Supplemental information

Piezo1 induces endothelial responses to shear stress via soluble adenylyl Cyclase-IP₃R2 circuit

Dianicha Santana Nunez, Asrar B. Malik, Quinn Lee, Sang Joon Ahn, Arnold Coctecon-Murillo, Dana Lazarko, Irena Levitan, Dolly Mehta, and Yulia A. Komarova

Supplemental Figures

Figure S1. Activation of Piezo1 by laminar shear stress induces transient mobilization of Ca^{2+} into the ER lumen. Supplemental data related to Figure 1.

A. Peak changes in $[Ca^{2+}]_{ER}$ calculated from data in **1B**; n=5-7 cell per group from 3 independent experiments; left; mean \pm SD; *, p < 0.05; ****, p < 0.0001, ANOVA with Tukey's post hoc test; right, ***, p < 0.001, Student's t test.

- **B**. Linear regression modeling of data in **A** indicating that Ca²⁺ entry to the ER is proportional to the shear stress level.
- C. Live-cell images of G-CEPIA1er in HAE monolayers before and after application of 10 dyn/cm^2 fluid shear for 60 seconds; color-coding is shown in the heat map; times in seconds; scale bar, 10 μ m.
- **D.** Time-dependent changes of $[Ca^{2+}]_{ER}$ in HAE monolayers before and after application of 10 dyn/cm² shear stress for 60 seconds (highlighted area); n=9 cells from 2 independent experiments; mean \pm SEM.
- **E.** Rate constants of ER Ca²⁺ rise calculated from data in **D** compared to data in Fig 1C for 10 dyn/cm² shear stress; mean \pm SD; **, p < 0.01, Student's t test.

- **F.** Rate constants of ER Ca²⁺ decay calculated from data in **D** compared to data in Fig 1C for 10 dyn/cm² shear stress; mean \pm SD; ns, not significant, Student's t test.
- **G.** Western blot analysis of Piezo1 in endothelial cells monolayer pre-treated with control and Piezo1 siRNA; β-actin, loading control.
- **H.** Quantification of data in **H**; data are presented as 3 biological replicates from 3 independent experiments; mean \pm SD; *, p < 0.05, Student's t test.
- I. Time-dependent changes of $[Ca^{2+}]_i$ before and after application of 10 dyn/cm² shear stress for 60 seconds (highlighted area) in endothelial monolayers pre-treated with control or Piezo1 siRNA; n=24-25 cells per group from 2 independent experiments; mean \pm SEM.
- **J.** Changes of $[Ca^{2+}]_i$ within the first 300s (area under the curve) after application of shear stress for 60 seconds calculated from data in **I**; mean \pm SD; ****, p < 0.0001, Student's t test.

Figure S2. Activation of Piezo1 induces rapid mobilization of Ca²⁺ into the ER. Supplemental data related to Figure 2.

- **A.** Time-dependent changes of $[Ca^{2+}]_{ER}$ in endothelial monolayers stimulated with Yoda1 (arrow) in nominal Ca^{2+} free medium; n=6-8 cells per group from 3 independent experiments.
- **B.** The rate constants of ER Ca²⁺ decay calculated from data in **A**; mean \pm SD; ns, Student's t test.
- C. Time-dependent changes of $[Ca^{2+}]_{ER}$ in endothelial monolayers stimulated with Yoda1 or OAG (arrow); n= 6-7 cells per group from 3 independent experiments; mean \pm SEM.
- **D**. The rate constants of ER Ca²⁺ rise and decay calculated from data in **C**; mean \pm SD.; *, p < 0.05, Student's t test; **, p < 0.01, Student's t test.
- **E.** Western blot analysis of STIM1 in endothelial cells pre-treated with control or STIM1 siRNA; α-tubulin, loading control.
- **F.** Quantification of data in **F**; data are presented as 3 biological replicates from 3 independent experiments **, p < 0.01, Student's t test.

Figure S3. Depletion of IP₃R2 but not IP₃R3 alleviate Piezo1 induced increase in cytosolic $[Ca^{2+}]_i$. Supplemental data related to Figure 3.

A. Western blot analysis of IP₃R2 and IP₃R3 protein expressions in endothelial cells pre-treated with control or IP₃R3 siRNA; β-actin, loading control. Depletion of IP₃R3 did not alter IP₃R2 protein level.

- **B.** Quantification of data in **A**; data are presented as 3 biological replicates from 3 independent experiments; **, p < 0.01, Student's t test.
- C. Western blot analysis of IP₃R2 and IP₃R3 protein expressions in endothelial cells pre-treated with control and IP₃R2 siRNA; β -actin, loading control. Depletion of IP₃R2 did not alter IP₃R3 protein level.
- **D.** Quantification of data in **C**; data are presented as 4 biological replicates from 4 independent experiments; **, p < 0.01, Student's t test.
- **E.** Time-dependent changes of $[Ca^{2+}]_i$ upon activation of Piezo1 with Yoda1 (arrow) in endothelial monolayers pre-treated with control or IP₃R3 siRNA; n=18-21 cells per group from 3 independent experiments; mean \pm SEM.

- **F.** Half-time $(t_{1/2})$ of cytosolic $/Ca^{2+}/_i$ increase from data in **E**.; ns, not significant, Student's t test.
- **G.** Time-dependent changes of cytosolic $[Ca^{2+}]_i$ upon activation of Piezo1 with Yoda1 (arrow) in endothelial monolayers pre-treated with control or IP₃R2 siRNA; n=22-29 cells per group from 3 independent experiments; mean \pm SEM.
- **H.** Half-time (t_{1/2}) of $[Ca^{2+}]_i$ increase from data in **G**; ****, p < 0.0001, Student's t test.
- I. Time-dependent changes of $[Ca^{2+}]_i$ before and after application of 10 dyn/cm² shear stress for 60 seconds (highlighted area) in endothelial monolayers pre-treated with control or IP₃R2 siRNA; n=19-35 cells per group from 3 independent experiments; mean \pm SEM.
- **J.** Changes in $[Ca^{2+}]_i$ within the first 300s (area under the curve) after application of shear stress for 60 seconds calculated from data in **I**; mean \pm SD; ***, p < 0.001, Student's t test.

Figure S4. Genetic and pharmacological ablation of sAC impairs Piezo1-mediated ER Ca^{2+} release and an increase in $[Ca^{2+}]_i$. Supplemental data related to Figure 4.

A. Western blot analysis of sAC protein in endothelial monolayers pre-treated with control and sAC siRNA; β-actin, loading control.

B. Quantification of data in **A**; data are presented as 3 biological replicates from 3 independent experiments; **, p < 0.01, Student's t test.

C. Live-cell images of G-CEPIA1er before and after activation of Piezo1 with Yoda1 in endothelial monolayers pretreated vehicle (DMSO) or sAC inhibitor bithionol; color-coding as in 1A; time in seconds; scale bar, 10μm.

D. Time course of $[Ca^{2+}]_{ER}$ in C; n=6 cells per group from 3 independent experiments; mean \pm SEM.

E. The rate constants of ER Ca²⁺ decay calculated from data in **D**; *, p < 0.05, Student's t test

F. Time-dependent changes of cytosolic $[Ca^{2+}]_i$ upon activation of Piezo1 with Yoda1 (arrow) in endothelial monolayers pre-treated with control or sAC siRNA; n=10-19 cells per group from 3 independent experiments; mean \pm SEM.

G. Half time $(t_{1/2})$ of $[Ca^{2+}]_i$ increase from data in **F**; ****, p < 0.0001, Student's t test.

- **H.** Time-dependent changes of cytosolic $[Ca^{2+}]_i$ before and after application of 10 dyn/cm² shear stress for 60 seconds (highlighted area) in endothelial monolayers pre-treated with control or sAC siRNA; n=17-28 cells per group from 3 independent experiments; mean \pm SEM.
- **I.** Changes in $[Ca^{2+}]_i$ within the first 300s (area under the curve) of shear application; calculated from data in **H**; mean \pm SD; ***, p < 0.001, Student's t test.

Figure S5. Depletion of Piezo1 or IP₃R2 prevents activation of Akt and consequent EC alignment in the direction of flow. Supplemental data related to Figure 5 and 6.

A-B. Frequency of F-actin distribution within 30-60° (**A**) and a 60-90° (**B**) relative to the direction of flow; groups as in **Fig 5B**; n=6-15 field per condition, from 2-4 independent experiment on static group and 17-24 fields per condition from 4 independent experiments on shear group; **, p < 0.01; ***, p < 0.001; ns, not significant, ANOVA with Tukey's post hoc test.

C. Representative images of F-actin in HAE monolayers depleted of indicated proteins and grown under static or 10 dyn/cm^2 laminar shear flow conditions for 24 hours; arrow indicates direction of flow; scale bar $20 \mu m$.

- **D-F.** Frequency of F-actin distribution within 0-30° (**D**), 30-60° (**E**) and 60-90° (**F**) relative to the direction of flow in HAE monolayers in C; n= 14-15 field per condition, from 3 independent experiments; mean \pm SD; **, p < 0.01, ****, p < 0.001, ANOVA with Tukey's post hoc test.
- **G-H.** Frequency of F-actin distribution within 30-60° (**G**) and 60-90° (**H**) relative to the direction of flow of cells in **Fig 6A**; n=5-10 fields per condition from 2 independent experiments; *, p < 0.05; ****, p < 0.0001, ANOVA with Tukey's post hoc test
- **I-J** Frequency of F-actin distribution within 30-60° (**I**) and a 60-90° (**J**) relative to the direction of flow; groups as in **Fig 6C**; n=14-18 fields per condition across 3 independent experiments; ***, p < 0.001; ****, p < 0.0001; ns, not significant, ANOVA with Tukey's post hoc test.