Supplementary Materials for

Identification of nonhistone substrates of the lysine methyltransferase PRDM9

Jocelyne N. Hanquier^{1,2}, Kenidi Sanders^{1,3}, Christine A. Berryhill¹, Firoj K. Sahoo⁵, Andy Hudmon⁵, Jonah Z. Vilseck^{1,3,4}, Evan M. Cornett^{1-4,*}

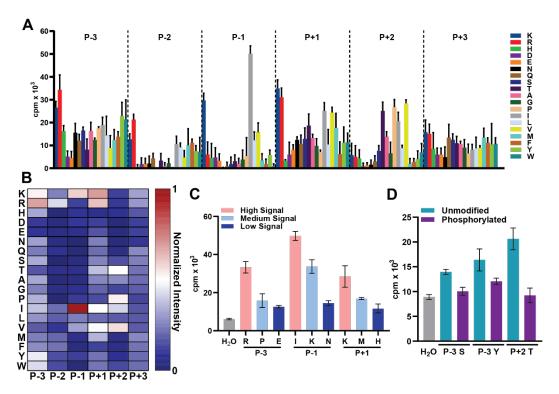
¹Department of Biochemistry and Molecular Biology, ²Stark Neuroscience Research Institute, ³Melvin and Bren Simon Comprehensive Cancer Center, ⁴Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.; ⁵Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 U.S.A.

The PDF file includes:

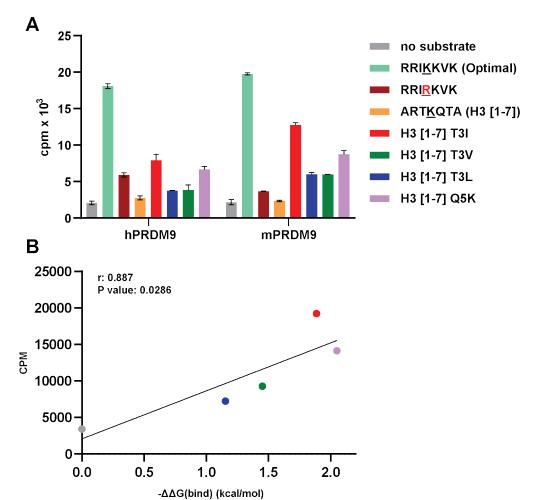
Supplementary Fig. 1: Analysis of PRDM9 substrate selectivity using a K-OPL

Supplementary Fig. 2: Evaluation of the "pan"-ness of pan-specific anti-lysine methyl antibodies.

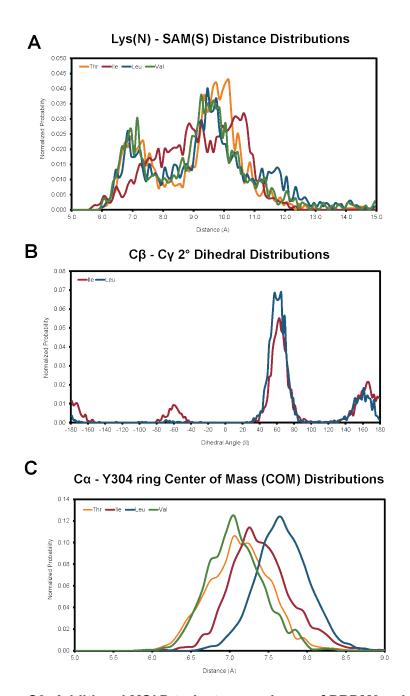
Supplementary Fig. 3 Additional MSλD trajectory analyses of PRDM9 substrate selectivity.


Supplementary Fig. 4: Domain maps of putative PRDM9 non-histone substrates and *in vitro* methyltransferase assays using recombinant proteins.

Other Supplementary Material includes the following:


Supplementary Table 1: Score of all 7-mer motifs in human proteins based on PRDM9 K-OPL data.

Supplementary Table 2: Layout of peptide spot array (Figure 4B)


Supplementary Table 3: Characterization of peptide spot array substrates.

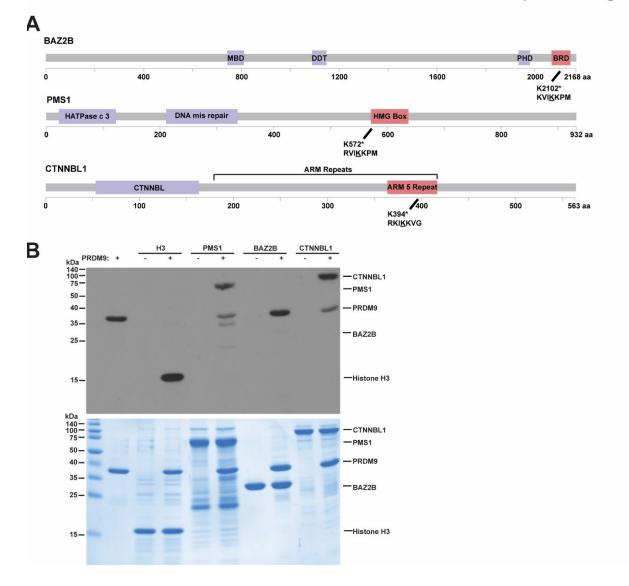

Figure S1. Analysis of PRDM9 substrate selectivity using a K-OPL. *A*, Data for PRDM9 K-OPL selectivity profile showing average signal for reactions with each K-OPL set (n=3). *B*, Heatmap normalized globally to the set with the highest signal. *C*, Validation of PRDM9 K-OPL selectivity profile on select K-OPL sets (n=2). *D*, PRDM9 reactions on phosphorylated K-OPL sets (n=3). Bar graphs display mean ±SD.

Figure S2. Analysis of PRDM9 substrate selectivity using a K-OPL *A*, Comparison of human PRDM9 and mouse Prdm9 on peptide substrates shows the highly homologous PR/SET domain have the same substrate selectivity on peptides used in this study. Graph depicts mean (n=2) \pm SD signal from scintillation proximity methyltransferase assays (SPA) with biotin labeled peptides. *B*, Correlation of changes in relative binding free energies determined from MS λ D for H3 peptides substituted at critical positions with experimental changes in methyltransferase activity for PRDM9. On-tailed Pearson (r) correlation was calculated using GraphPad Prism 9.

Figure S3. Additional MSAD trajectory analyses of PRDM9 substrate selectivity. *A*, Lys(N) - SAM(S) Distance Distributions. *B*, C β - C γ 2° Dihedral Angle Distributions. *C*, C α - Y304 ring Center of Mass (COM) Distance Distributions.

Figure S4. Domain maps of putative PRDM9 non-histone substrates and *in vitro* **methyltransferase assays using recombinant proteins.** *A*, The predicated PRDM9 methylation site and 7-mer motif is displayed. Data for domain boundaries was derived from UniProt. *B*, PRDM9 activity on recombinant non-histone substrates detected by fluorography (top panel). Bottom panel shows total protein stained with Coomassie after separation by SDS-PAGE. Representative of two independent experiments.