

Supplementary Material

Terminal fucosylation of haptoglobin in cancer-derived exosomes during cholangiocarcinoma progression

Hyewon Choi¹, Sungeun Ju¹, Keunsoo Kang², Moon-Hyeong Seo³, Jin-Man Kim⁴, Eiji-Miyoshi⁵, Min-Kyung Yeo^{4,*}, Seung-Yeol Park^{1,*}

¹ Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea

² Department of Microbiology, Dankook University, Cheonan, Chungnam, Republic of Korea

³ Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea

⁴ Department of Pathology, Chungnam National University School of Medicine, Daejeon, Republic of Korea

⁵ Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka, Japan

* Correspondence:

Professor. M.-K.Y. (Department of Pathology, Chungnam National University School of Medicine, Munwha-ro 282, Daejeon 35015, Republic of Korea, phone: +82-42-280-7196, e-mail: mkyeo83@cnu.ac.kr)

Professor. S.-Y.P. (Department of Life Sciences, POSTECH, Chungam-ro 77, Pohang, Gyeongbuk 37673, Republic of Korea, phone: +82-54-279-2325, e-mail: <u>seungpark@postech.ac.kr</u>)

1 Supplementary Figures and Tables

1.1 Supplementary Figure 1

Supplementary Figure 1. Identification of 40kDa protein with aberrant fucosylation in CCA. (A) Mass spectrum of 40kDa protein. The identified peptides matched the sequence of β -Hp. (B) Western blot assessing the amount of β -Hp in membrane-bound fraction isolated from healthy volunteers and patients with CCA; n = 3.

1.2 Supplementary Figure 2

Supplementary Figure 2. Further characterization of β -Hp secreted through EV. (A) RUSH assay to assess the real-time tracking of β -Hp secretion. Representative confocal images are shown, Scale bar = 10 µm. n = 3. (B) (left) Scheme of canonical and phosphorylation-generated KFERQ-like motifs. (right) KFERQ-like motif in haptoglobin.

1.3 Supplementary Figure 3

Supplementary Figure 3. Expression profile of genes involving glycosylation biosynthesis. Quantitative data are shown as mean \pm S.E.M. Statistical analysis was performed using the Mann-Whitney u-test: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns P > 0.05. (A) The heatmap represents the expression level (log 2-fold change) of genes in the surrounding liver, normal intrahepatic bile duct (N), and CCA. (B) Expression profiles of fucosyltransferases (FUTs) required for α -fucosylation. (C) Expression profiles of MGAT5, FUT3, and FUT4 evaluated in OncoDB.

1.4 Supplementary Figure 4

Supplementary Figure 4. Effect of pre- and post-surgery on fucosylation degree of unfractionated serum. Quantitative data are shown as mean \pm S.E.M. Statistical analysis was performed using the two-tailed Student's t-test: **p < 0.01, *p < 0.05, ns P > 0.05. AAL blotting for unfractionated serum collected from CCA patients before and after the surgery to remove tumors. Fucosylation level was determined using blotting index; n = 5.

1.5 Supplementary Table 1

Supplementary Table 1. Clinical information of CCA cases. F: female, M: male, EHCC: extrahepatic cholangiocarcinoma, IHCC: intrahepatic cholangiocarcinoma.

Case No.	Age	Sex	Location	Tstage	Nstage	Mstage	TNM stage (AJCC)	
1	77	F	EHBD	T1	N1	M0	IIA	
2	42	F	EHBD	T3b	N1	M0	IIIA	
3	51	М	EHBD	T2	N1	M0	IIB	
4	70	М	EHBD	T2a	N0	M1	IVB	
5	53	М	EHBD	T3a	N1	M0	IIIA	
6	82	F	EHBD	T1	N0	M0	Ι	
7	78	М	EHBD	T2	N0	M0	IIA	
8	53	М	IHBD	Tla	N0	M0	IA	
9	62	F	IHBD	T2	N0	M0	II	
10	77	F	IHBD	T2	N0	M0	II	
11	69	F	EHBD	Т3	N0	M0	IIB	
12	56	М	EHBD	T2	N0	M0	IIA	
13	71	F	EHBD	T2	N0	M0	IIA	
14	61	М	EHBD	T2	N0	M0	IIA	
15	76	М	EHBD	T2	N1	M0	IIB	
16	69	М	IHBD	Т3	N0	M0	IIIA	

17	73	М	EHBD	Т3	N0	M0	IIB		
18	69	М	EHBD	T2	N0	M0	IIA		
19	72	М	EHBD	T2	N0	M0	IIA		
20	61	М	IHBD	T1a	N0	M0	IA		
21	77	М	EHBD	Т3	N0	M0	IIB		
22	73	F	EHBD	T1	N0	M0	Ι		
23	77	М	IHBD	Tla	N0	M0	II		
24	73	F	IHBD	T1a	N0	M0	II		
25	64	М	EHBD	T2	N1	M0	IIB		
26	69	М	EHBD	T2b	N0	M0	II		
27	70	М	EHBD	T3a	N1	M0	IIIA		
28	74	М	EHBD	T2	N0	M0	IIA		
29	77	F	EHBD	T2a	N0	M0	Ш		
30	70	М	EHBD	Т3	N0	M0	IIB		
31	56	М	EHBD	T2b	N0	M0	II		
32	75	М	IHBD	T2	N0	M0	Ш		
Serum collected before and after surgery									
Case	Age	Sex	Location	Tstage	Nstage	Mstage	TNM stage	Postsurgery	
N0.							(AJCC)	CA19-9 (unit)	
33	69	М	EHBD	T1	N0	M0	Ι	16	
34	64	М	IHBD	T1a	N0	M0	IA	5.64	
35	74	М	EHBD	T1	N0	M0	Ι	8.24	
36	84	М	EHBD	T2a	N0	M0	II	2.78	
37	56	М	EHBD	T2	N0	M0	IB	16.1	

Supplementary Material

38	66	F	EHBD	T4	N1	M0	IIIB	362.1
39	65	М	EHBD	T2b	N0	M0	II	2516
40	65	F	IHBD	Т3	N1	M0	IIIB	4262
41	79	F	EHBD	T2	N0	M0	IIA	4.87
42	75	М	IHBD	T2	N0	M0	II	21.74