
GigaScience

A workflow reproducibility scale for automatic validation of biological interpretation
results

--Manuscript Draft--

Manuscript Number: GIGA-D-22-00300

Full Title: A workflow reproducibility scale for automatic validation of biological interpretation
results

Article Type: Technical Note

Funding Information: Japan Society for the Promotion of
Science London
(20J22439)

Mr. Hirotaka Suetake

Core Research for Evolutional Science
and Technology
(JPMJCR17A1)

Dr. Takeo Igarashi

National Bioscience Database Center Dr. Tazro Ohta

Abstract: Background
Reproducibility of data analysis workflow is a key issue in the field of bioinformatics.
Recent computing technologies, such as virtualization, have made it possible to
reproduce workflow execution with ease. However, the reproducibility of results is not
well discussed; that is, there is no standard way to verify whether the biological
interpretation of reproduced results are the same. Therefore, it still remains a challenge
to automatically evaluate the reproducibility of results.
Results
We propose a new metric, a reproducibility scale of workflow execution results, to
evaluate the reproducibility of results. This metric is based on the idea of evaluating the
reproducibility of results using biological feature values (e.g., number of reads,
mapping rate, and variant frequency) representing their biological interpretation. We
also implemented a prototype system that automatically evaluates the reproducibility of
results using the proposed metric. To demonstrate our approach, we conducted an
experiment using workflows used by researchers in real research projects and the use
cases that are frequently encountered in the field of bioinformatics.
Conclusions
Our approach enables automatic evaluation of the reproducibility of results using a
fine-grained scale. By introducing our approach, it is possible to evolve from a binary
view of whether the results are superficially identical or not to a more graduated view.
We believe that our approach will contribute to more informed discussion on
reproducibility in bioinformatics.

Corresponding Author: Tazro Ohta

JAPAN

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Hirotaka Suetake

First Author Secondary Information:

Order of Authors: Hirotaka Suetake

Tsukasa Fukusato

Takeo Igarashi

Tazro Ohta

Order of Authors Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

DRAFT

A workflow reproducibility scale for automatic
validation of biological interpretation results

Hirotaka Suetake1, Tsukasa Fukusato2, Takeo Igarashi1, and Tazro Ohta3,�

1Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
2Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

3Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Shizuoka, Japan

Background: Reproducibility of data analysis workflow is a key
issue in the field of bioinformatics. Recent computing technolo-
gies, such as virtualization, have made it possible to reproduce
workflow execution with ease. However, the reproducibility of
results is not well discussed; that is, there is no standard way
to verify whether the biological interpretation of reproduced re-
sults are the same. Therefore, it still remains a challenge to au-
tomatically evaluate the reproducibility of results.

Results: We propose a new metric, a reproducibility scale of
workflow execution results, to evaluate the reproducibility of re-
sults. This metric is based on the idea of evaluating the repro-
ducibility of results using biological feature values (e.g., num-
ber of reads, mapping rate, and variant frequency) represent-
ing their biological interpretation. We also implemented a pro-
totype system that automatically evaluates the reproducibility
of results using the proposed metric. To demonstrate our ap-
proach, we conducted an experiment using workflows used by
researchers in real research projects and the use cases that are
frequently encountered in the field of bioinformatics.

Conclusions: Our approach enables automatic evaluation of the
reproducibility of results using a fine-grained scale. By intro-
ducing our approach, it is possible to evolve from a binary view
of whether the results are superficially identical or not to a more
graduated view. We believe that our approach will contribute to
more informed discussion on reproducibility in bioinformatics.

Workflow | Provenance | Reproducibility
Correspondence: t.ohta@dbcls.rois.ac.jp

Background
Bioinformatics is big data science and is considered the most
demanding domain in terms of data acquisition, storage, dis-
tribution, and analysis (1). Because the low cost and high
throughput of measurement instruments have made it possi-
ble to generate large amounts of data, large-scale data anal-
ysis using a computer is required to extract valuable knowl-
edge from the data (2, 3). For each data analysis process, such
as data transformation, public database referencing and merg-
ing, and statistical processing, much open-source software is
developed and released (4). Researchers typically choose ap-
propriate software for each analysis process, build a work-
flow by combining the software, and execute the workflow in
a computing environment (5). However, it can be challenging
to ensure the reproducibility of data analysis due to a num-
ber of factors, such as a large amount of data, the diversity of
data types and software, and the complexity of the computing
environment (6).

Reproducibility of research is an essential issue in the scien-
tific community (7, 8). However, Baker raised the alarm of
a “reproducibility crisis” based on survey results that “more
than 70% of researchers have tried and failed to reproduce
another scientist’s experiments, and more than half have
failed to reproduce their own experiments” (9, p. 452). The
key here is the requirement for research to be considered
reproducible. Drummond argued that replicability and re-
producibility are often confused, but they are different con-
cepts and need to be clearly distinguished (10). The Associ-
ation for Computing Machinery (ACM) also attempts to de-
fine the terms repeatability, reproducibility, and replicability
(Table 1) (11). While these definitions are in the context of
computerized analysis, it should be noted that most existing
studies have focused on whether the execution can be repro-
duced or not and have not considered the verification of the
results. That is, they only state that the resulting data are ex-
actly the same as in the original but do not adequately discuss
the verification of whether the results are reproducible or not.
Therefore, the reproducibility of data analysis can be divided
into two parts: the execution of the analysis and the verifica-
tion of the results. We will focus our discussion on the second
part, verification.

Many workflow systems have been developed to improve
the efficiency of building and executing complex data anal-
ysis (12–14). Each system has unique characteristics, but in
particular, workflow systems can have a syntax for describ-
ing the data analysis, called a workflow language. Large user
communities have been formed around these workflow lan-
guages. The Common Workflow Language (CWL) (15), the
Workflow Description Language (WDL) (16), Nextflow (17),
and Snakemake (18) are typical examples. These systems
also have execution systems that work with computational
frameworks, such as job schedulers, container runtimes, and
package managers. Thus, these workflow systems facilitate
the execution of data analysis by different teams and in differ-
ent environments through the use of virtualization technology
and syntax that abstracts software and computational require-
ments (19).

The advent and widespread use of workflow systems have fa-
cilitated data analysis re-execution. However, as mentioned
earlier, to ensure reproducibility, it is necessary to verify the
execution results, that is, whether the same biological inter-
pretation is obtained or not. To address this issue, frame-
works, such as Research Object Crate (RO-Crate) (20) and

Suetake et al. | bioRχiv | October 31, 2022 | 1–11

Manuscript Click here to access/download;Manuscript;Suetake20221031.pdf

https://www.editorialmanager.com/giga/download.aspx?id=145085&guid=ca183b75-b852-456a-81ad-083af8b850ac&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=145085&guid=ca183b75-b852-456a-81ad-083af8b850ac&scheme=1

DRAFT

Table 1. Repeatability, reproducibility, and replicability. According to the ACM (11), repeatability is defined as a researcher can reliably repeat her own computation.
Reproducibility is defined as an independent group can obtain the same result using the author’s own artifacts, and replicability is defined as an independent group can obtain
the same result using artifacts which they develop completely independently.

Term Team Environment Setup (code and data) Result

Repeatability Same Same Same Same
Reproducibility Different Different Same Same
Replicability Different Different Different Same

CWLProv (21), have been proposed to generate workflow
provenance, a structured archive that packages workflow-
related metadata, such as workflow descriptions, execution
parameters, input and output data, tests, and documentation,
in a machine-readable format. This provenance information
is distributed on workflow sharing platforms, such as Work-
flowHub (22), Dockstore (23), and nf-core (24). When ap-
propriate provenance is provided by the author, a researcher
can use this information to verify new execution results mak-
ing the process reproducible.

However, the process of comparing the provenance and ex-
ecution results is often incomplete and inefficient. In au-
tomatic comparison, the checksums of the output files are
used; however, they do not always match. This is because
these checksums may differ depending on the software ver-
sion, timestamps, heuristic algorithms, and computing envi-
ronments (e.g., OS and CPU architecture, etc.). However, the
same biological interpretation may be obtained even when
the output files do not match exactly; for example, only the
timestamps in the output files may differ. Thus, a simple
comparison using a checksum is incomplete in verifying re-
sults. Another method is to have humans semantically inter-
pret the results. However, due to its inefficiency, this method
is not possible when the scale of the data analysis execution is
large. From the above, the verification of results using prove-
nance remains challenging because the current procedure is
limited to incomplete automatic comparison and inefficient
manual checking.

Automation is essential for the verification of practical work-
flows that output many files; however, binary determination
by checking checksums is not sufficient. Thus, it is neces-
sary to introduce a fine-grained scale to determine the de-
gree of reproducibility of the results. Automatic verification
of results using this scale will make verification of work-
flow reproducibility practical. In this paper, we propose a
reproducibility scale of workflow execution results based on
some discussion and experiments and a validation method us-
ing this scale. We implement a workflow execution system
that generates a workflow provenance that contains metadata
required for verification. This implementation is an exten-
sion of Sapporo (25), an existing workflow execution service
(WES). Sapporo’s extensibility makes it compatible with var-
ious workflow languages and execution systems. In addition,
we adapt RO-Crate as the workflow provenance format. We
also develop Tonkaz: a command-line tool that verifies the re-
producibility of data analysis results by comparing the work-
flow provenances. To demonstrate the effectiveness of our
approach, we apply it to workflows used by researchers in

real research projects. The full reproducibility of research is
still an issue that has not been fully resolved. Nevertheless,
we hope our approach will contribute to solving this problem
by increasing the resolution of the definition of reproducibil-
ity.

Methods
Reproducibility scale of workflow execution results. A
workflow is a sequence of computational steps that combine
analysis tools according to their inputs and outputs. The first
tool takes input data and passes its output on as input for the
next tool. Thus, the result of the workflow execution is the
cumulative output of each tool or the last tool in the work-
flow. It should be noted that the output of a tool includes not
only output files, but also execution logs (e.g., standard out-
put and error) and runtime information (e.g., exit code, start
time, and end time). Returning to the purpose of data anal-
ysis here, it is to obtain useful biological knowledge from
the data. Therefore, it is not sufficient to consider the output
files and logs as the only result of the workflow execution;
the biological feature values interpreted from the output files
and logs should be considered as the result of the workflow
execution.
The format to represent biological features obtained from
data analysis is not standardized and varies depending on the
analysis tool. For example, there are summarized formats
(tabular and graph) and formats that express biological fea-
tures themselves, such as Sequence Alignment/Map (SAM)
and the Variant Call Format (VCF). To interpret and verify
the results, the individual executing the workflow visually
checks the output graph or uses a tool to extract a numeri-
cal feature value from the file, for example, SAMtools (26)
to extract mapping statistics from the SAM format. Because
these processes require domain knowledge, it is ideal that the
workflow itself provides a structured summary and a way to
interpret it. However, this depends on the skill and effort of
the individual workflow developer, and the diversity of tools
and workflows makes it challenging to provide them in a stan-
dardized way.
There are several workflows that provide a way to verify re-
producibility using biological feature values. For example,
the RNA-seq workflow (27) distributed by the nf-core project
has a test mode to verify that the workflow is working as ex-
pected. In this mode, the workflow is executed with a small
test dataset, and the biological feature values are compared
with the expected values. The mapping rate, which repre-
sents the percentage of reads that are mapped to the reference
genome, is used as a biological feature value. If the difference

2 | bioRχiv Suetake et al. | Workflow reproducibility scale

DRAFT

between the values is within the threshold, the workflow is
considered to be working as expected. As a preliminary ex-
periment, we compared the output files without using such
biological feature values—that is, the checksum method was
used to verify an exact match of a file. As a result, when we
executed the above RNA-seq workflow twice in the same en-
vironment and compared the file output BAM files (the com-
pressed binary version of the SAM files), we found that the
checksum values were different and the file sizes differed by
several bytes (see the Section “Results” for details). It is ideal
that the output files are exactly the same, but it is difficult to
achieve this goal because the output files are generated by the
analysis tools, and these tools are not designed to produce the
same output all the time. Therefore, we concluded that it is
not sufficient to check only the exact match of output files to
verify the reproducibility of workflow execution results and
that a method using biological feature values and threshold
should also be introduced.
Based on the above discussion and preliminary experiments,
we propose a method to verify the reproducibility of work-
flow execution results using biological feature values and
threshold. The method consists of two steps: (1) extracting
biological feature values from the output files and logs and
(2) comparing the extracted biological feature values with the
expected values using threshold values. A detailed descrip-
tion of each step is provided in the Sections “Generation of
workflow provenance containing biological feature values”
and “Automatic verification of reproducibility.” We also pro-
pose a scale to evaluate the reproducibility of workflow ex-
ecution results based on the method (Table 2). This allows
the reproducibility of results to be expressed at a higher res-
olution than a binary measure of whether the results are the
same or not.

Generation of workflow provenance containing biolog-
ical feature values. To verify the reproducibility of work-
flow execution results using biological feature values, it is
necessary to package the workflow execution results as the
workflow provenance in a standardized format. Because
there are many workflow languages and execution engines,
we first abstracted the workflow execution itself. Thus, we
extended Sapporo, an existing WES implementation. Sap-
poro has an API scheme that satisfies the Global Alliance for
Genomics and Health (GA4GH) Workflow Execution Ser-
vice (WES) standard (28), enabling the workflow execution
and results acquisition in a standardized manner. In addi-
tion, due to its extensibility, it can execute workflows writ-
ten in various languages, such as CWL, WDL, Nextflow, and
Snakemake. Therefore, by extending Sapporo, workflow ex-
ecution written in various languages can be handled in the
same way.
When a workflow is executed in Sapporo, the files related to
the execution are stored in the file system as workflow prove-
nance. This provenance directory contains the workflow def-
inition files, input files, intermediate files, output files, log
files, execution parameters, runtime information, etc. Thus,
we converted Sapporo’s provenance into RO-Crate, a stan-
dardized format for packaging research objects expressed

in JSON-LD. Because the RO-Crate use case included the
packaging of workflow execution results, it was sufficient to
map Sapporo’s provenance to the ontology provided by RO-
Crate. However, for verification, we defined some additional
terms and properties1. For example, we defined the property
“mappedRate” to represent the mapping rate of the output
file, which is a biological feature value used for verification.
In addition, RO-Crate is designed to rely on the local file sys-
tem for file location resolution and checksum representation.
However, we prioritized the portability of being able to carry
the provenance in a single file, so we put all the informa-
tion necessary for verification, such as checksums, biological
feature values, and contents of files of small size, in the RO-
Crate file.
Because the workflow output freely produces a large number
of diverse files, it is impractical to extract biological feature
values for all files. Thus, we used the file extension to deter-
mine the file type and used an appropriate tool to extract the
biological feature values. We used the file types defined in
the EDAM ontology (29), which are widely used to express
biological interpretations (Table 3). For example, if the file
type is SAM, we used SAMtools to extract the number of
reads and the mapping rate, and if the file type is VCF, we
used VCFtools (30) to extract the number of variants and the
variant frequency. In addition, the number of lines in the file
is also a biological feature value. For example, if the file type
is FASTQ, four lines represent one sequence read. Figure 1
is an example of a file entity in RO-Crate, which contains the
biological feature values, such as the statistics obtained from
the file, file size, and the number of lines.
For provenance enrichment and sharing, we integrated Sap-
poro and Yevis (31). Yevis is a system that builds a workflow
registry and also acts as a client for Sapporo. The workflow
metadata file used in Yevis contains not only the information
required to execute the workflow but also the information
for workflow availability and traceability in workflow shar-
ing, such as author, open-source license, and documentation
link. Thus, by executing the workflow in Sapporo via Yevis,
the availability and traceability of the generated provenance
are improved. In addition, because Yevis’ workflow shar-
ing feature enables the attachment of generated provenance
to shared workflows, the reproducibility of shared workflows
can be verified by other users.
From the above, by executing the workflow with Sapporo and
Yevis (Figure 2), a workflow provenance containing feature
values representing a biological interpretation is generated as
RO-Crate. This method also applies to workflows written in
various languages and can address a wide range of use cases,
such as workflow sharing. Therefore, by generating and shar-
ing a provenance containing biological feature values, it is
possible to verify the reproducibility of the workflow execu-
tion results in other users’ environments.

Automatic verification of reproducibility. We developed
Tonkaz to automatically verify the reproducibility of work-

1https://raw.githubusercontent.com/sapporo-wes/
sapporo-service/main/sapporo/ro-terms.csv

Suetake et al. | Workflow reproducibility scale bioRχiv | 3

https://raw.githubusercontent.com/sapporo-wes/sapporo-service/main/sapporo/ro-terms.csv
https://raw.githubusercontent.com/sapporo-wes/sapporo-service/main/sapporo/ro-terms.csv

DRAFT

Table 2. Reproducibility scale of workflow execution results. For each of the output files, this is determined by comparing the expected provenance with the provenance of
the actual execution. If the file of the same name in the expected provenance and the actual execution are identical, the file is considered to be fully reproduced. If the file of
the same name is not identical, it is determined whether its difference is acceptable or not using the feature and threshold values. If the difference is acceptable, the file is
considered to be partially reproduced. If the file exists in the expected provenance but not in the actual execution, it is considered to be not reproduced.

Reproducibility scale Level Description

Fully Reproduced 3 Output files are identical with the same checksum.
Acceptable Differences 2 Output files are not identical, but their biological feature values (e.g., number of reads,

mapping rate, and variant frequency) are similar (within a threshold).
Unacceptable Differences 1 Output files are not identical, and their biological feature values are not similar (beyond

threshold).
Not Reproduced 0 The workflow does not produce output files.

Table 3. File types and extensions defined in EDAM ontology. These file types and extensions are used to extract biological feature values from the output files.

EDAM ID File type Extension

format_1929 FASTA .fa, .fasta
format_1930 FASTQ .fq, .fastq, .fq.gz, .fastq.gz
format_1975 GFF .gff, .gff3
format_2306 GTF .gtf
format_2572 BAM .bam
format_2573 SAM .sam
format_3003 Bed .bed
format_3004 BigBed .bb
format_3005 Wig .wig
format_3006 BigWig .bw
format_3016 VCF .vcf, .vcf.gz

{
 "@context": ["https://w3id.org/ro/crate/1.1/context", { ... }],
 "@graph": [
 ...,
 {
 "@id": "outputs/star_salmon/RAP1_UNINDUCED_REP2.markdup.sorted.bam",
 "@type": ["File", "FormalParameter", "OutputFile"],
 "contentSize": 3279083,
 "dateModified": "2022-09-08T08:52:19.755363",
 "encodingFormat": "application/gzip",
 "format": {

"@id": "http://edamontology.org/format_2572"
 },
 "gid": 1000,
 "mode": "-rw-r--r--",
 "sha512": "2d6c8436dd1da0e4e49f9bdfbf8d656d7740f7eae149bb2add417d6739c05aeb441aa84239041f9aac87688042c7b31bfca5c95d0dfaf742512f2e740a788979",
 "stats": {

"@id": "#31d3ba80-21df-4ab7-93e7-558154d07161"
 },
 "uid": 1000,
 "url": "http://localhost:1122/runs/93f4d8bf-424d-4d5e-bc79-9482e1620be9/data/outputs/star_salmon/RAP1_UNINDUCED_REP2.markdup.sorted.bam"
 },
 {
 "@id": "#31d3ba80-21df-4ab7-93e7-558154d07161",
 "@type": ["FileStats"],
 "duplicateRate": 0.8027008887713803,
 "duplicateReads": 78936,
 "generatedBy": {

"@id": "#samtools"
 },
 "mappedRate": 1.0,
 "mappedReads": 98338,
 "totalReads": 98338,
 "unmappedRate": 0.0,
 "unmappedReads": 0
 },
 ...
]
}

Fig. 1. An example of a file entity in RO-Crate. This is a part of the actual workflow execution results and uses the RNA-seq workflow distributed by the nf-core project. The
output file in this example is a BAM file, and its biological feature values are the file size, number of mapped reads, and mapping rate. Thus, the file entity contains properties
such as “contentSize”, “stats:mappedReads”, and “stats:mappedRate”. These are defined as additional terms in Sapporo, and the values are extracted from the file using
SAMtools.

4 | bioRχiv Suetake et al. | Workflow reproducibility scale

DRAFT

flow execution results by comparing the biological feature
values contained in the workflow provenance. One use case
of Tonkaz is to compare the expected result, which is pro-
vided by a workflow developer, and the actual result, which
is generated in the user’s environment (Figure 2). That is,
Tonkaz verifies that the results are the same according to the
ACM’s definition of reproducibility (Table 1). Another use
case is ACM’s definition of repeatability, which is to verify
that the results are the same even if a workflow is executed
multiple times in the same environment, and it will not be
broken by updates to dependencies. Thus, these use cases in-
dicate that we must verify the reproducibility of the results,
regardless of the differences in execution methods and envi-
ronments.
We designed Tonkaz to accept as arguments two RO-Crates,
one containing the expected provenance and the other con-
taining the actual provenance. Tonkaz compares the biologi-
cal feature values of the output files in the two RO-Crates and
calculates the reproducibility scale for each file. The files to
be compared are those output files that have been assigned
EDAM ontology, as described in Table 3. This is because the
workflow output files often include log files that are not re-
lated to the biological interpretation and image files that are
not mechanically comparable. For example, nf-core’s RNA-
seq workflow produces 872 files, but only 25 files are as-
signed EDAM ontology. In the process of comparing files
and calculating the reproducibility scale, Tonkaz first checks
whether the files are identical using a checksum (Figure 3). If
the files are identical, the reproducibility scale is “Fully Re-
produced.” If the files are not identical, Tonkaz compares
the biological feature values of the files using a threshold
value to determine whether the differences are acceptable or
not. The default threshold value used is 0.05, but this value
can be changed according to the use case. This is because
some workflows for medical applications or quality control
of biological materials require a lower threshold value. The
comparison result is finally summarized in a table, and the
reproducibility scale of each file is also displayed in a table
(Figure 4). However, Tonkaz does not score the reproducibil-
ity of the entire workflow. This is because, again, the purpose
of comparison may differ depending on the use case, and it
is not practical to automate the final decision. Thus, we im-
plemented an option to generate structured data in Tonkaz.
In addition, we believe that workflow developers should use
this option and write conditions or scripts to determine the
reproducibility for each use case.

Results
To demonstrate the effectiveness of our approach, we verified
the reproducibility of workflow execution results by com-
paring the results of public workflows used by researchers
in real research projects, not simple ones for testing. This
verification was based on the following five practical use
cases: (1) execution in the same environment, (2) execution
in a different environment, (3) execution of different ver-
sions of the workflow, (4) execution with missing datasets,
and (5) comparison using all output files. We used the fol-

lowing three workflows: (1) the mitochondrial short vari-
ant discovery workflow distributed a GATK best practice
workflow (hereafter referred to as GATK workflow, lan-
guage: WDL) (32), (2) RNA-Seq workflow distributed by nf-
core (hereafter referred to as RNA-seq workflow, language:
Nextflow) (27), and (3) GATK best practice-compatible
germline short variant discovery workflow, which is used
to process whole-genome sequencing data of the Japanese
Genotype-phenotype Archive (hereafter referred to as JGA
workflow, language: CWL) (33). We used the following two
execution environments: (1) Ubuntu 20.04 LTS (CPU: Intel
Xeon E5-2640 @ 2.50GHz, RAM: 24GB, Docker: 20.10.8)
and (2) macOS 12.5.1 (CPU: Apple M1 Max, RAM: 64GB,
Docker: 20.10.16). Table 4 shows the setting for each ex-
ecution as a combination, and Table 5 summarizes the ver-
ification results based on the use cases. The methods and
results of the workflow execution and verification are de-
scribed in the online documentation “sapporo-wes/tonkaz -
tests/README.md” (34) and are published on Zenodo (35).

The Comparisons C1, C3, and C5 present execution results
in the same environment. Comparison C1 was performed
using the GATK workflow, and the output file types were
BAM and VCF. The reproducibility scale value was Level
2 (Acceptable Difference) for all files, with no differences in
biological feature values expressing biological interpretation
(e.g., mapping rate and variant frequency). The difference
between these files was due to the fact that both the BAM
and VCF files included the file paths of the original input file
and timestamps in the header lines. Thus, when using the
analysis tool GATK (36), it is challenging to fully reproduce
the output files because of the behavior that the output files
contain the file paths and timestamps. Comparison C3 was
performed using the JGA workflow, and the output file types
were VCF. This result also showed no differences in biolog-
ical feature values, and the differences in file contents were
due to the behavior of GATK. Comparison C5 was performed
using the RNA-seq workflow, and the output file types were
BAM, GTF, and BED. All GTF and BED files were Level 3
(Fully Reproduced), and all BAM files were Level 2 (Accept-
able Difference). The difference between BAM files was due
to the different order of the mapped reads in the BAM file.
These BAM files were mapped by STAR (37), and sorted
by SAMtools; however, differences occurred. These results
show cases in which the output files were not identical, al-
though the biological feature values were equal, due to the
behavior of the analysis tool.

The Comparisons C2, C4, and C6 present the execution re-
sults in different environments. All of these comparison re-
sults were Level 0 (Not Reproduced) because all execution
in the Mac environment either failed or never finished. All
workflows used in this experiment were Docker container-
ized and were designed to be very reproducible in the exe-
cution context; however, runtime errors occurred due to the
Arm processor architecture of the Mac environment. Thus,
even a very well-considered workflow may not be repro-
ducible in a different environment. In such cases, it is essen-
tial to increase the debuggability of the cause of the irrepro-

Suetake et al. | Workflow reproducibility scale bioRχiv | 5

DRAFT

Developer's Environment

Workflow

Sapporo + Yevis

Provenance (expected)

Developer User

Sharing Platform

User's Environment

Provenance (actual)

Tonkaz

Sapporo + Yevis

Workflow

Fig. 2. The flowchart representing the Tonkaz use case. The workflow built by the workflow developer is executed by WES, which is a combination of Sapporo and Yevis, and
the workflow provenance, including feature values of the output files, is generated in RO-Crate format. This provenance is used as the expected value for the verification of
reproducibility. Using the shared workflow, the user executes the shared workflow in his/her own environment using WES. Using Tonkaz, the user then compares the shared
provenance with the provenance generated by the user’s workflow execution and verifies the reproducibility of the workflow execution results.

Iterate
feature values

Loop end

Not Reproduced

Fully Reproduced

Unacceptable
Differences

Acceptable
Differences

True

False

Different

SameChecksum

No

Yes

Crate exists?

Threshold

Expected file crate Actual file crate

Fig. 3. The process for calculating the reproducibility scale of a file. Tonkaz first checks whether the files are identical using a checksum. If the files are identical, the
reproducibility scale value is “Fully Reproduced.” If the files are not identical, Tonkaz compares the biological feature values of the files using a threshold value to determine
whether the differences are acceptable or not. If the differences are acceptable, the reproducibility scale value is “Acceptable Difference.” If the differences are unacceptable,
the reproducibility scale value is “Unacceptable Difference.” The default threshold value used is 0.05, but this value can be changed according to the use case. If the file entity
exists only in one of the two RO-Crates, the reproducibility scale value is “Not Reproduced.”

6 | bioRχiv Suetake et al. | Workflow reproducibility scale

DRAFT

...

=== Level3

⭐ ⭐ ⭐

 (Same Checksum, 13/25 files)

- star_salmon/rseqc/junction_annotation/bed/RAP1_IAA_30M_REP1.junction.Interact.bed
- star_salmon/rseqc/junction_annotation/bed/RAP1_IAA_30M_REP1.junction.bed
- star_salmon/rseqc/junction_annotation/bed/RAP1_UNINDUCED_REP1.junction.Interact.bed
- star_salmon/rseqc/junction_annotation/bed/RAP1_UNINDUCED_REP1.junction.bed
- star_salmon/rseqc/junction_annotation/bed/RAP1_UNINDUCED_REP2.junction.Interact.bed
- star_salmon/rseqc/junction_annotation/bed/RAP1_UNINDUCED_REP2.junction.bed
- star_salmon/rseqc/junction_annotation/bed/WT_REP2.junction.Interact.bed
- star_salmon/rseqc/junction_annotation/bed/WT_REP2.junction.bed
- star_salmon/stringtie/RAP1_IAA_30M_REP1.coverage.gtf
- star_salmon/stringtie/RAP1_UNINDUCED_REP1.coverage.gtf
- star_salmon/stringtie/RAP1_UNINDUCED_REP2.coverage.gtf
- star_salmon/stringtie/WT_REP1.coverage.gtf
- star_salmon/stringtie/WT_REP2.coverage.gtf

=== Level2

⭐ ⭐

 (Similar Features, 12/25 files)

- star_salmon/WT_REP1.markdup.sorted.bam
.--.

	in Crate1	in Crate2
File Size	6.86 MB (7196616)	6.86 MB (7192272)
Total Reads	188243	188241
# Mapped	188243 (100.00%)	188241 (100.00%)
# Duplicate	38470 (20.44%)	38470 (20.44%)
 '--'

- star_salmon/rseqc/junction_annotation/bed/WT_REP1.junction.Interact.bed
.--.

	in Crate1	in Crate2
File Size	22.46 KB (22995)	22.32 KB (22856)
Line Count	162	161
 '--'

- star_salmon/stringtie/WT_REP2.transcripts.gtf
.--.

	in Crate1	in Crate2
File Size	37.82 KB (38729)	37.82 KB (38729)
Line Count	259	259
 '--'

...

=== Level1

⭐

 (Different Features, 0/25 files)

=== Level0 (Not Found, Crate1: 0 files, Crate2: 0 files)

Summarize compare result:

 .---.
Reproducibility	Level	Definition	File #
Fully Reproduced			

⭐ ⭐ ⭐

 | Same Checksum | 13 files |
 | Acceptable Differences |

⭐ ⭐

 | Similar Features | 12 files |
 | Unacceptable Differences |

⭐

| Different Features | 0 files |
 | Not Reproduced | | Not Found | 0 files |
 '---'

Fig. 4. Example of the Tonkaz output. Tonkaz displays a table for each file and a final summary table. The user checks those summary tables to determine the reproducibility
of the entire workflow and the differences between the expected and actual files (e.g., by using the diff command).

Suetake et al. | Workflow reproducibility scale bioRχiv | 7

DRAFT

Table 4. Combination table of workflow execution and execution settings. The first column is the definition of the execution name. In the second column and below are the
workflow execution settings. The blank cells in the third and fourth columns indicate that there are no differences in the execution settings.

Execution name Workflow Version Dataset Environment

GATK_1st
GATK

Linux
GATK_2nd Linux
GATK_mac Mac
JGA_1st

JGA
Linux

JGA_2nd Linux
JGA_mac Mac
RNA-seq_1st

RNA-seq

v3.7 Standard Linux
RNA-seq_2nd v3.7 Standard Linux
RNA-seq_mac v3.7 Standard Mac
RNA-seq_v3.6 v3.6 Standard Linux
RNA-seq_small v3.7 Small Linux

Table 5. Comparisons of execution and verification results. The definition of each execution is defined in Table 4. Five use cases are assigned according to the combination
of executions. In the fifth column and below are the number of files for each reproducibility scale defined in Table 2: Level 3 is “Fully Reproduced,” Level 2 is “Acceptable
Difference,” Level 1 is “Unacceptable Difference,” and Level 0 is “Not Reproduced.”

ID Source execution Target execution Use case Level 3 Level 2 Level 1 Level 0

C1 GATK_1st GATK_2nd Same environment 0 5 0 0
C2 GATK_1st GATK_mac Different environment 0 0 0 5
C3 JGA_1st JGA_2nd Same environment 0 4 0 0
C4 JGA_1st JGA_mac Different environment 0 0 0 4
C5 RNA-seq_1st RNA-seq_2nd Same environment 20 5 0 0
C6 RNA-seq_1st RNA-seq_mac Different environment 0 0 0 25
C7 RNA-seq_1st RNA-seq_v3.6 Different version 13 12 0 0
C8 RNA-seq_1st RNA-seq_small Missing dataset 8 5 7 5
C9 RNA-seq_1st RNA-seq_2nd All output files 557 306 1 8

ducibility of the execution results. Therefore, the importance
of this debuggability indicates that it is helpful to include in-
formation about the execution environment in the workflow
provenance; our approach and RO-Crate address them.
Comparison C7 presents the execution results in different
versions. Workflow developers often check for workflow
breakage when updating versions of analysis tools included
in the workflow. In the RNA-seq workflow used in this com-
parison, the dependent analysis tools STAR, SAMtools, and
StringTie (38) were updated with the workflow update from
v3.6 to v3.7. As a result of the comparison (C7), the number
of files with Level 2 increased compared to C5, a comparison
involving the same version. The file types that became Level
2 were GTF, BED, and BAM; the GTF and BED files were
newly changed from Level 3 to Level 2 when compared to
C5. The differences between the GTF files were due to differ-
ences in the FPKM field values and the version of StringTie
included in the header line. The BED files had a different
number of lines, and the BAM files had a different number
of mapped reads; however, those differences were within the
threshold value. This result indicates that verification using
biological feature values and threshold is effective because
apparent differences occur in output due to version updates
and other reasons, and it is necessary to determine whether
these differences are acceptable or not.
Comparison C8 presents the execution results in a case where

the input dataset was partially missing. The dataset used in
RNA-seq_1st contains six sequence read files (FASTQ) (39),
while the dataset used in RNA-seq_small contained four se-
quence read files (40). As a result of the comparison, the out-
put files related to the sample with half the number of reads
were Level 1 (Unacceptable Difference), while the sample
with zero reads was Level 0. In this case, setting the thresh-
old used for verification to, for example, 0.5 instead of 0.05
(default value) will verify that the workflow is functioning
as expected. That is, this suggests that the threshold value
and final decision may vary depending on the objectives of
developers and users.
Comparison C9 presents the execution results in a case
where all the output files were compared. Most of
the files were Level 3 or Level 2; however, 16 files
were not reproduced (Level 0). These level 0 files had
random names or timestamps in the file names, for exam-
ple, mqc_mqc_mplplot_gtnuqiebfc_1.pdf and
execution_report_2022-09-08_06-28-19.html.
Therefore, it is not appropriate to use all files to verify the
reproducibility of execution results; it is essential to focus on
characteristic files, such as BAM and GTF files.
For the five practical use cases, we found that our approach
was well suited to verify the reproducibility of the workflow
execution results. In all use cases, existing methods that use
checksums to verify exact file matches can produce false pos-

8 | bioRχiv Suetake et al. | Workflow reproducibility scale

DRAFT

itives; this means that the workflow is considered not repro-
duced, even though it is working as expected. Therefore, it is
important to introduce a reproducibility scale and verify the
workflow execution results’ reproducibility at higher resolu-
tions.

Discussion
Despite its complexity, data analysis in bioinformatics is
considered reproducible and is being shared. In particular,
the workflows shared by nf-core and GATK best practices
are well maintained and include test datasets, documenta-
tion, and open-source licenses. Ideally, all shared workflows
would be like these; however, in reality, this is challenging
because of the amount of work and domain knowledge re-
quired. Thus, we aim to facilitate workflow sharing by pro-
viding a workflow provenance model and a workflow prove-
nance verification method. However, our approach is not ap-
plicable in domains where it is difficult to verify the results
and inferences using a computer. In such cases, it is first nec-
essary to discuss an ontology or structured format for repre-
senting the research.
A related project, CODECHECK (41), aims to provide the
verification of the reproducibility of data analysis by a third
party in scientific publishing. CODECHECK proposes a pro-
cedure similar to a peer review system, in which the workflow
associated with research articles is verified at the time of pub-
lication by a reviewer called a CODECHECKER. However,
this project focuses on increasing the availability of the work-
flow, and does not verify the execution results. As such, it is
unlikely to address the case of our concern that the execu-
tion results are not exactly the same, but the conclusions of
the study remain the same. Our proposed metrics, a repro-
ducibility scale of workflow execution results, would be use-
ful in such workflow reproducibility validation in publishing
as well.
Software begins to degrade from the moment it is developed,
and it is not easy to maintain the same quality over time.
Cases in which an error, including a stack trace, is thrown
are quite fortunate; in many cases, the software cannot be ex-
ecuted in the first place, the process does not finish, or the
output is inaccurate without throwing an error. Dealing with
such cases and improving debuggability is accomplished by
packaging the expected behavior of the software at the time it
is developed. In our approach, we were able to attach infor-
mation, such as OS, CPU architecture, and dependent soft-
ware versions, to the expected workflow provenance due to
RO-Crate’s extensibility. However, when analysis tools are
used internally, as in a workflow, the behavior of the analy-
sis tools tends to be a black box. Therefore, if an option to
display the reproducibility of the execution for each analysis
tool is provided, it will be possible to identify the cause of
the irreproducibility of the workflow execution results.
We used the file extension to determine the file type and spe-
cific tools to extract the biological interpretation from the
workflow output. However, using the file extension is not
always reliable, and extracting the biological interpretation
from the file contents is not always possible. Thus, we also

tried to take advantage of the summaries and logs generated
during the execution of the analysis tools; however, we aban-
doned this approach due to the diversity and unstructured
nature of the summaries and logs. MultiQC is an existing
project that attempts to summarize the results of multiple
analysis tools (42). We believe that integrating our approach
with MultiQC will allow us to extract richer information from
the workflow output and improve verification accuracy.
In the article regarding a “reproducibility crisis,” Baker
quoted a Johns Hopkins microbiologist as stating, “The next
step may be identifying what is the problem and to get a con-
sensus.” (9, p. 452). Subsequently, the proliferation of virtu-
alization technology and workflow systems has lowered the
bar for re-executing data analysis that an individual or others
have previously built. Despite this, workflow developers are
always anxious about whether their workflows are broken. In
response to this anxiety, we realized that the cause is our bi-
nary view of whether the workflow could be reproduced or
not. To remove this anxiety, we proposed a new approach to
verify the reproducibility of workflows by providing a range
of reproducibility of execution results. With the development
of sharing platforms, workflow sharing has become more ac-
tive. Therefore, we hope that by verifying reproducibility
and sharing the results, more workflows will be reused with
confidence, which, in turn, will lead to increased scientific
progress.

Availability of source code and requirements
• Project name: Tonkaz

• Project home page: https://github.com/
sapporo-wes/tonkaz

• DOI: 10.5281/zenodo.7102376

• biotoolsID: tonkaz

• Operating system(s): Platform independent

• Programming language: TypeScript

• Other requirements: Deno

• License: Apache License, Version 2.0

• Project name: Sapporo-service

• Project home page: https://github.com/
sapporo-wes/sapporo-service

• DOI: 10.5281/zenodo.7088999

• biotoolsID: sapporo-service

• Operating system(s): Platform independent

• Programming language: Python

• Other requirements: Docker recommended

• License: Apache License, Version 2.0

• Project name: Yevis-cli

Suetake et al. | Workflow reproducibility scale bioRχiv | 9

https://github.com/sapporo-wes/tonkaz
https://github.com/sapporo-wes/tonkaz
https://github.com/sapporo-wes/sapporo-service
https://github.com/sapporo-wes/sapporo-service

DRAFT

• Project home page: https://github.com/
sapporo-wes/yevis-cli

• DOI: 10.5281/zenodo.7088957

• biotoolsID: yevis-cli

• Operating system(s): Platform independent

• Programming language: Rust

• Other requirements: Docker recommended

• License: Apache License, Version 2.0

Availability of supporting data and materials
The workflow, result, and documentation related to the ex-
periment described in the Section “Results” are available on
GitHub and Zenodo as follows:

• Execution method and result (34)

• Workflow definitions (43)

• Raw data of workflow execution results (35)

Declarations
List of abbreviations. ACM: Association for Computing
Machinery; CPU: Central Processing Unit; CWL: Com-
mon Workflow Language; GA4GH: Global Alliance for Ge-
nomics and Health; ID: Identifier; OS: Operating System;
RO-Crate: Research Object Crate; SAM: Sequence Align-
ment/Map; VCF: Variant Call Format; WDL: Workflow De-
scription Language; WES: Workflow Execution Service;

Ethical Approval. Not applicable for this study.

Consent for publication. Not applicable for this study.

Competing Interests. The authors declare that they have no
competing interests.

Funding. This study was supported by JSPS KAKENHI
(Grant Number 20J22439, assigned to H.S.), the CREST pro-
gram of the Japan Science and Technology Agency (Grant
Number JPMJCR17A1, assigned to T.I.), and the Life Sci-
ence Database Integration Project, NBDC of Japan Science
and Technology Agency.

Author’s Contributions. H.S. and T.O. conceived and de-
veloped the methodology and software and conducted the in-
vestigation. H.S., T.F., and T.O. wrote the manuscript. T.F.,
T.O., and T.I. supervised the project. All authors read and
approved the final version of the manuscript.

Acknowledgements
We acknowledge and thank the following scientific com-
munities and their collaborative events where several of the
authors engaged in irreplaceable discussions and develop-
ment throughout the project: the Pitagora Meetup, Workflow
Meetup Japan, NBDC/DBCLS BioHackathon Series, and
RO-Crate community. We also acknowledge Prof. Masahiro
Kasahara for his valuable comments on the project.

References
1. Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai,

Miles J. Efron, et al. Big data: Astronomical or genomical? PLOS Biology, 13(7):e1002195,
2015. doi: 10.1371/journal.pbio.1002195.

2. Lincoln D. Stein. The case for cloud computing in genome informatics. Genome Biology,
11(5):207, 2010. doi: 10.1186/gb-2010-11-5-207.

3. Sara Goodwin, John D. McPherson, and Richard W. McCombie. Coming of age: Ten years
of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351,
2016. doi: 10.1038/nrg.2016.49.

4. Pjotr Prins, Joep de Ligt, Artem Tarasov, Ritsert C. Jansen, Edwin Cuppen, and Philip E.
Bourne. Toward effective software solutions for big biology. Nature Biotechnology, 33(7):
686–687, 2015. doi: 10.1038/nbt.3240.

5. Jeffrey M. Perkel. Workflow systems turn raw data into scientific knowledge. Nature, 573
(7772):149–151, 2019. doi: 10.1038/d41586-019-02619-z.

6. Anna Bánáti, Péter Kacsuk, and Miklós Kozlovszky. Evaluating the reproducibility cost of
the scientific workflows. In 2016 IEEE 11th International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI), pages 187–190, 2016-05. doi: 10.1109/saci.2016.
7507367.

7. Software with impact. Nature Methods, 11(3):211–211, 2014. doi: 10.1038/nmeth.2880.
8. Rebooting review. Nature Biotechnology, 33(4):319–319, 2015. doi: 10.1038/nbt.3202.
9. Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604):452–454,

2016. doi: 10.1038/533452a.
10. Chris Drummond. Replicability is not reproducibility: Nor is it good science. In Proceedings

of the Evaluation Methods for Machine Learning Workshop at the 26th ICML, Volume 1,
2009.

11. Association for Computing Machinery. Artifact review and badging ver-
sion 1.1, 2020. https://www.acm.org/publications/policies/

artifact-review-and-badging-current.
12. Felipe da Veiga Leprevost, Valmir C. Barbosa, Eduardo L. Francisco, Yasset Perez-Riverol,

and Paulo C. Carvalho. On best practices in the development of bioinformatics software.
Frontiers in Genetics, 5, 2014. doi: 10.3389/fgene.2014.00199.

13. Laura Wratten, Andreas Wilm, and Jonathan Göke. Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nature Methods, 18(10):1161–
1168, 2021. doi: 10.1038/s41592-021-01254-9.

14. Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojša Tijanić, and
Samuel Lampa. Existing workflow systems, 2021. https://s.apache.org/

existing-workflow-systems.
15. Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša

Tijanić, et al. Methods included: Standardizing computational reuse and portability with the
common workflow language. arXiv, 2021. doi: 10.48550/arXiv.2105.07028.

16. Kate Voss, Jeff Gentry, and Geraldine Van Der Auwera. Full-stack genomics pipelining with
GATK4 + WDL + Cromwell. F1000Research, 2017. doi: 10.7490/f1000research.1114631.1.

17. Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio Palumbo,
and Cedric Notredame. Nextflow enables reproducible computational workflows. Nature
Biotechnology, 35(4):316–319, 2017. doi: 10.1038/nbt.3820.

18. Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics, 28(19):2520–2522, 2012. doi: 10.1093/bioinformatics/bts480.

19. Felipe da Veiga Leprevost, Björn A. Grüning, Saulo Alves Aflitos, Hannes L. Röst, Julian
Uszkoreit, Harald Barsnes, et al. BioContainers: An open-source and community-driven
framework for software standardization. Bioinformatics, 33(16):2580–2582, 2017. doi: 10.
1093/bioinformatics/btx192.

20. Stian Soiland-Reyes, Peter Sefton, Mercè Crosas, Leyla Jael Castro, Frederik Coppens,
José M. Fernández, et al. Packaging research artefacts with RO-Crate. Data Science, 5(2):
97–138, 2022. doi: 10.3233/ds-210053.

21. Farah Zaib Khan, Stian Soiland-Reyes, Richard O. Sinnott, Andrew Lonie, Carole Goble,
and Michael R. Crusoe. Sharing interoperable workflow provenance: A review of best prac-
tices and their practical application in CWLProv. GigaScience, 8(11):giz095, 2019. doi:
10.1093/gigascience/giz095.

22. Carole Goble, Stian Soiland-Reyes, Finn Bacall, Stuart Owen, Alan Williams, Ignacio
Eguinoa, et al. Implementing FAIR digital objects in the EOSC-Life workflow collaboratory.
Zenodo, 2021. doi: 10.5281/zenodo.4605654.

23. Brian D. O’Connor, Denis Yuen, Vincent Chung, Andrew G. Duncan, Xiang Kun Liu,
Janice Patricia, et al. The Dockstore: Enabling modular, community-focused sharing
of Docker-based genomics tools and workflows. F1000Research, 6:52, 2017. doi:
10.12688/f1000research.10137.1.

24. Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, An-
dreas Wilm, et al. The nf-core framework for community-curated bioinformatics pipelines.
Nature Biotechnology, 38(3):276–278, 2020. doi: 10.1038/s41587-020-0439-x.

25. Hirotaka Suetake, Tomoya Tanjo, Manabu Ishii, Bruno P. Kinoshita, Takeshi Fujino, Tsuyoshi
Hachiya, et al. Sapporo: A workflow execution service that encourages the reuse of
workflows in various languages in bioinformatics. F1000Research, 11:889, 2022. doi:
10.12688/f1000research.122924.1.

26. Petr Danecek, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O.
Pollard, et al. Twelve years of SAMtools and BCFtools. GigaScience, 10(2):giab008, 2021.
doi: 10.1093/gigascience/giab008.

27. Harshil Patel, Phil Ewels, Alexander Peltzer, Rickard Hammarén, Olga Botvinnik, Gregor
Sturm, et al. nf-core/rnaseq: nf-core/rnaseq v3.7, 2022. doi: 10.5281/zenodo.6513815.

28. Heidi L. Rehm, Angela J.H. Page, Lindsay Smith, Jeremy B. Adams, Gil Alterovitz,
Lawrence J. Babb, et al. GA4GH: International policies and standards for data sharing
across genomic research and healthcare. Cell Genomics, 1(2):100029, 2021.

29. Jon Ison, Matúš Kalas, Inge Jonassen, Dan Bolser, Mahmut Uludag, Hamish McWilliam,
et al. EDAM: An ontology of bioinformatics operations, types of data and identifiers, topics
and formats. Bioinformatics, 29(10):1325–1332, 2013. doi: 10.1093/bioinformatics/btt113.

30. Petr Danecek, Adam Auton, Goncolo Abecasis, Cornelis A. Albers, Eric Banks, Mark A.
DePristo, et al. The variant call format and VCFtools. Bioinformatics, 27(15):2156–2158,

10 | bioRχiv Suetake et al. | Workflow reproducibility scale

https://github.com/sapporo-wes/yevis-cli
https://github.com/sapporo-wes/yevis-cli
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems

DRAFT

2011. doi: 10.1093/bioinformatics/btr330.
31. Hirotaka Suetake, Tsukasa Fukusato, Takeo Igarashi, and Tazro Ohta. Workflow sharing

with automated metadata validation and test execution to improve the reusability of pub-
lished workflows. bioRxiv, 2022. doi: 10.1101/2022.07.08.499265.

32. Anders Peterson, Axel Verdier, Ayman Abdel Ghany, Ben Bimber, Byunggil Yoo,
Daniel Gómez-Sánchez, et al. broadinstitute/gatk - scripts/mitochondria_m2_wdl,
2021. https://github.com/broadinstitute/gatk/tree/

33bda5e08b6a09b40a729ee525d2e3083e0ecdf8/scripts/mitochondria_

m2_wdl.
33. Yuichi Kodama, Jun Mashima, Takehide Kosuge, Toshiaki Katayama, Takatomo Fujisawa,

Eli Kaminuma, et al. The DDBJ Japanese Genotype-phenotype Archive for genetic and
phenotypic human data. Nucleic Acids Research, 43(D1):D18–D22, 2015.

34. Hirotaka Suetake. sapporo-wes/tonkaz - tests/README.md, 2022. https://github.

com/sapporo-wes/tonkaz/blob/main/tests/README.md. doi: 10.5281/zenodo.
7102376.

35. Hirotaka Suetake. Raw data of workflow execution results used in Tonkaz’s experiments,
2022. doi: 10.5281/zenodo.7098337.

36. Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis, An-
drew Kernytsky, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Research, 20(9):1297–1303, 2010. doi:
10.1101/gr.107524.110.

37. Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali

Jha, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21, 2013.
doi: 10.1093/bioinformatics/bts635.

38. Mihaela Pertea, Geo M. Pertea, Corina M. Antonescu, Tsung-Cheng Chang, Joshua T.
Mendell, and Steven L. Salzberg. StringTie enables improved reconstruction of a transcrip-
tome from RNA-seq reads. Nature Biotechnology, 33(3):290–295, 2015. doi: 10.1038/nbt.
3122.

39. nf-core Community. nf-core/test-datasets - rnaseq/samplesheet/v3.4/samplesheet_test.csv,
2018. https://raw.githubusercontent.com/nf-core/test-datasets/

rnaseq/samplesheet/v3.4/samplesheet_test.csv.
40. Hirotaka Suetake and Tazro Ohta. sapporo-wes/test-workflow: 1.0.2 -

assets/nf-core_rnaseq_samplesheet_small_test.csv, 2022. https://raw.

githubusercontent.com/sapporo-wes/test-workflow/1.0.2/assets/

nf-core_rnaseq_samplesheet_small_test.csv. doi: 10.5281/zenodo.7102664.
41. Daniel Nüst and Stephen J. Eglen. CODECHECK: An Open Science initiative for the inde-

pendent execution of computations underlying research articles during peer review to im-
prove reproducibility. F1000Research, 10:253, 2021. doi: 10.12688/f1000research.51738.1.

42. Philip Ewels, Måns Magnusson, Sverker Lundin, and Max Käller. MultiQC: Summarize
analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19):
3047–3048, 2016. doi: 10.1093/bioinformatics/btw354.

43. Hirotaka Suetake and Tazro Ohta. sapporo-wes/test-workflow: 1.0.2, 2022. doi: 10.5281/
zenodo.7102664.

Suetake et al. | Workflow reproducibility scale bioRχiv | 11

https://github.com/broadinstitute/gatk/tree/33bda5e08b6a09b40a729ee525d2e3083e0ecdf8/scripts/mitochondria_m2_wdl
https://github.com/broadinstitute/gatk/tree/33bda5e08b6a09b40a729ee525d2e3083e0ecdf8/scripts/mitochondria_m2_wdl
https://github.com/broadinstitute/gatk/tree/33bda5e08b6a09b40a729ee525d2e3083e0ecdf8/scripts/mitochondria_m2_wdl
https://github.com/sapporo-wes/tonkaz/blob/main/tests/README.md
https://github.com/sapporo-wes/tonkaz/blob/main/tests/README.md
https://raw.githubusercontent.com/nf-core/test-datasets/rnaseq/samplesheet/v3.4/samplesheet_test.csv
https://raw.githubusercontent.com/nf-core/test-datasets/rnaseq/samplesheet/v3.4/samplesheet_test.csv
https://raw.githubusercontent.com/sapporo-wes/test-workflow/1.0.2/assets/nf-core_rnaseq_samplesheet_small_test.csv
https://raw.githubusercontent.com/sapporo-wes/test-workflow/1.0.2/assets/nf-core_rnaseq_samplesheet_small_test.csv
https://raw.githubusercontent.com/sapporo-wes/test-workflow/1.0.2/assets/nf-core_rnaseq_samplesheet_small_test.csv

