hospital | | | | | | | | Olson 1992 ⁹³ | 52% | United States | Adults | 351 patients, 28
HCP, 1 hospital | Pregnant
women | Maternity | Routine | Mothers satisfied with room but no comparison with shared rooms | | | | Persson 2012 ⁹⁷ | 90% | Sweden | Adults, Elderly | 16 patients,
10 nurses
1 hospital,
2 wards | Orthopaedic,
Surgical | Unclear | Routine | Less disturbance | | | | Persson 2015 ⁹⁸ | 90% | Sweden | Adults | 16 patients,
1 hospital | Surgical | Unclear | Routine | Sleep undisturbed | | | | Poncette 2021 ¹⁰¹ | 56% | Germany | Unclear | 21 beds, 1
hospital | Unclear | Unclear | ICU | | | Less alarms raised | | Rowlands 2008 ¹¹⁰ | 90% | United Kingdom | Adults | 12 patients, 1
hospital | Adults with advanced cancer | Unclear | Routine | Qualitative (less
stress related to
disturbing others) | | | | Sakr 2021 ¹¹³ | 74% | Lebanon | Adults | 75 patients,
1 hospital | Internal
medicine,
Surgical | Mixed | Routine | p=0.011, fewer
cases of new onset
insomnia | p=0.272, patient
perceived impact
of room on new
onset insomnia | | | Stelwagen 2021 ¹²⁰ | 100% | Netherlands | Neonates | 36 parents, 1
hospital | Neonates | Emergency | ICU | Qualitative
(privacy) | | Qualitative (less
surprise when staff
appear at bedside) | | Tegnestedt 2013 ¹³⁰ | 70% | Sweden | Adults, Elderly | 15 patients
1 hospital | Adults | Emergency | ICU | | p=0.777 (7am to
3pm),
p=0.885(3pm to
11pm), p=0.832
(11pm to 7am),
actual noise | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------------|---------------|---------------|--------------|------------------------------|---|-------------------|---------------|---|----------------------------------|--------------------------------------| | Zaal 2013 ¹⁴⁵ | 67% | Netherlands | Older Adults | 156 patients
1 hospital | Older Adults
with
dementia | Mixed | ICU | | | p <0.001
lower light
intensity | | Evidence synthesis | | | | | | | | | | | | Dowdeswell 2004 ³¹ | SLR
36% | International | Unclear | Unclear | Mixed | Mixed | Mixed | Quieter (less sleep disturbance, better outcomes) | | | | OECD WHO 2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05, better
sleep | | | | Søndergaard
2022 ¹¹⁸ | SLR
91% | International | NR | NR | Acute,
Surgical,
Internal
medicine | Unclear | Routine | Quieter (less sleep
disturbance) | | | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR |
Mixed | Mixed | Mixed | | Mixed findings on sleep outcomes | | Table 12. Summary of studies reporting patients' views on satisfaction with care | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------------|------------|--------------------|----------------|---|------------------------------------|-------------------|---------------|--|---|--| | Before and after a | a hospital | relocation plus Co | ontemporaneous | comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | Patient preference
(privacy, ensuites) | | Patient preference
(social interaction) | | Before and after a | a hospital | relocation | | | | | | | | | | Campbell-Yeo
2021 ¹⁵ | 74% | Canada | Neonates | 71 mothers, 2
wards | Neonates | Emergency | ICU | Postpartum
depression scores
Post-traumatic
stress disorder
scores | Parental stressor
scores
EQ-5D-5L self-
reported health | Perceived maternal
self-efficacy
Intolerance of
uncertainty | | Carlson 2006 ¹⁷ | 33% | United States | Neonates | 1 hospital,
Patients unclear | Neonates | Emergency | ICU | Patient perception (improved lighting control) | | | | Carter 2008 ¹⁸ | 33% | United States | Neonates | 53 parents,
1 hospital Before
and after
relocation | Neonates | Emergency | NICU | p<0.001
parent perceptions
of security | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | Patient satisfaction
but no comparison
with shared room | | | | Florey 2009 ⁴² | 44% | United Kingdom | Adults | 80 patients, 2
hospitals, 1 Before
and after move | Medical and
surgical,
Adults | Unclear | Routine | | patient preference
based on previous
experience
inconclusive | | | Janssen 2000 ⁵⁶ | 56% | Canada | Adults | 426 patients, 1
hospital | Pregnant
women | Maternity | Routine | p<0.001, patient
opinions in care
considered
p<0.001,
information given
to inform choices | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|-----|-------------|------------|--|------------------------------------|-------------------|---------------|---|---|------------------------------| | | | | | | | | | p<0.001, patient choices supporter by caregivers p<0.001, assistance given to support person p<0.001, comfort measures for labour pain p<0.001, comfort measures for pain after birth | | | | Jongerden 2013 ⁵⁹ | 67% | Netherlands | Adults | 387 patients, 323
completed
surveys, 1 hospital | Mixed, Adults | Mixed | ICU | p=0.02, overall family satisfaction p=0.007, family satisfaction with care p=0.02, overall patient satisfaction p=0.01, patient satisfaction with care | p=0.12, family
satisfaction with
decision making
p=0.21, patient
satisfaction with
decision making | | | Kainiemi 2021 ⁶³ | 59% | Finland | Neonates | 61 families, 1
hospital, 1 unit
(pre-post-
restructuring) | Pre-term
infants (<35
weeks) | Unclear | NICU | | Patient perceptions: (mothers and fathers, respectively) p=0.19, p=0.33, overall scores p=0.11, p=0.94, extent staff listen to mothers/fathers p=0.24, p=0.18, participation in baby's care | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------|-----|----------------|------------|---------------------------------------|-----------------------------------|-------------------|---------------|---|--|------------------------------| | | | | | | | | | | p=0.09, p=0.45, guidance provided by staff met needs p=0.71, p=0.16, opinion considered regarding care of baby p=0.51, p=0.16, mothers/fathers trust in staff caring for baby p=0.28, p=0.92, staff trust in mothers/fathers caring for baby p=0.12, p=0.89, participation in discussions during rounds p=0.51, p=0.41, information given by staff met needs p=0.70, p=0.87, staff offer emotional support | | | Lawson 2000 ⁶⁹ | 41% | United Kingdom | Adults | 424 patients, 2
hospitals, 4 wards | Psychiatric
and
Orthopaedic | Unclear | Routine | Patient perceptions (spatially, visually) | | | | Lester 2014 ⁷² | 63% | United States | Neonates | 403 patients, 1
hospital | Neonates | Emergency | ICU | p<0.001, mother's
overall satisfaction
p<0.0001,
mother's stress
p<0.001 mother's
satisfaction with
family-centred care | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|----------------|------------------|---|---------------------|-------------------|---------------|--|----------------------------|------------------------------| | | | | | | | | | p<0.0001 mother's involvement in infant care | | | | Milford 2008 ⁸⁴ | 30% | United States | Neonates | No. of patients unclear, 1 hospital | Neonates | Emergency | ICU | Positive staff perceptions | | | | Real 2018 ¹⁰⁵ | 56% | United States | Unclear | 111 patients,
77 nurses, 1
hospital, 1 ward | Cardio-
vascular | Unclear | ICU, Routine | p<0.05, patients'
satisfaction with
design | | | | Reid 2015 ¹⁰⁷ | 48% | United Kingdom | Adult, Elderly | 89 patients,
1 hospital
relocation | Geriatric | Rehabilitation | Routine | 100% patients
prefer private
toilet
84.8% of patients
in single rooms
would prefer single
rooms
37.2% of patients
in shared room
would prefer single
rooms | | | | Stevens 2011 ¹²¹ | 52% | United States | Neonates | 147 patients, 1
hospital | Neonates | Emergency | ICU | p<0.001, parent
satisfaction with
environment
p=0.018, overall
parent satisfaction
p=0.04, total
parent satisfaction
score | | | | Swanson 2013 ¹²⁵ | 37% | United States | Neonates, Carers | 55 parents,
1 hospital | Neonates | Emergency | NICU | p<0.05, nurse
perception of
facilities
p<0.05,
practitioners'
perceptions of
facilities | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------------|---------|----------------|-----------------|---|---|-------------------|---------------|---|---|------------------------------| | | | | | | | | | p<0.05, parents'
perceptions of
facilities | | | | Contemporaneous | compari | son | | | | | | | | | | Bevan 2016 ⁵ | 59% | United Kingdom | Adults, Elderly | 50 patients,
2 hospitals | Acute illness | Emergency | Routine | Qualitative
(privacy, personal
control, private
toilet)
p=0.038, patients
perceived a high-
level of care | | | | Boztepe 2017 ¹² | 63% | Turkey | Children | 130 patients, 1
hospital, 1 ward | Children | Mixed | Routine | | Only 15.4%
expected a large or
single room | | | Deitrick 2010 ²⁶ | 90% | United States | Adults | 24 patients, 29
HCP, 2 hospitals,
2 wards | Orthopaedic,
Neurological,
Surgical | Unclear | Routine | Patient preference (privacy) | | | | de Matos 2020 ²⁷ | 63% | Brazil | Unclear | 176 family
visitors, 1
hospital, 4 ICU
units | Cancer | Unclear | ICU | p=0.02, patient
satisfaction
Satisfaction of
family members | | | | Douglas 2005 ³⁰ | 90% | United Kingdom | Unclear | 785 patients (post
discharge), 1
hospital | Surgical, Acute
care,
Maternity,
Geriatric | Unclear | Routine | Patient
satisfaction with needs met | | | | Eberhard-Gran
2000 ³³ | 59% | Norway | Adults | 160 patients,
Unclear (one
municipality) | Adults,
Pregnant
women | Maternity | Routine | OR ^a 18, 2.2-149.1
more likely to be
satisfied with care | Satisfaction with
rooms
Satisfaction with
sleep and rest
Satisfaction with
LOS | | | Ehrlander 2009 ³⁵ | 78% | United States | Adults | 117 patients, 1
hospital | Adults | Unclear | Routine | Patient preference | p=0.309, fear of
dying | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|---------------|------------------|---|----------------------|-------------------|------------------|---|---|------------------------------| | Erdeve 2009 ³⁷ | 78% | Turkey | Adults, Neonates | 60 infants,
49 mothers,
2 hospitals | Preterm
neonates | Emergency | NICU | | p=0.206, depression scores p=0.06, postpartum depression rate p=0.161, vulnerable child scores p=0.219, parenting stress scores | | | Harris 2006 ⁵⁰ | 63% | United States | Neonates | 75 HCP, 21
parents, 5 NICU
units (SFR=2, open
bay=3) | Neonates | Unclear | Level 3,
NICU | p<0.05, window
view and proximity
to infant during
sleep
Less stressful and
less depressing | | | | Harris 2006 ⁵¹ | 52% | United States | Neonates | 21 parents,
75 HCPs | Neonates | Maternity | ICU | Less stressful and
less depressing,
better physical
environment. | | | | Hosseini 2017 ⁵² | 63% | Iran | Adults | 132 patients,
2 hospitals | Medical,
Surgical | Unclear | Routine | p<0.001, patients'
overall satisfaction
p<0.001, patients'
total satisfaction | | | | Janssen 2006 ⁵⁷ | 59% | Canada | Adults | 415 patients, 1
hospital, 2 wards | Pregnant
women | Maternity | Routine | p<0.001, patients' overall satisfaction p<0.001, confidence in neonatal care p<0.001, provision of choice p<0.001, physical environment | | | | Labarère 2004 ⁶⁸ | 70% | France | Adults | 4095 patients,
1 hospital | Mixed | Mixed | Mixed | p<0.01, overall patient experience | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|-----|----------------|------------------------|---|--|-------------------|---------------|---|--|--| | Miller 1998 ⁸⁵ | 59% | United States | Adolescents,
Adults | 94 patients,
1 hospital | Inpatients,
Outpatients | Unclear | Routine | % patients overall stating ideal rooming arrangements % inpatients stating ideal rooming arrangements % female inpatients stating ideal rooming arrangements % inpatients aged 15 to 17 and 18 to 21 stating ideal rooming arrangements % female outpatients stating ideal rooming arrangements % female outpatients stating ideal rooming arrangements | % outpatients aged 12 to 14 stating ideal rooming arrangements | % male inpatients and outpatients stating ideal rooming arrangements % inpatients aged 12 to 14 stating ideal rooming arrangements % outpatients stating ideal rooming arrangements stating ideal rooming arrangements % outpatients aged 15 to 17 and 18 to 21 stating ideal rooming arrangements | | Morgan 2010 ⁸⁷ | 44% | UK, US | Children | 146 patients, 114
HCP, 2 hospitals | Children | Mixed | Routine | | | % patient preference | | Nahas 2016 ⁸⁹ | 56% | United Kingdom | Adults, Elderly | 60 patients,
2 hospitals | Orthopaedic
(elective hip/
knee
arthroplasty) | Elective | Routine | p=0.014, feeling of safety Qualitative (privacy, security, pain management, cleanliness) | p=0.061, overall patient satisfaction | | | Nash 2021 ⁹⁰ | 63% | Australia | Adults | 602 patients,
4 hospitals | Unclear | Unclear | Routine | | | Patient preference | | Nassery 2019 ⁹¹ | 90% | Sweden | Children | 13 interviews (9 individual parents, 4 pairs of | Children | Unclear | Mixed | Parents preference | | | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|-----|----------------|-----------------|---|---|-----------------------|---------------|--|--|---| | | | | | parents), 1
hospital | | | | | | | | Olson 1992 ⁹³ | 52% | United States | Adults | 351 patients, 28
HCP, 1 hospital | Pregnant
women | Maternity | Routine | Nurse preference
Mother
satisfaction | | | | Pease 2002 ⁹⁶ | 48% | United Kingdom | Unclear | 50 patients, 1 hospital | Oncologic,
Terminal | Unclear | Routine | Family preference | | Patient preference | | Persson 2012 ⁹⁷ | 90% | Sweden | Adults, Elderly | 16 patients, 10
nurses, 1 hospital,
2 wards | Orthopaedic,
Surgical | Unclear | Routine | | | Qualitative
(security and
safety) | | Persson 2015 ⁹⁸ | 90% | Sweden | Adults | 16 patients,
1 hospital | Surgical | Unclear | Routine | | | Qualitative
(security, company,
not isolated) | | Pineda 2012 ¹⁰⁰ | 70% | United States | Neonates | 81 patients, 1
hospital | Premature
neonates | Emergency | NICU | | p=0.512, maternal depression p=0.152, trait anxiety p=0.830, state anxiety p=0.071, life stress p=0.603, avoidance coping p=0.967, emotionoriented coping p=0.506, taskoriented coping p=0.951, social support | p=0.040 ^a , stress
levels | | Roos 2020 ¹⁰⁸ | 90% | Norway | Adults | 39 patients,
1 hospital
relocation | Internal
medicine,
Surgical,
Maternity | Maternity,
Unclear | Routine | | | Satisfaction for older/bedridden patients | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------|------|----------------|------------|---|-----------------------------|-------------------|---------------|--|--|------------------------------| | Rowlands 2008 ¹¹⁰ | 90% | United Kingdom | Adults | 12 patients, 1
hospital | Adults with advanced cancer | Unclear | Routine | | Qualitative (desire for choice of room) | | | Stelwagen 2021 ¹²⁰ | 100% | Netherlands | Neonates | 36 parents, 1
hospital Before
and after
relocation | Neonates | Emergency | ICU | Qualitative
(privacy, safety,
homeliness,
feelings of central
engagement with
child care) | | | | Tandberg 2019 ¹²⁷ | 67% | Norway | Infants | 77 infants, 132 parents, 2 hospitals | Infants | Emergency | ICU | Mothers: p=0.005, depression at day 14 p=0.04, anxiety at day 14 p=0.0001, role alteration at day 14 p=0.06, role alteration at discharge Fathers: p=0.06, environmental stress at day 14 p=0.003, role alteration at day 14 p=0.003, role alteration at day 14 p=0.003, role alteration at day 14 p=0.004, role alteration at discharge p=0.004, role alteration at discharge | Mothers: p=0.12 Maternal distress at day 14 p=0.43 depression, and p=0.48, anxiety at discharge p=0.13, distress at discharge p=0.65, depression and p=0.54, anxiety at 4-month corrected age p=0.60, distress at 4-month corrected age p=0.62, dysfunctional interaction with child p=0.23, perceived child to be difficult p=0.42, stress p=0.51, attachment | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | | Data that favour shared room |
---------------------------------------|-----|-------------|------------|------------------------------|------------------------|-------------------|---------------|---|--|------------------------------| | | | | | | | | | | Fathers: p=0.17, depression and p=0.25, anxiety at day 14 p=0.57, depression and p=0.73, anxiety at discharge p=0.92, depression and p=0.11, anxiety at 4-month corrected age p=0.16, dysfunctional interaction with child p=0.77, perceived child to be difficult p=0.68, stress p=0.49, attachment | | | Van Veenendaal
2022 ¹³⁸ | 70% | Netherlands | Neonates | 182 parents, 3
hospitals | Fathers of
neonates | Emergency | icu | p=0.001a, stress
overall
p=0.011a, stress
related to
environment
p<0.001a, stress
related to role
alteration | p=0.83 ^a , depression and anxiety p=0.26 ^a , self- efficacy p=0.27 ^a , impaired parent-newborn bonding p=0.32, satisfaction with care | | | Watson 2014 ¹⁴⁴ | 44% | Canada | Neonates | 85 families,
1 hospital | Neonates | Emergency | NICU | p=0.008, privacy
p=0.0001, comfort
p=0.009,
interaction with
other families | p=0.05, getting to
know baby
p=0.05, feeling
irritable, anxious,
depressed or sad | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------------------|---------------|---------------|------------|------------------------------|---|-------------------|---------------|---|--|---| | | | | | | | | | p=0.04. confidence
feeding baby
p=0.04, easy to
comfort baby
p=0.003, family
adjusted to having
the baby home | p=0.05, satisfied
with care baby
received | | | Economic analysis | | | | | | | | | | | | Boardman 2011 ⁸ | 91% | Canada | Unclear | 537 beds,
1 hospital | Mixed | Mixed | Mixed | Patients and willingness to pay for single over shared rooms | | | | Evidence synthesis | | | | | | | | | | | | Bradbury-Jones
2013 ¹⁴ | SLR
86% | International | Adults | NR | Mixed,
Vulnerable,
Learning
difficulties | Unclear | Unclear | | Mixed views
among patients
with learning
disabilities | | | Dowdeswell 2004 ³¹ | SLR
36% | International | Unclear | Unclear | Mixed | Mixed | Mixed | Quicker mobility
recovery
Sense of self-
reliance
Personal control
leads to happier
patients. | | | | OECD WHO 2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | 12 studies showed
single rooms
positively affect
patient satisfaction | 4 studies showed no difference | 1 study showed
single rooms don't
positively affect
patient satisfaction | | Søndergaard
2022 ¹¹⁸ | SLR
91% | International | NR | NR | Acute,
Surgical,
Internal
medicine | Unclear | Routine | | | Communication
and interaction
with kindred spirits
was appreciated | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |----------------------------|------------|---------------|------------|----------------------------------|--------------|-------------------|---------------|--|--|--| | | | | | | | | | | | Bedridden / older
patients were less
satisfied with single
rooms. | | Taylor 2018 ¹²⁹ | SLR
91% | International | NR | NR | Mixed | Mixed | Mixed | Patient
perceptions of
dignity | | | | Voigt 2018 ¹⁴¹ | SLR
86% | International | NR | NR | NR | Unclear | Routine | 1 study found
advantage or no
difference for | 1 study found
mixed findings for
feelings of safety
All studies found
mixed findings
regarding concern
for others
1 study found
mixed findings for
patient preference | | Table 13. Summary of studies reporting data on patient monitoring and safeguarding | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------|-----------|---------------------|-----------------|---|---|-------------------|--------------|---------------------------------|---|--| | Before and after | a hospita | l relocation plus (| Contemporaneous | comparison | | • | | • | • | • | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | | Qualitative
(regular visits by
staff to single-
rooms) | | | Before and after | a hospita | l relocation | | | | | | | | | | Real 2018 ¹⁰⁵ | 56% | United States | Unclear | 111 patients, 77
nurses, 1
hospital,
1 ward | Cardio-vascular | Unclear | ICU, Routine | | Staffing ratio | | | Jansen 2021 ⁵⁵ | 63% | Netherlands | Neonates | 712 patients
1 hospital,
2 units | Premature
neonates | Maternity
care | NICU | | Nurse-to-patient ratio | | | Jones 2016 ⁵⁸ | 100% | Australia | Neonates | 66 mothers, 51
nurses, 1 hospital
relocation | Adults,
Mothers of
premature
neonates,
Nurses | Maternity | NICU | | | Nurse perception
(parallel patient
interactions, get
caught in single
rooms so can't
attend to other
families) | | Jung 2022 ⁶² | 67% | South Korea | Adults | 901 patients,
1 hospital | Mixed | Unclear | ICU | | Nurse-to-patient ratio | | | Contemporaneo | us compai | rison | | | | | | | | | | Bevan 2016 ⁵ | 59% | United
Kingdom | Adults, Elderly | 50 patients,
2 hospitals | Acute medical illness | Emergency | Routine | Patient perceptions (isolation) | | | | Bodack 2016 ¹⁰ | 55% | Germany | Neonates | 35 pairs of parents | Premature neonates | Maternity care | NICU | Somewhat less frequent | | | | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|------------|-------------------|-----------------|--|--|-------------------|---------------|--|-----------------------------------|------------------------------| | | | | | | | | | adequate
monitoring | | | | Bracco 2007 ¹³ | 74% | Canada | Adults | 2522 patients (of
whom 207
known MRS
carriers at
admission), 1
hospital, 1 ward | Mixed, Post
surgery,
Medical
admission | Mixed | ICU | Standard nurse-
to-patient ratio
1:2 | | | | Ehrlander 2009 ³⁵ | 78% | United States | Adults | 117 patients,
1 hospital | Mixed | Unclear | Routine | p=0.025, patient
perception of
nurse availability | | | | Deitrick 2010 ²⁶ | 90% | United States | Adults | 24 patients,
29 HCP,
2 hospitals,
2 wards | Orthopaedic,
Neurological,
Surgical | Unclear | Routine | Better response to call lights. More visits to anticipate patient needs. | | | | Hosseini 2017 ⁵² | 63% | Iran | Adults | 132 patients,
2 hospitals | Medical,
Surgical | Unclear | Routine | p=0.19, access to
nurses | | | | Julian 2015 ⁶¹ | 78% | United States | Neonates | 1823 patients
1 hospital, 1 unit | Neonates | Mixed | NICU | | Nurse-to-patient ratio | | | Nahas 2016 ⁸⁹ | 56% | United
Kingdom | Adults, Elderly | 60 patients,
2 hospitals | Orthopaedic
(elective hip/
knee
arthroplasty) | Elective | Routine | | p=0.244, response
to call bell | | | Early vs late respo | onse to ne | ew unit design | • | • | , | * | • | • | | • | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |--------------------------|------|----------|------------|---|--------------|-------------------|---------------|---|----------------------------|---| | Ferri 2015 ⁴¹ | 100% | Canada | Adults | 39 HCPs, of
which 13
nurses,
7 respiratory
therapists,
5 HCPS (other),
6 physicians,
4 family
members
4 support staff
1 hospital, 1 unit | Unclear | Unclear | ICU | 75 negative
comments on
shared-room
design | | Qualitative (less
safety concerns
related to
distance between
patient and care
provider) | Table 14. Summary of studies reporting views on patient confidentiality | Citation | QA | Location | Population | Number of patients/hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favou
shared room | |---------------------------|-----------|----------------------|-----------------|---|---|-------------------|---------------|--|---|--------------------------------| | Before and after | a hospita | al relocation plus (| Contemporaneous | comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | Qualitative
(confidentiality) | | | | Before and after | a hospita | al relocation | | | | | | | | | | Ferri 2015 ⁴¹ | 100% | Canada | Adults | 39 HCPs, of which
13 nurses,
7 respiratory
therapists,
5 HCPS (other),
6 physicians,
4 family members
4 support staff,
1 hospital | | Unclear | ICU | Qualitative (patient
perceptions of
confidentiality) | | | | Jones 2016 ⁵⁸ | 100% | Australia | Neonates | 66 mothers, 51
nurses, 1 hospital
relocation | Adults,
Mothers of
premature
neonates,
Nurses | Maternity | NICU | Qualitative (nurse
perceptions of
confidentiality,
facilitating care) | | | | Florey 2009 ⁴² | 44% | United Kingdom | Adults | 80 patients, 2
hospitals, 1 move | Medical and
surgical,
Adults | Unclear | Routine | p<0.001
ability to have
confidential
discussions | | | | Real 2018 ¹⁰⁵ | 56% | United States | Unclear | 111 patients,
77 nurses, 1
hospital, 1 ward | Cardio-
vascular | Unclear | ICU, Routine | | Patient satisfaction with confidentiality | | | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour
shared room | |--------------------------------|---------------|----------------|------------------------|--|---|-----------------------|---------------|---|----------------------------|---------------------------------| | Roos 2020 ¹⁰⁸ | 90% | Norway | Adults | 39 patients,
1 hospital
relocation | Internal
medicine,
Surgical,
Maternity | Maternity,
Unclear | Routine | Qualitative (patient perceptions of confidentiality) | | | | Contemporaneou | s compa | rison | | | | | | | | | | Bodack 2016 ¹⁰ | 56% | Germany | Neonates | 35 pairs of parents of 40 neonates, 1 hospital | Neonates | Emergency | ICU | Qualitative (easier to guarantee confidentiality) | | | | Bevan 2016⁵ | 59% | United Kingdom | Adults, Elderly | 50 patients,
2 hospitals | Acute illness | Emergency | Routine | Qualitative (patient perceptions of confidentiality) | | | | Hosseini 2017 ⁵² | 63% | Iran | Adults | 2 hospitals
132 patients | Adults,
Medical or
surgical | Unclear | Routine | p<0.001
comfortable
discussing personal
problems | | | | Malcolm 2005 ⁷⁸ | 80% | New Zealand | Adolescents,
Adults | 12 former patients | Mixed
surgery,
orthopaedic,
medical,
obstetric, ENT | Mixed | Routine | Qualitative (patients
in shared rooms felt a
lack of privacy and
confidentiality which
affected relationships
with other patients) | | | | Evidence synthesi | is | | | | | | | | | | | OECD WHO
2019 ⁹² | Report
14% | Europe | NR | NR | Mixed | Mixed | Mixed | p<0.05, improved patient confidentiality | , | | Table 2. Summary of studies reporting data on availability of beds, space requirements, and capital costs | Citation | QA | | Population | Number of patients/
hospitals | | Type of admission | Level of
care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|---------|-------------------|--------------|--|---|-------------------|------------------|---|----------------------------------|--| | Before and after a | hospita | l relocation pl | us contempor | aneous comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital relocation,
2 control hospitals | Mixed | Unclear | Mixed | | | Higher space
requirement for
single-bed wards
Building costs per
bed | | Before and after a | hospita | l relocation | | | | | | | | | | Darley 2018 ²⁴ | 56% | United
Kingdom | Unclear | 1 hospital relocation | Unclear | Unclear | Routine | Ward closures per
year
Bed days lost per
100,000 | | | | Domanico 2011 ²⁹ | 63% | United
States | Neonates | 162 patients
(PEMRs 2/3=150,
PEMRs 4=12), 1
hospital, 2 units | Paediatric | NR | NICU | Number of patients
accommodated;
Total space | | | | Jones 2016 ⁵⁸ | 100% | Australia | Neonates | 66 mothers, 51
nurses, 1 hospital
relocation | Adults, Mothers of premature neonates, Nurses | Maternity | NICU | Capacity | | Room space | | Jongerden 2013 ⁵⁹ | 67% | Netherlands | Adults | 387 patients, 323
completed surveys,
1 hospital Before
and after relocation | Mixed, Adults | Mixed | ICU | Number of beds
Space per bed | | | | Jung 2022 ⁶² | 67% | Korea | Adults | 901 patients,
1 hospital Before
and after renovation | Adult, mixed | Unclear | ICU | | Number of isolated rooms | Number of beds | | Kosuge 2013 ⁶⁷ | 41% | Japan | Unclear | 555 beds,
1 hospital | Surgical, Internal
medicine | Unclear | Routine | Number of beds
(working, general,
per nursing unit)
Wards in total | Number of beds
(tuberculosis) | Number of beds
(mental, cases of
floor transfer) | | Citation | QA | Location | Population | Number of patients/
hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------|-------|-------------------------|-----------------|---|---------------------------------|------------------------------|---------------|---|---|--| Total number of people / day and the wards | | | Lawson 2000 ⁶⁹ | 41% | United
Kingdom | Adults | 424 patients, 2
hospitals, 4 wards
(pre-/post-
relocation) | Orthopaedic | Unclear | Routine | Number of beds | | | | Real 2018 ¹⁰⁵ | 56% | United
States | Unclear | 111 patients, 77
nurses, 1 hospital,
1 ward | Cardio-vascular | Unclear | | Qualitative (larger rooms promote more space for family) | | | | Rosbergen 2020 ¹⁰⁹ | 74% | Australia | Adults, Elderly | 73 patients,
1 hospital relocation | Stroke,
Neurological | Emergency,
Rehabilitation | | p=0.007, number of single bedrooms in acute stroke unit/neurology p<0.001, number of single bedrooms in inpatient rehab unit Ward length Total communal floor space | Number of any
bedrooms, acute
stroke unit/
neurology | Number of any
bedrooms,
inpatient
rehabilitation unit | | Contemporaneous | compa | rison | | | | | | | • | | | Julian 2015 ⁶¹ | 78% | United
States | Neonates | 1823 patients, 1
hospital, 1 unit | Neonates | Mixed | NICU | | | Bed capacity | | Kinnula 2008 ⁶⁴ | 63% | Finland | Children | 1927 patients, 1
hospital | Children,
infectious disease | Mixed | Routine | Single rooms usage (approx. 90%) | Number of rooms | | | Kinnula 2012 ⁶⁵ | 67% | Finland,
Switzerland | Children | 5119 patients, 3
hospitals, 4 wards | Children, mixed | Mixed | Routine | | | Bed capacity | | Pineda 2012 ¹⁰⁰ | 70% | United
States | Neonates | 81 patients, 1
hospital | Premature neonates | Emergency | NICU | | | Number of beds;
Room/ward area | | Citation | QA | Location | Population | Number of patients/
hospitals | * | Type of admission | Level of
care | Data that favour single room | Data showing no difference | Data that favour shared room | |-------------------------------|------|-----------------------------|------------|-------------------------------------|---|-------------------|------------------|------------------------------|----------------------------|------------------------------| | Quach 2018 ¹⁰⁴ | 59% | Canada,
United
States | Children | 83,334 patient-days,
2 hospitals | Children | Mixed | Mixed | | | Bed capacity | | Stelwagen 2021 ¹²⁰ | 100% | Netherlands | | 36 parents, 1
hospital |
Neonates | Emergency | | Capacity;
Room/ward area | | | Table 16. Summary of studies reporting data on length of stay | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|------------|-------------------|-------------|---|-------------------------|-------------------|---------------|---|--|---| | Before and after a | hospital i | relocation plus | contemporar | neous comparison | | | | | | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2
control hospitals | Mixed | Unclear | Mixed | LOS (per 1,000 patient-days): new hospital older people's ward, control new-build hospital older people's ward, steady-state control hospital medical assessment unit | | LOS (per 1,000 patient-days): new hospital assessment unit, control new-build hospital medical assessment unit, steady-state control hospital older people's ward | | Before and after a | hospital ı | relocation | | | | | | | | | | Blandfort 2019 ⁶ | 67% | Denmark | Elderly | 964 patients,
2 hospitals | Geriatric,
Dementia | Elective | Routine | p=0.35, median LOS | | | | Blandfort 2019 ⁷ | 67% | Denmark | Elderly | 1014 patients,
2 hospitals | Geriatric,
Dementia | Elective | Routine | Fewer cases with LOS ≥ 14 days | Minimum LOS | Maximum LOS | | Cantoni 2009 ¹⁶ | 67% | Switzerland | Adults | 227 patients, 1
hospital | Stem cell
transplant | Elective | Routine | LOS
Duration of
catheterisation
Number of patients
catheterised | | | | Carter 2008 ¹⁸ | 33% | United
States | Neonates | 53 parents,
1 hospital Before
and after
relocation | Neonates | Emergency | NICU | LOS | | | | Davis 2019 ²⁵ | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | | p=0.698, ward LOS
p=0.226, hospital LOS | | | Domanico 2010 ²⁸ | 63% | United
States | Neonates | 161 caregivers, 1 hospital, 2 units | Paediatric | NR | NICU | LOS | | | | Domanico 2011 ²⁹ | 63% | United
States | Neonates | 162 patients
(PEMRs 2/3=150, | Paediatric | NR | NICU | | p=0.340, LOS for PEMR
2 and 3 patients | | | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|-----|------------------|------------|---|-----------------------|-------------------|---------------|--|---|---| | | | | | PEMRs 4=12), 1
hospital, 2 units | | | | | p=0.890, LOS for PEMR
4 patients | | | Erickson 2011 ³⁸ | 67% | United
States | Neonates | 73 patients,
1 hospital Before
and after
relocation | Preterm
neonates | Emergency | NICU | | p=0.73, LOS | | | Gregersen 2021 ⁴⁶ | 70% | Denmark | Elderly | 446 patients,
1 hospital
relocation | Geriatric | Unclear | Routine | | p=0.50, hospital LOS | | | Harris 2004 ⁴⁹ | 74% | Canada | Adults | 976 patients, 1
hospital, Before
and after new unit
established | Pregnancy | Maternity | Routine | p<0.001, total LOS
p<0.001,
postpartum LOS | | p=0.01, length of first
stage labour
p=0.002, length of
second stage labour
p=0.002, intrapartum
LOS | | Hourigan 2018 ⁵³ | 63% | United
States | Neonates | 32 patients,
1 hospital Before
and after
relocation | Neonates | Emergency | ICU | | p=0.52, LOS | | | Jansen 2021 ⁵⁵ | 63% | Netherlands | Neonates | 712 patients, 1
hospital, 2 units
relocation | Premature
neonates | Maternity | NICU | | p=0.36, hospital LOS | | | Jongerden 2013 ⁵⁹ | 67% | Netherlands | Adults | 387 patients, 323
completed surveys,
1 hospital Before
and after
relocation | Mixed, Adults | Mixed | ICU | | p=0.25, ICU LOS: family
p=0.11, ICU LOS:
patients
p=0.25, hospital LOS:
family
p=0.60, hospital LOS:
patients | | | Jung 2022 ⁶² | 67% | Korea | Adults | 901 patients, 1
hospital Before and
after renovation | Adult, mixed | Unclear | ICU | | p=0.575, ICU LOS | | | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |-----------------------------|-----|-------------------|------------|---|-----------------------------------|-------------------|---------------|--|--|---| | Kainiemi 2021 ⁶³ | 59% | Finland | Neonates | 61 families, 1
hospital, 1 unit
(pre-post-
restructuring) | Pre-term infants
(<35 weeks) | Unclear | NICU | | p=0.1784, hospital LOS | | | Kosuge 2013 ⁶⁷ | 41% | Japan | Unclear | 555 beds,
1 hospital | Surgical,
Internal
medicine | Unclear | Routine | Average hospital LOS (surgery, internal medicine) | | | | Lawson 2000 ⁶⁹ | 41% | United
Kingdom | Adults | 424 patients, 2
hospitals, 4 wards
(pre-/post-
relocation) | Psychiatric and
Orthopaedic | Unclear | Routine | p<0.05, hospital LOS
(orthopaedic
patients not
undergoing
operation)
Hospital LOS overall
(psychiatric
patients)
ICU LOS (psychiatric
patients) | Hospital LOS
(orthopaedic patients
undergoing operation) | | | Milford 2008 ⁸⁴ | 30% | United
States | Neonates | No. of patients
unclear,
1 hospital Before
and after
relocation | Neonates | Emergency | ICU | Average LOS | | | | Monson 2018 ⁸⁶ | 78% | United
States | Neonates | 90 preterm infants,
15 term-born
control infants, 1
hospital | Preterm
neonates | Emergency | NICU | | p=0.81, LOS | | | Puumala 2020 ¹⁰² | 67% | United
States | Neonates | 9995 patients, 1
hospital Before and
after relocation | Neonates | Emergency | ICU | p=0.02, LOS for
extremely preterm
infants
p<0.0001, LOS for
very preterm infants | ,, | p<0.0001, overall
median hospital LOS
p<0.0001, LOS for
term/post term infants | | Pyrke 2017 ¹⁰³ | 59% | Canada | Adults | 47 patients,
1 hospital
relocation | Psychiatric | Emergency | Routine | | p=0.832, LOS | | | Citation | QA | Location | Population | Number of patients/ hospitals | | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |---------------------------------------|---------|-------------------|-----------------|---|--|-------------------|---------------|---|----------------------------|--| | Sadatsafavi 2019 ¹¹² | 100% | United
States | Neonates | NR, 1 hospital
(theoretical) | Neonates | NR | ICU | Mean benefit—cost
ratio 1.298 (95% CI:
1.282–1.315) when
reduced LOS
considered | | | | Singh 2015 ¹¹⁶ | 70% | United
Kingdom | Adults, Elderly | 1749 patients,
1 hospital
relocation | Internal
medicine,
Geriatric | Mixed | Routine | p<0.01, LOS | | | | Stevens 2014 ¹²³ | 44% | United
States | Neonates | 73 patients, 1
hospital | Neonates | Emergency | ICU | | | p=0.0052, hospital LOS | | Teltsch 2011 ¹³¹ | 67% | Canada | Adults | 19343 patients, 2
hospitals, Before
and after
relocation or
control | Adults | Unclear | ICU | | | Average ICU LOS (year 2000, 2001, 2002, 2003, 2004, 2005, and total) | | van der Hoeven
2022 ¹³⁵ | 63% | Netherlands | Infants | 1293 infants, 1
hospital Before and
after relocation | Infants | Unclear | ICU | | p=0.49, hospital LOS | | | van Veenendaal
2020 ¹³⁷ | 70% | Netherlands | Neonates | 1152 infants, 1
hospital Before and
after relocation | Neonates | Emergency | ICU | p=0.016, LOS | | | | Vietri 2004 ¹³⁹ | 59% | United
States | Adults | 261 Adults,
1 hospital Before
and after
relocation | Mixed | Unclear | ICU | | p=NS, ICU LOS | | | Contemporaneous of | omparis | on | | | | | | | | | | Bodack 2016 ¹⁰ | 56% | Germany | Neonates | 35 pairs of parents of 40 neonates, 1 hospital | Neonates | Emergency | ICU | LOS | | | | Bracco 2007 ¹³ | 74% | Canada | Adults | 2522 patients (of
whom 207 known
MRS carriers at | Mixed, Post
surgery, Medical
admission | Mixed | ICU | LOS in the same bed | LOS | | | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room |
---|-----|-------------------|---------------------|---|--|-------------------|------------------|------------------------------|--|-----------------------------------| | | | | | admission), 1
hospital, 1 ward | | | | | | | | Caruso 2014 ¹⁹ | 74% | Brazil | Adults | 1253 patients, 1
hospital | Adults | Mixed | ICU | | p=0.44, ICU LOS | | | Deitrick 2010 ²⁶ | 90% | United
States | Adults | 24 patients,
29 HCP,
2 hospitals,
2 wards | Orthopaedic,
Neurological,
Surgical | Unclear | Routine | LOS | | | | Douglas 2005 ³⁰ | 90% | United
Kingdom | Unclear | 785 patients (post discharge), 1 hospital | Surgical, Acute care, Maternity, Geriatric | Unclear | Routine | | LOS | | | Erdeve 2008, ³⁶
Erdeve 2009 ³⁷ | 74% | Turkey | Adults,
Neonates | 60 infants,
49 mothers,
1 hospital | Preterm
neonates | Emergency | NICU | | p=0.929, NICU LOS | | | Felice Tong 2018 ⁴⁰ | 78% | Australia | Adults | 185 patients,
1 hospital | Orthopaedic | Elective | Routine | | p=0.36, overall LOS
p=0.73, LOS for total
hip arthroplasty
p=0.55, LOS for knee
arthroplasty | | | Grundt 2021 ⁴⁷ | 67% | Norway | Neonates | 77 patients,
66 mothers, 2
hospitals, 2 units | Premature
neonates | Maternity | NICU | | p=0.16, LOS | | | Harris 2006 ⁵⁰ | 63% | United
States | Neonates | 75 HCP, 21
parents, 5 NICU
units (SFR=2, open
bay=3) | Neonates | Unclear | Level 3,
NICU | Patient transfers | | Average LOS
Average discharges | | Harris 2006 ⁵¹ | 52% | United
States | Neonates | 21 parents,
75 HCPs | Neonates | Maternity | ICU | | | Average LOS | | Hyun 2021 ⁵⁴ | 78% | South Korea | Adults | 666 patients,
1 hospital | Respiratory,
COVID-19 | Emergency | ICU | p=0.001, hospital
LOS | | | | Kinnula 2008 ⁶⁴ | 63% | Finland | Children | 1927 patients, 1
hospital | Children,
infectious
disease | Mixed | Routine | | hospital LOS | | | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------|-----|-------------------------|--------------|---|-------------------------------|-------------------|---------------|--|----------------------------|--| | Kinnula 2012 ⁶⁵ | 67% | Finland,
Switzerland | Children | 5119 patients, 3 hospitals, 4 wards | Children, mixed | Mixed | Routine | | | Mean hospital LOS | | Knight 2016 ⁶⁶ | 59% | United
Kingdom | Elderly | 100 patients,
2 hospitals | Geriatric,
Dementia | Mixed | Routine | | | p=0.001, overall LOS
p=0.01, LOS (patients
who experienced an
inpatient fall) | | Labarère 2004 ⁶⁸ | 70% | France | Adults | 4095 patients, 1
hospital | Mixed | Mixed | Mixed | | hospital LOS | | | Lehtonen 2020 ⁷¹ | 74% | Internationa
I | Neonates | 4662 patients, 331 units | Preterm
neonates | Emergency | ICU | Overall LOS OR ^a –3.4
(–4.7 to –3.1) | | | | Mattner 2007 ⁷⁹ | 74% | Germany | Adults | 336 patients, 1
hospital | Cardiovascular
Adults | Mixed | ICU | p=0.004, LOS | | | | Vohr 2017 ¹⁴⁰ | 67% | United
States | Neonates | 651 patients,
1 hospital Before
and after
relocation | Neonates | Emergency | NICU | | | p=0.07, hospital LOS | | Tandberg 2019 ¹²⁸ | 67% | Norway | Neonates | 77 patients, 2
hospitals | Neonates | Emergency | ICU | | p=0.16, LOS | | | Lester 2014 ⁷² | 63% | United
States | Neonates | 403 patients, 1
hospital | Neonates | Emergency | ICU | | p=0.382, LOS | | | Lester 2016 ⁷³ | 59% | United
States | Neonates | 216 patients, 1
hospital | Premature
neonates | Maternity | ICU | | p=0.06, LOS | | | Zaal 2013 ¹⁴⁵ | 67% | Netherlands | Older Adults | 156 patients
1 hospital | Older Adults
with dementia | Mixed | ICU | | p=0.56, LOS | | | Evidence synthesis | | | | | | | • | | | | | OECD WHO 2019 ⁹² | 14% | Europe | NR | NR | Mixed | Mixed | Mixed | | p=NS.
LOS | | | Voigt 2018 ¹⁴¹ | 86% | Internationa
I | NR | NR | NR | Unclear | Routine | | LOS | | Table 17. Summary of studies reporting data on costs of care | Citation | QA | Location | Population | Number of patients/ hospitals | Patient type | Type of admission | Level of care | Data that favour single room | Data showing no difference | Data that favour shared room | |------------------------------------|------------|-------------------|---------------|---|-----------------------------|-------------------|---------------|---|--|--| | Before and aft | ter a hosp | ital relocation p | olus contempo | raneous comparison | | | | | | | | Maben 2015 ⁷⁶ | 78% | United
Kingdom | Unclear | 24 staff, 32 patients,
1 hospital
(relocated), 2
control hospitals | All patients in
hospital | Mixed | Mixed | | Cost impact (changes
in falls, LOS,
medication errors,
hospital-acquired
infections) | | | Maben 2016 ⁷⁷ | 67% | United
Kingdom | Unclear | 32 patients,
21 HCP,
1 hospital
relocation, 2 control
hospitals | Mixed | Unclear | Mixed | | | Cleaning costs per bed
Nursing staff full-time
equivalent
Nursing staff costs | | Before and aft | ter a hosp | ital relocation | | | | | | | | | | Davis ²⁵ 2019 | 67% | Australia | Adults | 1569 patients,
1 hospital
relocation | Orthopaedic | Elective | Routine | | p=0.311, discharge to
home
p=0.406, transfer to
other facility | | | Harris 2004 ⁴⁹ | 74% | Canada | Adults | 976 patients, 1
hospital, Before and
after new unit
established | Pregnancy | Maternity | Routine | Reduction in overall
staffing costs after
opening single-room
maternity care | | | | Milford
2008 ⁸⁴ | 30% | United States | Neonates | No. of patients unclear, 1 hospital | Neonates | Emergency | ICU | Cost savings due to reduced LOS | | | | Reed 1986 ¹⁰⁶ | 10% | United States | Adults | • | Pregnant
women | Maternity care | Routine | Number of staff required | | | | Sadatsafavi
2019 ¹¹² | 100% | United States | Neonates | 1 hospital
(theoretical) | Neonates | NR | ICU | Investment justifiable when direct costs considered, mean benefit–cost ratio 1.794 (1.783–1.804) Investment justifiable when LOS considered | | Investment not
justifiable when
nosocomial infections
considered, mean
benefit–cost ratio
0.730 (0.724-0.735) | | Singh 2015 ¹¹⁶ | 70% | United
Kingdom | Adults,
Elderly | 1749 patients,
1 hospital
relocation | Internal
medicine,
Geriatric | Mixed | Routine | | p=0.74, discharge to
home
p =0.21, discharge to
new care home | | |-----------------------------------|----------|-------------------|--------------------|--|------------------------------------|-----------|------------------|--|--|--| | Stevens
2012 ¹²² | 44% | United States | Neonates | 73 patients, 1
hospital Before and
after relocation | Neonates | Emergency | ICU | Direct cost (infants with equal comorbidities, duration of hospitalisation) | Costs per square foot | p ^a =statistically
significant, need for
nursing and all unit
staff | | Stevens
2014 ¹²³ | 44% | United States | Neonates | 73 patients, 1
hospital | Neonates | Emergency | ICU | for supplies
p<0.0001, lower
depreciation in costs
Full adjustment of the
model shows a cost
advantage for SFR | ĺ | p=0.0373, direct costs
for NICU labour
p=0.0002, direct costs
for other labour costs
(therapies, radiology,
pharmacy) | | Contemporane | eous com | parison | | | | | | | | | | Apple 2014 ⁴ | 52% | Sweden | Unclear | 81 HCP, 3 ICUs | Mixed | Unclear | ICU | | | Number of staff equired | | Boardman
2011 ⁸ | 91% | Canada | Unclear | 537 beds,
1 hospital | Mixed | Mixed | Mixed | Reduced transfers and
waiting time
Net social benefits
taking into account
upfront and ongoing
costs and annual
benefits | | Cost of a bed per day
Up-front land and
construction costs
On-going annual
maintenance,
housekeeping,
operating, additional
nursing and phsycian
costs | | Felice Tong
2018 ⁴⁰ | 78% | Australia | Adults | 185 patients,
1 hospital | Orthopaedic | Elective | Routine | p=0.002 ^u , p=0.002 ^m
discharge to
rehabilitation | | | | Harris 2006 ⁵⁰ | 63% | United States | Neonates | 75 HCP, 21 parents,
5 NICU units (SFR=2,
open bay=3) | Neonates | Unclear | Level 3,
NICU | | | Construction costs per square foot | | Harris 2006 ⁵¹ | 63% | Canada | Adults | 976 patients, 1
hospital, Before and | Pregnancy | Maternity | Routine | | | Average costs per square foot ^a | | | | | | after new unit established | | | | | | |
------------------------------------|-------|---------------------------------|---------|----------------------------------|------------------------|---------|---------|--|---|--------------------------------------| | Knight 2016 ⁶⁶ | 59% | United
Kingdom | Elderly | | Geriatric,
Dementia | Mixed | Routine | | p=0.17, discharged to
home
p=0.19, discharged to
new care home | | | Sadatsafavi
2016 ¹¹¹ | 100% | Canada | | 8811 patient-days, 1
hospital | Medical and surgical | Unclear | ICU | Costs due to hospital acquired infection | | Construction and operating costs | | Evidence synth | nesis | | | | | | | | | | | Adamson
2003 ¹ | 82% | United States,
International | Mixed | Unclear | Mixed | Mixed | Mixed | | | Costs per patient by floor plan type | | Voigt 2018 ¹⁴¹ | 86% | International | NR | NR | NR | Unclear | | Operational efficiencies | | | ## References - Adamson D. The Use of Single Patient Rooms vs. Multiple Occupancy Rooms in Acute Care Environments | Semantic Scholar [Internet]. 2003 [cited 2022 May 4]. Available from: https://www.semanticscholar.org/paper/The-Use-of-Single-Patient-Rooms-vs.-Multiple-Rooms-Chaudhury-Mahmood/252452e8fa872a517c15d6ecf70c74f82a363271 - 2. Anåker A, Von Koch L, Sjöstrand C, Bernhardt J, Elf M. A comparative study of patients' activities and interactions in a stroke unit before and after reconstruction—The significance of the built environment. PLOS ONE. 2017 Jul 1;12(7):e0177477. - 3. Anåker A, Von Koch L, Heylighen A, Elf M. 'It's Lonely': Patients' Experiences of the Physical Environment at a Newly Built Stroke Unit. Health Environments Research & Design Journal. 2019;12(3):141–52. - 4. Apple M. A Comparative Evaluation of Swedish Intensive Care Patient Rooms. HERD. 2014 Apr;7(3):78–93. - 5. Bevan V, Edwards C, Woodhouse K, Singh I. Dignified care for older people: Mixed methods evaluation of the impact of the hospital environment single rooms or multi-bedded wards: Healthy Aging Research. 2016;5(13):1–8. - 6. Blandfort S, Gregersen M, Rahbek K, Juul S, Damsgaard EM. Analgesic and psychoactive medications and the risk of falls in relation to delirium in single-bed rooms compared to multiple-bed rooms in geriatric inpatients. Aging Clinical and Experimental Research 2019 32:8. 2019 Aug 28;32(8):1493–9. - 7. Blandfort S, Gregersen M, Rahbek K, Juul S, Damsgaard EM. Single-bed rooms in a geriatric ward prevent delirium in older patients. Aging Clinical and Experimental Research 2019 32:1. 2019 Mar 21;32(1):141–7. - 8. Boardman AE, Forbes D. A Benefit-Cost Analysis of Private and Semi-Private Hospital Rooms. J Benefit Cost Anal. 2011 Jan 3;2(1):1–27. - Bocquet A, Wintenberger C, Lupo J, Morand P, Pavese P, Gallouche M, et al. Description of an influenza outbreak in a French university hospital and risk factors of nosocomial influenza. Eur J Clin Microbiol Infect Dis. 2021 Apr;40(4):879–84. - 10. Bodack E, Schenk O, Karutz H. Die Einrichtung von Einzelzimmern auf neonatologischen Intensivstationen Auswirkungen auf die Betreuung aus Sicht der Eltern. Z Geburtshilfe Neonatol. 2016 Jun;220(3):124–9. - 11. Bonizzoli M, Bigazzi E, Peduto C, Tucci V, Zagli G, Pecile P, et al. Microbiological survey following the conversion from a bay-room to single-room intensive care unit design. Journal of Hospital Infection. 2011 Jan;77(1):84–6. - 12. Boztepe H, Çınar S, Ay A. School-age children's perception of the hospital experience. J Child Health Care. 2017 Jun;21(2):162–70. - 13. Bracco D, Dubois MJ, Bouali R, Eggimann P. Single rooms may help to prevent nosocomial bloodstream infection and cross-transmission of methicillin-resistant Staphylococcus aureus in intensive care units. Intensive Care Med. 2007 May 1;33(5):836–40. - 14. Bradbury-Jones C, Rattray J, Jones M, MacGillivray S. Promoting the health, safety and welfare of adults with learning disabilities in acute care settings: a structured literature review. Journal of Clinical Nursing. 2013;22(11–12):1497–509. - 15. Campbell-Yeo M, Kim T, Disher T, Richardson B, Dol J, Bishop T, et al. Do Single-Family Rooms Increase Parental Presence, Involvement, and Maternal Well-Being in Neonatal Intensive Care? Journal of Perinatal & Neonatal Nursing. 2021 Oct;35(4):350–61. - 16. Cantoni N, Weisser M, Buser A, Arber C, Stern M, Heim D, et al. Infection prevention strategies in a stem cell transplant unit: impact of change of care in isolation practice and routine use of high dose intravenous immunoglobulins on infectious complications and transplant related mortality Cantoni 2009 European Journal of Haematology Wiley Online Library [Internet]. [cited 2022 Jul 11]. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0609.2009.01249.x - 17. Carlson B, Walsh S, Wergin T, Schwarzkopf K, Ecklund S. Challenges in design and transition to a private room model in the neonatal intensive care unit. Adv Neonatal Care. 2006 Oct;6(5):271–80. - 18. Carter BS, Carter A, Bennett S. Families' views upon experiencing change in the neonatal intensive care unit environment: from the 'baby barn' to the private room. J Perinatol. 2008 Dec;28(12):827–9. - 19. Caruso P, Guardian L, Tiengo T, dos Santos LS, Junior PM. ICU Architectural Design Affects the Delirium Prevalence: A Comparison Between Single-Bed and Multibed Rooms*. Critical Care Medicine. 2014 Oct;42(10):2204–10. - 20. Cobo J, Asensio Á, Moreno S, Navas E, Pintado V, Oliva J, et al. Risk factors for nosocomial transmission of multidrug-resistant tuberculosis due to Mycobacterium bovis among HIV-infected patients. :6. - 21. Curtis P, Northcott A. The impact of single and shared rooms on family-centred care in children's hospitals. Journal of Clinical Nursing. 2017 Jun;26(11–12):1584–96. - 22. Cusack L, Wiechula R, Schultz T, Dollard J, Maben J. Anticipated advantages and disadvantages of a move to 100% single-room hospital in Australia: A case study. J Nurs Manag. 2019 Jul;27(5):963–70. - 23. Darcy Mahoney A, White RD, Velasquez A, Barrett TS, Clark RH, Ahmad KA. Impact of restrictions on parental presence in neonatal intensive care units related to coronavirus disease 2019. J Perinatol. 2020 Sep;40(S1):36–46. - 24. Darley ESR, Vasant J, Leeming J, Hammond F, Matthews S, Albur M, et al. Impact of moving to a new hospital build, with a high proportion of single rooms, on healthcare-associated infections and outbreaks. J Hosp Infect. 2018 Feb;98(2):191–3. - 25. Davis M, Elliott R, Hills R, Fry M. Single-Room Ward Design and Its Impact on Service and Patient Outcomes: An Evaluation Study. Orthopaedic Nursing. 2019 Oct;38(5):317–25. - 26. Deitrick LM, Bokovoy J, Panik A. The "Dance" Continues ... Evaluating Differences in Call Bell Use Between Patients in Private Rooms and Patients in Double Rooms Using Ethnography. Journal of Nursing Care Quality. 2010 Oct;25(4):279–87. - 27. de Matos LBN, Fumis RRL, Nassar Junior AP, Lacerda FH, Caruso P. Single-Bed or Multibed Room Designs Influence ICU Staff Stress and Family Satisfaction, But Do Not Influence ICU Staff Burnout. HERD. 2020 Apr;13(2):234–42. - 28. Domanico R, Davis DK, Coleman F, Davis BO. Documenting the NICU design dilemma: parent and staff perceptions of open ward versus single family room units. Journal of perinatology: official journal of the California Perinatal Association. 2010 May;30(5):343–51. - 29. Domanico R, Davis DK, Coleman F, Davis BO. Documenting the NICU design dilemma: comparative patient progress in open-ward and single family room units. Journal of Perinatology 2010 31:4. 2011 Nov 11;31(4):281–8. - 30. Douglas CH, Douglas MR. Patient-centred improvements in health-care built environments: perspectives and design indicators. Health Expect. 2005 Sep;8(3):264–76. - 31. Dowdeswell B, Erskine J, Heasman M. A Report for NHS Estates, England by the EU Health Property Network. :40. - 32. Dowling DA, Blatz MA, Graham G. Mothers' Experiences Expressing Breast Milk for Their Preterm Infants: Does NICU Design Make a Difference? Advances in Neonatal Care. 2012 Dec;12(6):377–84. - 33. Eberhard-Gran M, Eskild A, Opjordsmoen S, Schei B. Maternity care sleep, rest and satisfaction. :10. - 34. Edéll-Gustafsson U, Angelhoff C, Johnsson E, Karlsson J, Mörelius E. Hindering and buffering factors for parental sleep in neonatal care. A phenomenographic study. J Clin Nurs. 2015 Mar;24(5–6):717–27. - 35. Ehrlander W, Ali F, Chretien KC. Multioccupancy hospital rooms: Veterans' experiences and preferences. Journal of Hospital Medicine. 2009;4(8):E22–7. - 36. Erdeve O, Arsan S, Yigit S, Armangil D, Atasay B, Korkmaz A. The impact of individual room on rehospitalization and health service utilization in preterms after discharge. Acta paediatrica (Oslo, Norway: 1992). 2008 Oct;97(10):1351–7. - 37. Erdeve O, Arsan S, Canpolat FE, Ertem IO, Karagol BS, Atasay B, et al. Does individual room implemented family- centered care contribute to mother-infant interaction in preterm deliveries necessitating neonatal intensive care unit hospitalization? American Journal of Perinatology. 2009 Feb 19;26(2):159–64. - 38. Erickson C, Kattelmann K, Remington J, Cuirong Ren, Carol Helseth, Stevens D. Traditional open-bay versus single-family room neonatal intensive care unit: a comparison of selected nutrition outcomes. Research and Reports in Neonatology. 2011 Mar;15. - 39. Everts RJ, Hanger HC, Jennings LC, Hawkins A, Sainsbury R. Outbreaks of influenza A among elderly hospital inpatients. The New Zealand Medical Journal. 1996 Jul 1;109(1026):272–4. - 40. Felice Tong YY, Karunaratne S, Youlden D, Gupta S. The Impact of Room-Sharing on Length of Stay After Total Hip or Knee Arthroplasty: A Retrospective Study. Arthroplasty Today. 2021 Apr;8:289-294.e2. - 41. Ferri M, Zygun DA, Harrison A, Stelfox HT. Evidence-based design in an intensive care unit: End-user perceptions. BMC Anesthesiology. 2015 Apr 25;15(1):1–9. - 42. Florey L,
Flynn R, Isles C. Patient Preferences for Single Rooms or Shared Accommodation in a District General Hospital. Scott Med J. 2009 May;54(2):5–8. - 43. Foo CT, O'Driscoll DM, Ogeil RP, Lubman D, Young AC. Barriers to sleep in acute hospital settings. Sleep Breath. 2022 Jun;26(2):855–63. - 44. Ford-Jones EL, Mindorff CM, Gold R, Petric M. THE INCIDENCE OF VIRAL-ASSOCIATED DIARRHEA AFTER ADMISSION TO A PEDIATRIC HOSPITAL. American Journal of Epidemiology. 1990 Apr;131(4):711–8. - 45. Fraenkel Cj, Inghammar M, Söderlund-Strand A, Johansson PJH, Böttiger B. Risk factors for hospital norovirus outbreaks: impact of vomiting, genotype, and multi-occupancy rooms. Journal of Hospital Infection. 2018 Apr;98(4):398–403. - 46. Gregersen M, Mellemkjær A, Foss CH, Blandfort S. Use of single-bed rooms may decrease the incidence of hospital-acquired infections in geriatric patients: A retrospective cohort study in Central Denmark region. J Health Serv Res Policy. 2021 Oct;26(4):282–8. - 47. Grundt H, Tandberg BS, Flacking R, Drageset J, Moen A. Associations Between Single-Family Room Care and Breastfeeding Rates in Preterm Infants. J Hum Lact. 2021 Aug;37(3):593–602. - 48. Halaby T, al Naiemi N, Beishuizen B, Verkooijen R, Ferreira JA, Klont R, et al. Impact of single room design on the spread of multi-drug resistant bacteria in an intensive care unit. Antimicrob Resist Infect Control. 2017 Dec;6(1):117. - 49. Harris SJ, Farren MD, Janssen PA, Klein MC, Lee SK. Single room maternity care: perinatal outcomes, economic costs, and physician preferences. Journal of obstetrics and gynaecology Canada: JOGC = Journal d'obstetrique et gynecologie du Canada: JOGC. 2004;26(7):633–40. - 50. Harris DD, Shepley MM, White RD, Kolberg KJS, Harrell JW. The impact of single family room design on patients and caregivers: executive summary. Journal of Perinatology 2006 26:3. 2006 Sep 28;26(3):S38–48. - 51. Harris D, Shepley M, White R. Impact of Single Family NICU Rooms | The Center for Health Design [Internet]. 2006 [cited 2022 May 4]. Available from: https://www.healthdesign.org/chd/knowledge-repository/impact-single-family-nicu-rooms - 52. Hosseini SB, Bagheri M. Comparison of Patient Satisfaction with Single Patient Rooms Versus Shared Patient Rooms. Ann Mil Health Sci Res [Internet]. 2018 Jul 8 [cited 2022 Jul 20]:15(4). Available from: https://brief.land/amhsr/articles/80199.html - 53. Hourigan SK, Subramanian P, Hasan NA, Ta A, Klein E, Chettout N, et al. Comparison of Infant Gut and Skin Microbiota, Resistome and Virulome Between Neonatal Intensive Care Unit (NICU) Environments. Front Microbiol. 2018 Jun 25;9:1361. - 54. Hyun M, Lee JY, Kwon YS, Kim JY, Park JS, Park S, et al. COVID-19: Comparing the applicability of shared room and single room occupancy. Transbound Emerg Dis. 2021 Jul;68(4):2059–65. - 55. Jansen SJ, Lopriore E, Berkhout RJM, van der Hoeven A, Saccoccia B, de Boer JM, et al. The Effect of Single-Room Care Versus Open-Bay Care on the Incidence of Bacterial Nosocomial Infections in Pre-Term Neonates: A Retrospective Cohort Study. Infectious Diseases and Therapy. 2021 Mar 1;10(1):373–86. - 56. Janssen PA, Klein MC, Harris SJ, Soolsma J, Seymour LC. Single room maternity care and client satisfaction. Birth (Berkeley, Calif). 2000;27(4):235–43. - 57. Janssen PA, Dennis CL, Reime B. Development and psychometric testing of the care in obstetrics: Measure for testing satisfaction (COMFORTS) scale. Research in Nursing & Health. 2006 Feb 1;29(1):51–60. - 58. Jones L, Peters K, Rowe J, Sheeran N. The Influence of Neonatal Nursery Design on Mothers' Interactions in the Nursery. J Pediatr Nurs. 2016 Oct;31(5):e301-312. - 59. Jongerden IP, Slooter AJ, Peelen LM, Wessels H, Ram CM, Kesecioglu J, et al. Effect of intensive care environment on family and patient satisfaction: a before—after study. Intensive Care Med. 2013 Sep 1;39(9):1626—34. - 60. Jou J, Ebrahim J, Shofer FS, Hamilton KW, Stern J, Han JH. Environmental Transmission of *Clostridium difficile*: Association Between Hospital Room Size and *C. difficile* Infection. Infect Control Hosp Epidemiol. 2015 May;36(5):564–8. - 61. Julian S, Burnham CAD, Sellenriek P, Shannon WD, Hamvas A, Tarr PI, et al. Impact of Neonatal Intensive Care Bed Configuration on Rates of Late-Onset Bacterial Sepsis and Methicillin-Resistant Staphylococcus aureus Colonization. Infection Control & Hospital Epidemiology. 2015 Oct;36(10):1173–82. - 62. Jung J, Choe PG, Choi S, Kim E, Lee HY, Kang CK, et al. Reduction in the acquisition rate of carbapenem-resistant Acinetobacter baumannii (CRAB) after room privatization in an intensive care unit. Journal of Hospital Infection. 2022 Mar 1;121:14–21. - 63. Kainiemi E, Hongisto P, Lehtonen L, Pape B, Axelin A. Effects of single family room architecture on parent–infant closeness and family centered care in neonatal environments—a single-center pre–post study. J Perinatol. 2021 Sep;41(9):2244–51. - 64. Kinnula SE, Renko M, Tapiainen T, Knuutinen M, Uhari M. Hospital-associated infections during and after care in a paediatric infectious disease ward. J Hosp Infect. 2008 Apr;68(4):334–40. - 65. Kinnula S, Buettcher M, Tapiainen T, Renko M, Vepsäläinen K, Lantto R, et al. Hospital-associated infections in children: a prospective post-discharge follow-up survey in three different paediatric hospitals. The Journal of hospital infection. 2012 Jan;80(1):17–24. - 66. Knight S, Singh I. Profile of inpatient falls in patients with dementia: A prospective comparative study between 100% single rooms and traditional multibedded wards. Journal of Clinical Gerontology and Geriatrics. 2016 Sep;7(3):87–92. - 67. KOSUGE R, KOBAYASHI K, KAKEHI A. COMPARATIVE STUDIES ON HOSPITAL-BED MANAGEMENT BETWEEN ALL SINGLE-ROOM WARDS AND MIXED MULTI-BED ROOM WARDS. Journal of Architecture and Planning (Transactions of AIJ). 2013;78(686):765–73. - 68. Labarère J, Fourny M, Jean-Phillippe V, Marin-Pache S, Patrice F. Refinement and validation of a French in-patient experience questionnaire. International Journal of Health Care Quality Assurance. 2004 Jan 1;17(1):17–25. - 69. Lawson B, Phiri M. Hospital design. Room for improvement. The Health Service Journal. 2000 Jan 1;110(5688):24–6. - 70. Lazar I, Abukaf H, Sofer S, Peled N, Leibovitz E. Impact of Conversion from an Open Ward Design Paediatric Intensive Care Unit Environment to All Isolated Rooms Environment on Incidence of Bloodstream Infections and Antibiotic Resistance in Southern Israel (2000 to 2008) [Internet]. [cited 2022 Jul 11]. Available from: https://journals.sagepub.com/doi/10.1177/0310057X1504300106?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed - 71. Lehtonen L, Lee SK, Kusuda S, Lui K, Norman M, Bassler D, et al. Family Rooms in Neonatal Intensive Care Units and Neonatal Outcomes: An International Survey and Linked Cohort Study. The Journal of Pediatrics. 2020 Nov;226:112-117.e4. - 72. Lester BM, Hawes K, Abar B, Sullivan M, Miller R, Bigsby R, et al. Single-family room care and neurobehavioral and medical outcomes in preterm infants. Pediatrics. 2014;134(4):754–60. - 73. Lester BM, Salisbury AL, Hawes K, Dansereau LM, Bigsby R, Laptook A, et al. 18-Month Follow-Up of Infants Cared for in a Single-Family Room Neonatal Intensive Care Unit. The Journal of pediatrics. 2016;177:84–9. - 74. Liu LX, Mozafarinia M, Axelin A, Feeley N. Parents' Experiences of Support in NICU Single-Family Rooms. Neonatal Netw. 2019 Mar 1;38(2):88–97. - 75. Lorenz SG, Dreher HM. Hospital Room Design and Health Outcomes of the Aging Adult. PA P E R S. 2011;4(2):14. - 76. Maben J, Griffiths P, Penfold C, Simon M, Pizzo E, Anderson J, et al. Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation. Health Services and Delivery Research. 2015 Feb;3(3):1–304. - 77. Maben J, Griffiths P, Penfold C, Simon M, Anderson JE, Robert G, et al. One size fits all? Mixed methods evaluation of the impact of 100% single-room accommodation on staff and patient experience, safety and costs. BMJ quality & safety. 2016 Apr 1;25(4):241–56. - 78. Malcolm HA. Does privacy matter? Former patients discuss their perceptions of privacy in shared hospital rooms. Nurs Ethics. 2005 Mar;12(2):156–66. - 79. Mattner F, Rüden AS, Mattner L, Chaberny IF, Ziesing S, Strueber M, et al. Thoracic organ transplantation may not increase the risk of bacterial transmission in intensive care units. International Journal of Hygiene and Environmental Health. 2007 Mar;210(2):139–45. - 80. McDonald EG, Dendukuri N, Frenette C, Lee TC. Time-Series Analysis of Health Care—Associated Infections in a New Hospital With All Private Rooms. JAMA Intern Med. 2019 Nov 1;179(11):1501. - 81. McKeown K, Haase T, Pratschke J, Twomey S, Donovan H, Engling F. Determinants of care outcomes for patients who die in hospital in Ireland: a retrospective study. BMC Palliat Care. 2015 Dec;14(1):11. - 82. Mental Welfare Commission for Scotland. Psychiatr bull. 1991 Apr;15(4):254–5. - 83. Meyer TJ, Eveloff SE, Bauer MS, Schwartz WA, Hill NS, Millman RP. Adverse Environmental Conditions in the Respiratory and Medical ICU Settings. Chest. 1994 Apr;105(4):1211–6. - 84. Milford C, Zapalo B, Davis G. Transition to an Individual-Room NICU Design: Process and Outcome Measures. Neonatal Network. 2008 Sep;27(5):299–305. - 85. Miller NO, Friedman SB, Coupey SM. Adolescent preferences for rooming during hospitalization. Journal of Adolescent Health. 1998 Aug;23(2):89–93. - 86. Monson BB, Eaton-Rosen Z, Kapur K, Liebenthal E, Brownell A, Smyser CD, et al. Differential Rates of Perinatal Maturation of Human Primary and Nonprimary Auditory Cortex. eNeuro. 2018 Jan;5(1):ENEURO.0380-17.2017. - 87. Morgan H. Single and shared accommodation for young patients in hospital [Internet]. 2010 [cited 2022 Jul 20]. Available from: https://journals.rcni.com/doi/abs/10.7748/paed2010.10.22.8.20.c7997 - 88. Munier-Marion E,
Bénet T, Régis C, Lina B, Morfin F, Vanhems P. Hospitalization in double-occupancy rooms and the risk of hospital-acquired influenza: a prospective cohort study. Clinical Microbiology and Infection. 2016 May;22(5):461.e7-461.e9. - 89. Nahas S, Patel A, Duncan J, Nicholl J, Nathwani D. Patient Experience in Single Rooms Compared with the Open Ward for Elective Orthopaedic Admissions. Musculoskeletal Care. 2016 Mar;14(1):57–61. - 90. Nash D, O'Rourke T, Memmott P, Haynes M. Indigenous Preferences for Inpatient Rooms in Australian Hospitals: A Mixed-Methods Study in Cross-Cultural Design. HERD. 2021 Jan;14(1):174–89. - 91. Nassery W, Landgren K. Parents' Experience of Their Sleep and Rest When Admitted to Hospital with Their III Child: A Qualitative Study. Comprehensive Child and Adolescent Nursing. 2019 Oct 2;42(4):265–79. - 92. OECD, World Health Organization. Improving Healthcare Quality in Europe: Characteristics, Effectiveness and Implementation of Different Strategies [Internet]. OECD; 2019 [cited 2022 Jul 11]. Available from: https://www.oecd-ilibrary.org/social-issues-migration-health/improving-healthcare-quality-in-europe b11a6e8f-en - 93. Olson ME, Smith MJ. An evaluation of single-room maternity care. The Health Care Manager. 1992 Sep;11(1):43–9. - 94. O'Neill L, Park SH, Rosinia F. The role of the built environment and private rooms for reducing central line-associated bloodstream infections. Kamolz LP, editor. PLoS ONE. 2018 Jul 27;13(7):e0201002. - 95. Park SH, Stockbridge EL, Miller TL, O'Neill L. Private patient rooms and hospital-acquired methicillin-resistant Staphylococcus aureus: A hospital-level analysis of administrative data from the United States. PLOS ONE. 2020 Jul 9;15(7):e0235754. - 96. Pease NJ, Finlay IG. Do patients and their relatives prefer single cubicles or shared wards? Palliat Med. 2002 Jul;16(5):445-6. - 97. Persson E, Määttä S. To provide care and be cared for in a multiple-bed hospital room. Scandinavian Journal of Caring Sciences. 2012 Dec 1;26(4):663–70. - 98. Persson E, Anderberg P, Kristensson Ekwall A. A room of one's own--Being cared for in a hospital with a single-bed room design. Scandinavian journal of caring sciences. 2015 Jun 1;29(2):340–6. - 99. Pilmis B, Billard-Pomares T, Martin M, Clarempuy C, Lemezo C, Saint-Marc C, et al. Can environmental contamination be explained by particular traits associated with patients? Journal of Hospital Infection. 2020 Mar;104(3):293–7. - 100. Pineda RG, Stransky KE, Rogers C, Duncan MH, Smith GC, Neil J, et al. The single-patient room in the NICU: maternal and family effects. Journal of perinatology: official journal of the California Perinatal Association. 2012 Jul;32(7):545–51. - 101. Poncette AS, Wunderlich MM, Spies C, Heeren P, Vorderwülbecke G, Salgado E, et al. Patient Monitoring Alarms in an Intensive Care Unit: Observational Study With Do-It-Yourself Instructions. J Med Internet Res. 2021 May 28;23(5):e26494. - 102. Puumala SE, Rich RK, Roy L, Reynolds R, Jimenez FE, Opollo JG, et al. Single-family room neonatal intensive care unit design: do patient outcomes actually change? | Journal of Perinatology [Internet]. [cited 2022 Jul 11]. Available from: https://www.nature.com/articles/s41372-019-0584-6 - 103. Pyrke RJL, McKinnon MC, McNeely HE, Ahern C, Langstaff KL, Bieling PJ. Evidence-Based Design Features Improve Sleep Quality Among Psychiatric Inpatients. HERD. 2017 Oct;10(5):52–63. - 104. Quach C, Shah R, Rubin LG. Burden of Healthcare-Associated Viral Respiratory Infections in Children's Hospitals. Journal of the Pediatric Infectious Diseases Society. 2018 Feb 19;7(1):18–24. - 105. Real K, Fay L. Using Systems Theory to Examine Patient and Nurse Structures, Processes, and Outcomes in Centralized and Decentralized Units. :16. - 106. Reed G, Schmid M. Nursing Implementation of Single-Room Maternity Care. Journal of Obstetric, Gynecologic & Neonatal Nursing. 1986 Sep;15(5):386–9. - 107. Reid J, Wilson K, Anderson KE, Maguire CPJ. Older inpatients' room preference: single versus shared accommodation. Age and Ageing. 2015 Mar;44(2):331–3. - 108. Roos AKØ, Skaug EA, Grøndahl VA, Helgesen AK. Trading company for privacy: A study of patients' experiences. Nurs Ethics. 2020 Jun;27(4):1089–102. - 109. Rosbergen ICM, Tonello I, Clark RA, Grimley RS. Does hospital design impact on patient activity levels and time spent alone? Disability and Rehabilitation. 2022 Jun 19;44(13):3173–80. - 110. Rowlands J, Noble S. How does the environment impact on the quality of life of advanced cancer patients? A qualitative study with implications for ward design. Palliat Med. 2008 Sep;22(6):768–74. - 111. Sadatsafavi H, Niknejad B, Zadeh R, Sadatsafavi M. Do cost savings from reductions in nosocomial infections justify additional costs of single-bed rooms in intensive care units? A simulation case study. J Crit Care. 2016 Feb;31(1):194–200. - 112. Sadatsafavi H, Niknejad B, Shepley M, Sadatsafavi M. Probabilistic Return-on-Investment Analysis of Single-Family Versus Open-Bay Rooms in Neonatal Intensive Care Units—Synthesis and Evaluation of Early Evidence on Nosocomial Infections, Length of Stay, and Direct Cost of Care. Journal of Intensive Care Medicine. 2019 Feb 1;34(2):115–25. - 113. Sakr N, Hallit S, Mattar H. Incidence of and Factors Associated with New-Onset Insomnia Among Lebanese Hospitalised Patients: A single-centre study. Sultan Qaboos Univ Med J. 2021 Jun 21;21(2):e210-220. - 114. Schalkers I, Dedding CWM, Bunders JFG. '[I would like] a place to be alone, other than the toilet' Children's perspectives on paediatric hospital care in the Netherlands. Health Expect. 2015 Dec;18(6):2066–78. - 115. Scottish Intercollegiate Guidelines Network. Sign 50: a guideline developer's handbook. Healthcare Improvement Scotland; 2014. - 116. Singh I, Okeke J, Edwards C. Outcome of in-patient falls in hospitals with 100% single rooms and multi-bedded wards. Age and Ageing. 2015;44(6):1032–5. - 117. Singh I. (PDF) Loneliness among Older People in Hospitals: A Comparative Study between Single Rooms and Multi- Bedded Wards to Evaluate Current Health Service within the Same Organisation [Internet]. 2016 [cited 2022 May 4]. Available from: - https://www.researchgate.net/publication/304495269_Loneliness_among_Older_People_in_Hospitals_A_Comparative_Study_betwee n_Single_Rooms_and_Multi-_Bedded_Wards_to_Evaluate_Current_Health_Service_within_the_Same_Organisation - 118. Søndergaard SF, Beedholm K, Kolbæk R, Frederiksen K. Patients' and Nurses' Experiences of All Single-Room Hospital Accommodation: A Scoping Review. HERD. 2022 Jan;15(1):292–314. - 119. Song X, Soghier L, Floyd TT, Harris TR, Short BL, DeBiasi RL. Reassessing the need for active surveillance of extended-spectrum beta-lactamase—producing Enterobacteriaceae in the neonatal intensive care population. Infect Control Hosp Epidemiol. 2018 Dec;39(12):1436–41. - 120. Stelwagen M, van Kempen A, Westmaas A, Vet E, Scheele F. Parents' Experiences With a Model of Integrated Maternity and Neonatal Care Designed to Empower Parents. Journal of Obstetric, Gynecologic & Neonatal Nursing. 2021 Mar;50(2):181–92. - 121. Stevens DC, Helseth CC, Khan MA, Munson DP, Reid EJ. A Comparison of Parent Satisfaction in an Open-Bay and Single-Family Room Neonatal Intensive Care Unit. HERD. 2011 Apr;4(3):110–23. - 122. Stevens DC, Helseth CC, Thompson PA, Pottala JV, Khan MA, Munson DP. A Comprehensive Comparison of Open-Bay and Single-Family-Room Neonatal Intensive Care Units at Sanford Children's Hospital. HERD. 2012 Jul;5(4):23–39. - 123. Stevens DC, Thompson PA, Helseth CC, Hsu B, Khan MA, Munson DP. A comparison of the direct cost of care in an open-bay and single-family room NICU. Journal of Perinatology 2014 34:11. 2014 Sep 25;34(11):830–5. - 124. Stiller A, Schröder C, Gropmann A, Schwab F, Behnke M, Geffers C, et al. ICU ward design and nosocomial infection rates: a cross-sectional study in Germany. Journal of Hospital Infection. 2017 Jan;95(1):71–5. - 125. Swanson JR, Peters C, Lee BH. NICU redesign from open ward to private room: a longitudinal study of parent and staff perceptions. J Perinatol. 2013 Jun;33(6):466–9. - 126. Tandberg BS, Frøslie KF, Flacking R, Grundt H, Lehtonen L, Moen A. Parent-Infant Closeness, Parents' Participation, and Nursing Support in Single-Family Room and Open Bay NICUs. J Perinat Neonatal Nurs. 2018 Dec;32(4):E22–32. - 127. Tandberg BS, Flacking R, Markestad T, Grundt H, Moen A. Parent psychological wellbeing in a single-family room versus an open bay neonatal intensive care unit. PLOS ONE. 2019 Nov 1;14(11):e0224488. - 128. Tandberg BS, Frøslie KF, Markestad T, Flacking R, Grundt H, Moen A. Single-family room design in the neonatal intensive care unit did not improve growth. Acta Paediatrica. 2019 Jun 1;108(6):1028–35. - 129. Taylor E, Card AJ, Piatkowski M. Single-Occupancy Patient Rooms: A Systematic Review of the Literature Since 2006. HERD. 2018 Jan;11(1):85–100. - 130. Tegnestedt C, Günther A, Reichard A, Bjurström R, Alvarsson J, Martling CR, et al. Levels and sources of sound in the intensive care unit an observational study of three room types: Levels and sources of sound in a multidisciplinary ICU. Acta Anaesthesiol Scand. 2013 Sep;57(8):1041–50. - 131. Teltsch DY, Hanley J, Loo V, Goldberg P, Gursahaney A, Buckeridge DL. Infection Acquisition Following Intensive Care Unit Room Privatization. Arch Intern Med [Internet]. 2011 Jan 10 [cited 2022 Jul 14];171(1). Available from: http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinternmed.2010.469 - 132. Toivonen M, Lehtonen L, Löyttyniemi E, Axelin A. Effects of single-family rooms on nurse-parent and nurse-infant interaction in neonatal intensive care unit. Early Human Development. 2017 Mar 1;106–107:59–62. - 133. Vaisman A, Jula M, Wagner J, Winston LG. Examining the association between hospital-onset Clostridium difficile infection and multiple-bed room exposure: a case-control study. Infect Control Hosp
Epidemiol. 2018 Sep;39(9):1068–73. - 134. van de Glind I, van Dulmen S, Goossensen A. Physician–patient communication in single-bedded versus four-bedded hospital rooms. Patient Education and Counseling. 2008 Nov 1;73(2):215–9. - 135. van der Hoeven A, Bekker V, Jansen SJ, Saccoccia B, Berkhout RJM, Lopriore E, et al. Impact of transition from open bay to single room design neonatal intensive care unit on multidrug-resistant organism colonization rates. Journal of Hospital Infection. 2022 Feb;120:90–7. - 136. Van Enk RA, Steinberg F. Comparison of Private Room with Multiple-Bed Ward Neonatal Intensive Care Unit Environments. HERD. 2011 Oct;5(1):52–63. - 137. van Veenendaal NR, van der Schoor SRD, Heideman WH, Rijnhart JJM, Heymans MW, Twisk JWR, et al. Family integrated care in single family rooms for preterm infants and late-onset sepsis: a retrospective study and mediation analysis. Pediatr Res. 2020 Oct;88(4):593–600. - 138. van Veenendaal NR, van der Schoor SRD, Broekman BFP, de Groof F, van Laerhoven H, van den Heuvel MEN, et al. Association of a Family Integrated Care Model With Paternal Mental Health Outcomes During Neonatal Hospitalization. JAMA Netw Open. 2022 Jan 24;5(1):e2144720. - 139. Vietri NJ, Dooley DP, Davis CE, Longfield JN, Meier PA, Whelen AC. The effect of moving to a new hospital facility on the prevalence of methicillin-resistant Staphylococcus aureus. Am J Infect Control. 2004 Aug;32(5):262–7. - 140. Vohr B, McGowan E, McKinley L, Tucker R, Keszler L, Alksninis B. Differential Effects of the Single-Family Room Neonatal Intensive Care Unit on 18- to 24-Month Bayley Scores of Preterm Infants. J Pediatr. 2017 Jun;185:42-48.e1. - 141. Voigt J, Mosier M, Darouiche R. Private Rooms in Low Acuity Settings: A Systematic Review of the Literature. HERD. 2018 Jan;11(1):57–74. - 142. Walsh WF, McCullough KL, White RD. Room for improvement: nurses' perceptions of providing care in a single room newborn intensive care setting. Adv Neonatal Care. 2006 Oct;6(5):261–70. - 143. Washam MC, Ankrum A, Haberman BE, Staat MA, Haslam DB. Risk Factors for *Staphylococcus aureus* Acquisition in the Neonatal Intensive Care Unit: A Matched Case-Case-Control Study. Infect Control Hosp Epidemiol. 2018 Jan;39(1):46–52. - 144. Watson J, DeLand M, Gibbins S, MacMillan York E, Robson K. Improvements in Staff Quality of Work Life and Family Satisfaction Following the Move to Single-Family Room NICU Design. Advances in Neonatal Care. 2014 Apr;14(2):129–36. - 145. Zaal IJ, Spruyt CF, Peelen LM, van Eijk MMJ, Wientjes R, Schneider MME, et al. Intensive care unit environment may affect the course of delirium. Intensive Care Med. 2013 Mar;39(3):481–8.