Journal of Hepatology, Volume

Supplemental information

Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease

Arun J. Sanyal, Stephen A. Williams, Joel E. Lavine, Brent A. Neuschwander-Tetri, Leigh Alexander, Rachel Ostroff, Hannah Biegel, Kris V. Kowdley, Naga Chalasani, Srinivasan Dasarathy, Anna Mae Diehl, Rohit Loomba, Bilal Hameed, Cynthia Behling, David E. Kleiner, Saul J. Karpen, Jessica Williams, Yi Jia, Katherine P. Yates, and James Tonascia

Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease

Arun J. Sanyal, Stephen A. Williams, Joel E. Lavine, Brent A. Neuschwander-Tetri, Leigh Alexander, Rachel Ostroff, Hannah Biegel, Kris V. Kowdley, Naga Chalasani, Srinivasan Dasarathy, Anna Mae Diehl, Rohit Loomba, Bilal Hameed, Cynthia Behling, David E. Kleiner, Saul J. Karpen, Jessica Williams, Yi Jia, Katherine P Yates, James

Tonascia

Table of contents	
Supplementary methods	2
Fig. S1	3
Table S1	4
Table S2	5
Table S3	8
Table S4	9
Table S5	16
Table S6	18

Supplementary methods

Number of univariate proteins (Table S2). Using the training set, univariate t-tests were used to assess associations of analytes with each histological parameter. Multiple testing correction was completed using the Benjamini-Hochberg procedure for the false discovery rate. As an initial feature selection step, analytes were filtered based on the minimal false discovery rate (FDR)-corrected p-values using an alpha of 0.1. Table S2 lists the number of significant proteins at a range of FDR cutoffs.

Performance by study, treatment arm, and time point. DeLong's test was used to test for differences in AUC with a two-sided alternative. Differences in AUC were calculated on unrounded values and are reported as "End-of-Treatment AUC" – "Baseline AUC."

Evaluation of model specificity. Each model was applied to the matched and mis-matched histology data. Accuracy metrics, and odds ratios from Fisher's exact test, were obtained from applying the protein models to their intended biopsy results using the predefined dichotomies and also applying them to deliberately mis-matched biopsy results using all the samples from FLINT and PIVENS with biopsy results. Similarly, accuracy metrics were obtained for histology results by applying the biopsy results from one component to deliberately mis-matched components in order to characterize the inherent correlations in disease severity.

Fig. S1. Design of the training and validation studies for study aims 1 and 2. Numbers of evaluable serum samples used for training vs. biopsy [Bx] are shown in dark blue, primary validation in paired samples from same participants at different timepoints in white, and hold-out independent validation in light blue. Samples used for longitudinal monitoring without biopsy are shown in gray.

Study Cohort	Design	Serum Collection (weeks)	Liver Biopsy Timing	# Participants	# Samples
Natural History	Observational, cross sectional, broad spectrum of NAFLD severity	Baseline	Baseline	244	244
PIVENS	96-week parallel group: pioglitazone, vitamin E, placebo, non-diabetics with probable non-cirrhotic NASH	Baseline, 16, 32, 48, 64, 80, 96	Baseline, end of therapy	205	1333
FLINT	72-week parallel group: obeticholic acid, placebo, diabetics and non-diabetics with probable non-cirrhotic NASH	Baseline, 12, 24, 36, 48, 60, 72	Baseline, end of therapy	187	1275
Total				636	2852

Table S1: Serum and biopsy sampling schedule for the three studies included in training and validation

		Analysis	Model*	
Characteristics	Baseline (N=636)	Training (N=559)	Paired Validation (N=392)	Hold-out Validation (N=77)
Sample characteristics				
Study of sample, n (%)				
NAFLD Adult Database	84 (13%)	84 (15%)	0 (0%)	0 (0%)
Adult Database 2	150 (24%)	150 (27%)	0 (0%)	0 (0%)
PIVENS trial	215 (34%)	182 (33%)	205 (52%)	33 (43%)
FLINT trial	187 (29%)	143 (26%)	187 (48%)	44 (57%)
Visit of sample, n (%)	, ,		· · /	· · ·
Baseline	636 (100%)	402 (72%)	197 (50%)	37 (48%)
Follow-up: end of treatment ⁺	n/a	157 (28%)	195 (50%)	40 (52%)
Days between plasma collection and biopsy date [‡]	-37.0 (47.0)	-20.7 (42.4)	-20.0 (45.6)	-18.4 (42.1)
(mean (SD) [minimum, maximum]	[-189, 124]	[-189, 124]	[-187, 171]	[-154, 83]
Demographics, n (%)				
Age (years)	48.6 (12.1)	48.5 (12.0)	48.9 (11.7)	48.9 (13.1)
Male	234 (37%)	200 (36%)	148 (38%)	34 (44%)
Race				
White	514 (84%)	446 (83%)	323 (85%)	68 (88%)
Black or African-American	18 (3%)	17 (3%)	7 (2%)	1 (1%)
Asian	39 (6%)	33 (6%)	22 (6%)	6 (8%)
American Indian/Alaska Native	14 (2%)	14 (3%)	10 (3%)	0 (0%)
Native Hawaiian/Pacific Islander	4 (1%)	4 (1%)	4 (1%)	0 (0%)
Any other/More than one race	24 (4%)	23 (4%)	14 (4%)	1 (1%)
Refusal/not stated	23 (4%)	22 (4%)	12 (3%)	1 (1%)
Hispanic ethnicity	85 (13%)	80 (14%)	50 (13%)	5 (6%)
Liver enzymes & chemistries, mean (SD)				
Alanine aminotransferase (U/L)	75.5 (47.7)	66.9 (45.7)	68.0 (46.8)	60.8 (35.1)
Aspartate aminotransferase (U/L)	53.1 (32.0)	48.1 (30.2)	51.0 (31.9)	45.8 (24.9)
Alkaline phosphatase (U/L)	84.3 (51.8)	83.7 (54.1)	80.3 (31.0)	82.7 (32.5)
γ-glutamyl transferase (U/L)	72.4 (128.1)	69.0 (132.9)	56.9 (58.0)	56.4 (65.7)
Total bilirubin (mg/dL)	0.7 (0.4)	0.7 (0.4)	0.7 (0.4)	0.7 (0.4)
Direct bilirubin (mg/dL)	0.1 (0.1)	0.2 (0.1)	0.1 (0.1)	0.1 (0.1)
Creatinine (mg/dL)	0.8 (0.2)	0.8 (0.2)	0.8 (0.2)	0.8 (0.2)
Albumin (g/dL)	4.2 (0.4)	4.2 (0.4)	4.2 (0.4)	4.3 (0.4)
Lipids, mean (SD)	-			

Table S2 Characteristics of the adult study population with Nonalcoholic Fatty Liver Disease used for modeling the proteomic risk prediction models

Total cholesterol (mg/dL)	193.1 (42.7)	191.3 (42.3)	191.4 (42.7)	191.6 (44.9)
HDL cholesterol (mg/dL)	44.2 (12.8)	44.6 (13.6)	43.3 (11.7)	40.8 (10.5)
LDL cholesterol (mg/dL)	117.4 (37.3)	116.3 (37.3)	116.6 (37.9)	114.6 (36.8)
Triglycerides (mg/dL)	177.7 (167.1)	169.9 (129.8)	178.2 (182.7)	188.5 (110.5)
Metabolic factors, mean (SD)				
Fasting serum glucose (mg/dL)	104.5 (34.0)	105.2 (36.6)	105.9 (31.6)	106.9 (34.1)
Insulin (μU/mL)	23.7 (24.9)	23.7 (26.3)	26.6 (28.8)	23.9 (21.7)
HOMA-IR [†] (glucose [mmol/L] x insulin[μU/mL]/22.5) [§]	6.4 (7.9)	6.6 (8.5)	7.4 (9.2)	6.7 (7.4)
HbA1c (%)	6.1 (1.1)	6.1 (1.1)	6.1 (1.0)	6.1 (0.9)
Waist circumference (cm)	108.7 (15.0)	108.5 (15.1)	109.1 (15.4)	110.5 (14.2)
Weight (kg)	96.9 (22.0)	96.6 (22.3)	97.4 (21.1)	100.6 (22.4)
Body-mass index (kg/m ²)	34.2 (6.6)	34.1 (6.6)	34.4 (6.4)	34.8 (7.1)
Systolic blood pressure (mm Hg)	131.2 (14.9)	130.1 (14.7)	131.3 (14.3)	131.2 (15.9)
Diastolic blood pressure (mm Hg)	76.7 (10.4)	76.3 (10.1)	77.8 (9.9)	77.4 (10.3)
Comorbidities and treatment, n (%)				
Ever doctor-diagnosed:				
Diabetes	172 (27%)	156 (28%)	109 (28%)	26 (34%)
Hyperlipidemia	373 (59%)	336 (60%)	234 (60%)	51 (66%)
Hypertension	323 (51%)	295 (53%)	212 (54%)	42 (55%)
Cardiovascular disease [§]	28 (4%)	27 (5%)	15 (4%)	4 (5%)
Kidney disease	20 (3%)	20 (4%)	7 (2%)	3 (4%)
Treatment group assignment				
Placebo	164 (26%)	134 (24%)	159 (41%)	30 (39%)
Pioglitazone	65 (10%)	54 (10%)	63 (16%)	11 (14%)
Vitamin E	76 (12%)	66 (12%)	73 (19%)	10 (13%)
Obeticholic acid	97 (15%)	71 (13%)	97 (25%)	26 (34%)
No treatment assignment	234 (37%)	234 (42%)	0 (0%)	0 (0%)
Antidiabetic medication use	181 (28%)	153 (27%)	114 (29%)	27 (35%)
Antilipidemic medication use	242 (38%)	225 (40%)	166 (42%)	35 (45%)
Use of statins	176 (28%)	167 (30%)	119 (30%)	28 (36%)
Use of fibrates	35 (6%)	71 (13%)	74 (19%)	12 (16%)
Antihypertensive medication use	347 (55%)	311 (56%)	226 (58%)	46 (60%)
Use of any Vitamin E (OTC)	132 (21%)	97 (17%)	71 (18%)	10 (13%)
Liver histology findings, n (%)				
Steatohepatitis (NASH)§				
Not NAFLD	34 (5%)	46 (8%)	9 (2%)	2 (3%)
NAFLD, not NASH	169 (27%)	176 (31%)	64 (16%)	11 (14%)
Borderline pattern	52 (8%)	50 (9%)	67 (17%)	13 (17%)
Definite	381 (60%)	287 (51%)	252 (64%)	51 (66%)
Fibrosis stage§				
0 – None	187 (30%)	196 (35%)	76 (19%)	15 (19%)
1 – Mild (Z3 perisinusoidal/ Moderate (Z3 perisinusoidal/ Portal/periportal)	166 (26%)	58 (10%)	122 (31%)	22 (29%)

141 (22%)	116 (21%)	89 (23%)	18 (23%)
119 (19%)	83 (15%)	94 (24%)	21 (27%)
21 (3%)	27 (5%)	10 (3%)	1 (1%)
1.40 (1.19)	1.30 (1.23)	1.59 (1.13)	1.62 (1.12)
226 (36%)	242 (43%)	107 (27%)	23 (30%)
162 (25%)	135 (24%)	118 (30%)	19 (25%)
248 (39%)	182 (33%)	167 (43%)	35 (45%)
57 (9%)	77 (14%)	19 (5%)	3 (4%)
181 (28%)	181 (32%)	160 (41%)	31 (40%)
220 (35%)	172 (31%)	126 (32%)	33 (43%)
178 (28%)	129 (23%)	87 (22%)	10 (13%)
12 (2%)	17 (3%)	0 (0%)	0 (0%)
330 (52%)	344 (62%)	213 (54%)	40 (52%)
217 (34%)	157 (28%)	125 (32%)	28 (36%)
77 (12%)	41 (7%)	54 (14%)	9 (12%)
113 (18%)	99 (18%)	52 (13%)	6 (8%)
402 (63%)	347 (62%)	247 (63%)	51 (66%)
121 (19%)	113 (20%)	93 (24%)	20 (26%)
4.42 (1.83)	3.92 (1.86)	4.46 (1.68)	4.40 (1.66)
313 (49%)	212 (38%)	194 (49%)	37 (48%)
	141 (22%) 119 (19%) 21 (3%) 1.40 (1.19) 226 (36%) 162 (25%) 248 (39%) 57 (9%) 181 (28%) 220 (35%) 178 (28%) 178 (28%) 178 (28%) 178 (28%) 178 (28%) 178 (28%) 113 (18%) 402 (63%) 121 (19%) 4.42 (1.83) 313 (49%)	141 (22%) 116 (21%) 119 (19%) 83 (15%) 21 (3%) 27 (5%) 1.40 (1.19) 1.30 (1.23) 226 (36%) 242 (43%) 162 (25%) 135 (24%) 248 (39%) 182 (33%) 57 (9%) 77 (14%) 181 (28%) 181 (32%) 220 (35%) 172 (31%) 178 (28%) 129 (23%) 12 (2%) 17 (3%) 330 (52%) 344 (62%) 217 (34%) 157 (28%) 77 (12%) 41 (7%) 113 (18%) 99 (18%) 402 (63%) 347 (62%) 121 (19%) 113 (20%) 4.42 (1.83) 3.92 (1.86) 313 (49%) 212 (38%)	141 (22%) $116 (21%)$ $89 (23%)$ $119 (19%)$ $83 (15%)$ $94 (24%)$ $21 (3%)$ $27 (5%)$ $10 (3%)$ $1.40 (1.19)$ $1.30 (1.23)$ $1.59 (1.13)$ $226 (36%)$ $242 (43%)$ $107 (27%)$ $162 (25%)$ $135 (24%)$ $118 (30%)$ $248 (39%)$ $182 (33%)$ $167 (43%)$ $57 (9%)$ $77 (14%)$ $19 (5%)$ $181 (28%)$ $181 (32%)$ $160 (41%)$ $220 (35%)$ $172 (31%)$ $126 (32%)$ $178 (28%)$ $129 (23%)$ $87 (22%)$ $12 (2%)$ $17 (3%)$ $0 (0%)$ $330 (52%)$ $344 (62%)$ $213 (54%)$ $217 (34%)$ $157 (28%)$ $125 (32%)$ $77 (12%)$ $41 (7%)$ $54 (14%)$ $113 (18%)$ $99 (18%)$ $52 (13%)$ $402 (63%)$ $347 (62%)$ $247 (63%)$ $121 (19%)$ $113 (20%)$ $93 (24%)$ $4.42 (1.83)$ $3.92 (1.86)$ $4.46 (1.68)$ $313 (49%)$ $212 (38%)$ $194 (49%)$

*Data are n (%) or mean (SD). Ten participants from the Natural History study previously participated in PIVENS and their characteristics are included in the PIVENS baseline category. Data splits are shown for the inflammation model.

⁺If a sample was collected at follow-up (end-of-treatment), then the characteristics of the participant were those at the followup visit. For comorbidities reported, the participant's value represents both the baseline report, along with any incident cases over follow-up.

‡Days between the biopsy and sample date calculated as sample collection date subtracted from the biopsy collection date

§HOMA-IR is homeostasis model assessment-estimated insulin resistance; Cardiovascular disease (diagnosed with cerebrovascular or coronary artery disease or congestive heart failure); *n/a* denotes not applicable to the model

§Steatohepatitis Diagnosis Borderline Zone 3/Borderline Zone 1 was collapsed to all Borderline (Baseline: 2 (<1%); Training: 1 (<1%); Paired Validation: 3 (1%); Hold-out Validation: 0 patients classified as Zone 1. Fibrosis stage assessed on a scale of 0-4.</p>

¶ Mean fibrosis stage assessed on a scale of 0-4, with higher scores showing more severe fibrosis.

NAFLD activity score was assessed on a scale of 0-8, with higher scores showing more severe disease (the components of this measure are steatosis [assessed on a scale of 0-3], lobular inflammation [assessed on a scale of 0-3], and hepatocellular ballooning [assessed on a scale of 0-2]).

Table S3: Numbers of proteins used in the univariate list for pathway enrichment analysis. Using the training set, univariate t-tests were used to assess associations of analytes with each histological parameter. Multiple testing correction was completed using the Benjamini-Hochberg procedure for the false discovery rate (FDR). The number of significant proteins at a range of FDR cutoffs are compared to the number of proteins in the final model, which are a subset of the proteins with an FDR < 0.1.

Model	Final Model	Univariate List (FDR< 0.01)	Univariate List (FDR< 0.05)	Univariate List (FDR< 0.1)
Steatosis	12	254	397	532
Ballooning	5	827	1,174	1,408
Lobular Inflammation	14	415	632	809
Fibrosis	8	1,360	1,883	2,201

Table S4: Biologic functions of proteins in the models and any known relation to NAFLD or NASH.

Steatosis

EntrezGene Symbol	Target Full Name	UniProt	Association with NASH or NAFLD
INSL5	insulin-like peptide insl5	Q9Y5Q6	 Insl5 expression is regulated by the gut microbiota and energy availability. INSL5 is a hormone that could play a role in promoting hepatic glucose production during periods of energy deprivation. Highly expressed in rectum with lower levels in uterus and ascending and descending colon.
FABP12	fatty acid-binding protein 12	A6NFH5	 FBP12 present in human retinoblastoma cell lines, rodent retina and testis. FBP1 and 4 present in liver and adipocyte, respectively.
RECQL	atp-dependent dna helicase q1	P46063	 High expression in heart, lung, skeletal muscle and kidney, low expression in brain.
GUSB	beta-glucuronidase	P08236	 β-Glucuronidase inhibitors are suggested as potential hepatoprotective agents.
INHBC	inhibin beta c chain	P55103	• Expressed in benign prostatic hyperplasia.
HEXB	beta- hexosaminidase subunit beta	P07686	 2750 genes/proteins associated with the disease Non-alcoholic Fatty Liver Disease, HEXB is one of them (https://amp.pharm.mssm.edu/Harmonizom e/gene_set/Non- alcoholic+Fatty+Liver+Disease/CTD+Gene- Disease+Associations).
CNDP1	beta-ala-his dipeptidase	Q96KN2	 Found in serum and adult nervous central system. Absent in serum from patients with homocarnosinosis.
GH2	growth hormone variant	P01242	 Growth hormone deficiency and nonalcoholic fatty liver disease with insights from humans and animals: pediatric implications. Metab Syndr Relat Disord. 2018. Growth Hormone is different from Growth Hormone Variant.
PTGR1	prostaglandin reductase 1	Q14914	Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by

			 Pharmacologic Activation of Nrf2 (NF-E2 p45- Related Factor 2). Prostaglandin reductase 1 is regulated by Nrf2. (Namani A, et al. NRF2-regulated metabolic gene signature as a prognostic biomarker in non-small cell lung cancer. Oncotarget. 2017;8(41):69847-62.)
BPIFB1	bpi fold-containing family b member 1	Q8TDL5	 Detected in duodenum mucosal crypts of cholera patients. Detected in trachea, nasal septal epithelium and lung. Alternative names: Long palate, lung and nasal epithelium carcinoma-associated protein 1; von Ebner minor salivary gland protein
GRID2	glutamate receptor ionotropic; delta-2	043424	 Highest expression level in cerebellar vermis. Involved in the disease of Spinocerebellar ataxia, autosomal recessive, 18 (SCAR18).
ERN1	serine/threonine- protein kinase/endoribonu clease ire1	075460	 Ubiquitously expressed. High levels observed in pancreatic tissue. IRE1, also called ERN1. The expression levels of IRE1 were decreased in the livers of human obese patients with NASH, compared to those of obese patients without NASH (Shamsa EH, Zhang K. The primary unfolded protein response transducer endoplasmic reticulum-to-nucleus signaling 1 is downregulated in livers of human nonalcoholic steatohepatitis patients. Environmental Disease. 2018; 3(4): 80-2.).

Inflammation

Target	Target Full Name	UniPr ot	Association with NASH or NAFLD
ACY1	aminoacylase-1	Q0315 4	 Expression is highest in kidney, strong in brain and weaker in placenta and spleen. It is a zinc-binding protein that catalyzes the hydrolysis of N-acetyl amino acids into free aliphatic amino acids and acetic acid.

RPN1	dolichyl- diphosphooligosaccha rideprotein glycosyltransferase subunit 1	P0484 3	 It was increased in hepatic lipid droplets of mice subjected to caloric restriction suggesting a role in the metabolic adjustments to the overfed state in NAFLD. (Wood GC, et al. A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic and phenomic data domains. Sci Rep. 2017; 7; 43238.) Expressed in all tissues tested. Glycosyltransferases have roles in the pathogenesis of NAFLD (Zhan YT, et al. Glycosyltransferases and non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22(8):2483- 93.).
C1orf1 98	uncharacterized protein c1orf198	Q9H4 25	 Expressed in 204 organ(s), highest expression level in C1 segment of cervical spinal cord.
CTCF	transcriptional repressor ctcf	P4971 1	 The protein CTCF plays a role in repressing the insulin-like growth factor 2 (IGF2) gene. IGF2 was associated with fibrosis in NAFLD.
SAA2	serum amyloid a-2 protein	PODJI9	 Serum amyloid A (SAA) is a family of apolipoproteins mainly synthesized in mammalian liver. There are constitutive family members (SAA4) and acute-phase members (SAA1 and SAA2) that respond to tissue damage and inflammation. SAA1 is a mediator to reduce fat deposition (Tai CC, et al. Docosahexaenoic acid enhances hepatic serum amyloid A expression via protein kinase A dependent mechanism. J Biol Chem. 2009;284(47):32239-47.). The sequence homology in the proximal promoter regions is high between human SAA1 and SAA2 and their promoter activities in response to cytokine treatments are also similar.
FCGR3 B	low affinity immunoglobulin gamma fc region receptor iii-b	07501 5	 Expressed specifically by polymorphonuclear leukocytes (neutrophils). Also expressed by stimulated eosinophils. Gerhard GS, et al. Transcriptomic profiling of obesity-related nonalcoholic steatohepatitis reveals a core set of fibrosis-specific genes. J Endocr Soc. 2018; 2 (7): 710-26.
ADIPO Q	adiponectin	Q1584 8	 Synthesized exclusively by adipocytes and secreted into plasma. Important adipokine involved in the control of fat metabolism and insulin sensitivity, with direct

			 anti-diabetic, anti-atherogenic and anti- inflammatory activities. Polyzos SA, et al. Adiponectin as a target for the treatment of nonalcoholic steatohepatitis with thiazolidinediones: a systematic review. Metabolism. 2016; 65 (9): 1297-306.
TXNRD 1	thioredoxin reductase 1; cytoplasmic	Q1688 1	 Oxidative stress is a core abnormality responsible for disease progression in nonalcoholic steatohepatitis (NASH). Thioredoxin reductase 1 and 2 were significantly underexpressed in NASH livers of mice (Gornicka A, et al. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in a dietary murine model of steatohepatitis. Antixoid Redox Signal. 2011; 15(2):437-45.).
GSTZ1	maleylacetoacetate isomerase	O4370 8	 Mostly expressed in liver followed by kidney, skeletal muscle and brain.
TACST D2	tumor-associated calcium signal transducer 2	P0975 8	 Expressed in placenta, pancreatic carcinoma cell lines. Belonging to Epithelial Cell Adhesion Molecular (EPCAM) family and may function as a growth factor receptor.
ΡΥΥ	peptide yy	P1008 2	 Mokhtari Z, et al. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv Nutr. 2017; 8(2): 240-52.
CCL23	c-c motif chemokine 23	P5577 3	 Hart KM, et al. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Sci Transl Med. 2017; 9(396): pii: eaa13694.
PCOLC E2	procollagen c- endopeptidase enhancer 2	Q9UK Z9	 Highly expressed in the heart, trabecular meshwork, pituitary gland, bladder, mammary gland, trachea and placenta. PCPE2 plays a critical role in maintaining scavenger receptor class B type 1(SR-BI) conformation, which, in turn, controls adipocyte maturation (https://onlinelibrary.wiley.com/doi/full/10.1111 /eci.12748).
ACP1	low molecular weight phosphotyrosine protein phosphatase	P2466 6	 PPAC functions as an acid phosphatase and a protein tyrosine phosphatase. Low molecular weight phosphotyrosine protein phosphatase was confirmed to be one of the targets, which can be suppressed by upregulated miR-576-5p in NAFLD liver. (Soronen J, et al. Novel hepatic microRNAs upregulated in human

nonalcoholic fatty liver disease. Physiol Rep	
2016;4(1). Pii:e12661.)	

Cell Ballooning

Target	Target Full Name	UniProt	Association with NASH or NAFLD
AKR1B10	aldo-keto reductase family 1 member b10	O60218	 Arendt BM, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015; 61(5): 1565-78.
PTGR1	prostaglandin reductase 1	Q14914	 Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45- Related Factor 2). Prostaglandin reductase 1 is regulated by Nrf2. (Namani A, et al. NRF2-regulated metabolic gene signature as a prognostic biomarker in non-small cell lung cancer. Oncotarget. 2017;8(41):69847-62.)
ADAMTSL2	adamts-like protein 2	Q86TH1	• ATL2 is related to an autosomal recessive disorder, Geleophysic Dysplasia 1.
CTLA4	cytotoxic t- lymphocyte protein 4	P16410	 Inhibitory receptor acting as a major negative regulator of T-cell responses. The affinity of CTLA4 for its natural B7 family ligands, CD80 and CD86, is considerably stronger than the affinity of their cognate stimulatory coreceptor CD28.
CNN2	calponin-2	Q99439	 Higher CNN2 expression was seen from the higher liver fibrosis group (Bracht T, et al. Analysis of disease-associated protein expression using quantitative proteomics- fibulin-5 is expressed in association with hepatic fibrosis. J Proteome Res. 2015; 14(5): 2278-86.).

Fibrosis

Target	Target Full Name	UniProt	Associated with NASH or NAFLD (Y/N)
ADAMTSL2	adamts-like protein 2	Q86TH1	• ATL2 is related to an autosomal recessive disorder, Geleophysic Dysplasia 1.

С7	complement	P10643	Bell LN, et al. Serum proteomics and
	component c7		biomarker discovery across the spectrum
			of nonalcoholic fatty liver disease.
			Hepatology. 2010; 51(1):111-20.
NFASC	neurofascin	O94856	Cell adhesion, ankyrin-binding protein
			which may be involved in neurite
			extension, axonal guidance,
			synaptogenesis, myelination and neuron-
			glial cell interactions.
COLEC11	collectin-11	Q9BWP8	• Detected in adrenal gland, kidney, liver,
			ovaries and testis.
			Collectin 11 was one of the proteins in
			the panel to discriminate early and
			advanced fibrosis in NASH patients using
			SomaScan assay platform.
			(file:///C:/Users/yjia/Downloads/file.pdf)
KDR	vascular	P35968	Widely expressed.
	endothelial		 Tyrosine-protein kinase that acts as a
	growth factor		cell-surface receptor for VEGFA, VEGFC
	recentor		and VEGFD. Plays an essential role in the
			regulation of angiogenesis, vascular
			development, vascular permeability, and
			embryonic hematopoiesis. Promotes
			proliferation, survival, migration and
			differentiation of endothelial cells.
			Promotes reorganization of the actin
			cytoskeleton.
			• Coulon S, et al. Role of vascular
			endothelial growth factor in the
			pathophysiology of nonalcoholic
			steatohepatitis in two rodent models.
			Hepatology. 2013; 57(5): 1793-805.
WNT5A	protein wnt-5	P41221	Expression is increased in differentiated
			thyroid carcinomas compared to normal
			thyroid tissue and anaplastic thyroid
			tumors where expression is low or
			undetectable. Expression is found in
			thyrocytes but not in stromal cells.
			• Ligand for members of the frizzled family
			of seven transmembrane receptors. Can
			activate or inhibit canonical Wnt
			signaling, depending on receptor context.
			• Tian F, et al. Celecoxib ameliorates non-
			alcoholic steatohepatitis in type 2
			diabetic rats via suppression of the non-
			canonical Wnt signaling pathway

			expression. PLoS One. 2014; 9(1): e83819.
PLOD3	procollagen- lysine;2- oxoglutarate 5- dioxygenase 3	O60568	 Detected in heart, placenta and pancreas and at lower levels in lung, liver and skeletal muscle. Marcolin E, et al. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J Nutr. 2012; 142(10): 1821-8.
FCRL3	fc receptor-like protein 3	Q96P31	 Promotes TLR9-induced B-cell proliferation, activation and survival but inhibits antibody production and suppresses plasma cell differentiation. Enhances activation of NF-kappa-B and MAPK signaling pathways in TLR9 stimulated B-cells.

Table S5. Performance by study, treatment arm, and time point. Based on DeLong's test* for differences in AUC with a two-sided alternative, there were no statistically significant differences in AUC between baseline and end-of-treatment for any subgroup at a significance level of 0.05. Differences in AUC were calculated on unrounded values and are reported as "End-of-Treatment AUC" – "Baseline AUC."

Steatosis

Study	Treatment Arm	N	Baseline AUC	End-of- Treatment AUC	Diff	DeLong's Test p-value
FLINT	Obeticholic Acid	97	NA ¹	0.81	NA ¹	ΝΛ2
FLINT	Placebo	90	NA ¹	0.74	NA ¹	
PIVENS	Pioglitazone	63	NA ¹	0.91	NA ¹	ΝΙΔ2
PIVENS	Vitamin E	73	NA ¹	0.83	NA ¹	
PIVENS	Placebo	69	NA ¹	0.65	NA ¹	NA ²

¹Number of non-events too small (N \leq 2) to calculate AUC.

²Number of non-events too small to apply DeLong's test for differences in AUC.

Inflammation

Study	Treatment Arm	N	Baseline AUC	End-of- Treatment AUC	Diff	DeLong's Test p-value
FLINT	Obeticholic Acid	97	0.71	0.80	0.09	0.27
FLINT	Placebo	90	0.71	0.82	0.11	0.13
PIVENS	Pioglitazone	63	0.62	0.62	0.01	0.94
PIVENS	Vitamin E	73	0.71	0.81	0.10	0.36
PIVENS	Placebo	69	0.72	0.79	0.07	0.42

Hepatocyte Ballooning

Study	Treatment Arm	N	Baseline AUC	End-of- Treatment AUC	Diff	DeLong's Test p-value
FLINT	Obeticholic Acid	97	0.84	0.80	-0.05	0.49
FLINT	Placebo	90	0.78	0.83	0.04	0.62
PIVENS	Pioglitazone	63	0.80	0.81	0.00	0.98
PIVENS	Vitamin E	73	0.79	0.71	-0.08	0.35
PIVENS	Placebo	69	0.80	0.84	0.04	0.65

Fibrosis

Study	Treatment Arm	N	N Baseline End- Treatr AUC AU		Diff	DeLong's Test p-value
FLINT	Obeticholic Acid	97	0.83	0.84	0.02	0.74
FLINT	Placebo	90	0.89	0.89	0.00	1.00
PIVENS	Pioglitazone	63	0.79	0.89	0.11	0.16

Study	Treatment Arm	N	Baseline AUC	End-of- Treatment AUC	Diff	DeLong's Test p-value
PIVENS	Vitamin E	72 (73) baseline (EoT)	0.88	0.94	0.06	0.25
PIVENS	Placebo	69	0.86	0.81	-0.05	0.48

* DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837-845.

Table S6: A post-hoc evaluation of model specificity by applying each model to the matched and mis-matched histology data. Upper panel: accuracy metrics, and odds ratios from Fisher's exact test, obtained from applying the protein models to their intended biopsy results using the predefined dichotomies and also applying them to deliberately mis-matched biopsy results using all the samples from FLINT and PIVENS with biopsy results. Lower panel: accuracy metrics from applying the biopsy results from one component to deliberately mis-matched components to characterize the inherent correlations in disease severity.

	Accuracy and	d odds rati	os from Fisher's	exact test	Average	Average %
	of protein m	odel predi ts of:	ction when appli	ed to	Reduction in	Reduction in
			Mismatch	Accuracy from		
Model	Ballooning	Fibrosis	Inflammation	Steatosis		Mismatch
applied:						
Ballooning	0.751	0.727	0.666	0.633	0.076	10.1%
Danooning	9.7	8.3	4.7	4.9		
Fibrosis	0.656	0.782	0.606	0.524	0.187	23.9%
1010313	5.8	12.7	2.4	3.0		
Inflammation	0.662	0.645	0.709	0.541	0.093	13.15%
Innation	6.4	3.3	6.0	9.0		
Steatosis	0.718	0.544	0.533	0.847	0.249	29.4%
Steatosis	3.1	2.0	2.2	12.8		
	Accuracy of	histology b	oiopsy result whe	en applied	Average	Average %
	to biopsy res	sults of:			Reduction in	Reduction in
Biopsy result applied:	Ballooning	Fibrosis	Inflammation	Steatosis	Mismatch	Accuracy from Mismatch
Ballooning	1	0.653	0.631	0.739	0.326	32.6%
Fibrosis	0.653	1	0.605	0.508	0.411	41.1%
Inflammation	0.631	0.605	1	0.510	0.418	41.8%
Steatosis	0.739	0.508	0.510	1	0.414	41.4%