Supplementary Information

Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion

Xiangyu Meng^{1,6}, Chuntong Zhu^{1,6}, Xin Wang^{2,6}, Zehua Liu³, Mengmeng Zhu¹, Kuibo Yin⁴, Ran Long³, Liuning Gu⁵, Xinxing Shao⁵, Litao Sun⁴, Yueming Sun¹, Yunqian Dai^{1,*} & Yujie Xiong^{2,3*}

¹School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.

²Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.

³School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China.

⁴School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 211189, China.

⁵School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China.

⁶These authors contributed equally: Xiangyu Meng, Chuntong Zhu and Xin Wang.

* Corresponding author.

E-mail: yjxiong@ustc.edu.cn; daiy@seu.edu.cn

Supplementary Fig. 1 Fluid simulation model of (**a**) flow cell and (**b**) interwoven fibrous channels. (**c**) Mesh generation in fluid simulation.

Notably, the constructed models in (b) were the channels for fluid transfer.

Supplementary Fig. 2 The fluid simulation showing the water fraction (**a**) in reactor and (**b**) on pore channels, respectively. The color bars represent water fractions.

 $\textbf{Supplementary Fig. 3}$ XRD pattern of TiO2/ZnWO₄ fibrous mat.

Supplementary Fig. 4 SEM image of R-TiO₂/ZnWO₄ fibrous mat.

Supplementary Fig. 5 EPR spectra of TiO₂/ZnWO₄ and R-TiO₂/ZnWO₄ fibrous mats in dark with the same sample weight.

Supplementary Fig. 6 (a) XPS survey spectrum of R-TiO₂/ZnWO₄ fibrous mat, and high-resolution O 1*s* XPS spectra of (**b**) TiO₂/ZnWO₄ and (**c**) R-TiO₂/ZnWO₄ fibrous mats.

Supplementary Fig. 7 STEM image and corresponding EELS mapping profiles of oxygen atoms for two different nanofiber FIB slices. The analysis results of oxygen content distribution on a nanofiber slice are represented by the data graphs. The white arrows highlight the scanning routes in mapping. The color bar in left represents the oxygen content $(\times 10^3 \text{ at./nm}^2)$ on slice.

Supplementary Fig. 8 (**a**) TEM image showing the fracture surface of nanofiber after mechanical test under *in-situ* TEM observation. The image in (**a**) was patched by the TEM images in (**b**).

Supplementary Fig. 9 Mechanical tensile test of TiO₂/ZnWO₄ fibrous mats with aligned and random assembly.

Supplementary Fig. 10 Mechanical (a) tensile and (b) compression test of R-TiO₂/ZnWO₄ fibrous mats.

Supplementary Fig. 11 Photographs of (**a**) DIC 3D camera and (**b**) a flow reactor with mat for the DIC test setup. The fluid flow rate was controlled by peristaltic pump.

Supplementary Fig. 12 DIC test for observation micro-strain within mat by flowing (**a**) electrolyte and (**b**) CH⁴ fluid with flow rates of 25 and 100 mL/min, respectively.

Supplementary Fig. 13 UV-vis absorption spectra of the transparent TiO₂/ZnWO₄ fibrous mat.

Supplementary Fig. 14 (**a**) SEM image showing the microstructures of transparent mat, and (**b**) schematic functional illustration.

Supplementary Fig. 15 (**a**) SEM image showing the conductivity test chip design, including Au electrode collectors (highlighted by gold color) and aligned nanofibers. (**b**) The setup with probes for testing current−voltage curves. The white arrow highlights the location of fibrous chip.

Supplementary Fig. 16 The inherent conductivity test of TiO₂/ZnWO₄ with interwoven fibrous structure.

Supplementary Fig. 17 EPR spectra of TiO₂/ZnWO₄ and R-TiO₂/ZnWO₄ fibrous mat under light irradiation with the light intensity of 1 Sun and the same sample weight.

Supplementary Fig. 18 SEM images showing the R-TiO₂/ZnWO₄/PTFE fibrous mat with pores on both R-TiO₂/ZnWO₄ and PTFE from a top view (top), and their closely combined interface from a cross-sectional view (bottom).

Supplementary Fig. 19 The contact angles of CH₄ gas bubbles on the surface of R-TiO₂/ZnWO₄ fibrous mat in the NaSO₄ (pH = 2) liquid.

Supplementary Fig. 20 The production of CO₂ in PEC CH₄ conversion (a) in flow reaction and (b) in batch reaction. The error bars represent standard deviations in (**a**) and (**b**).

Supplementary Fig. 21 EPR spectra of samples under light irradiation (1 Sun) and in electrolyte (Na₂SO₄, $pH = 2$) for simulating the reaction conditions.

Supplementary Fig. 22 (a) TEM image showing the $TiO₂/ZnWO₄ counterpart sample prepared$ through electrospray. The black-white color map was changed into a green-yellow color map by Digital Morphology software to better show the grains inside the thick sample, with the inserted color bars for representing the contrast. (**b**, **c**) HRTEM images of grain boundaries within the counterpart sample. In (**b**) and (**c**), Ti, O, Zn and W atoms are highlighted by magenta red, white, blue and orange dots, respectively; ordered and continuous crystal lattices are marked with blue dashed lines; grain boundaries are highlighted by yellow dashed lines; lattice spacing is highlighted by white lines in pairs.

Supplementary Fig. 23 Fluid simulation showing the diffusion rates of CH₄ gas on micropores among interwoven nanofibers, with the increase of the flow rate of CH⁴ gas from (**a**) 25 mL/min to (**b**) 50 mL/min and (**c**) 100 mL/min. The color bar represents the velocity of mass diffusion.

Supplementary Fig. 24 SEM image showing the intact fibrous mat after 20 h stability test.

Supplementary Fig. 25 Specific current of CH⁴ conversion in flow cell by diffusion fibrous mat at 0.55 V under 1 Sun light irradiation for 100 h running time.

Supplementary Fig. 26 Relationship between the fibrous mat layer numbers and the average fluid flow rates in simulations.

Supplementary Fig. 27 Optical images showing the flow reactor from (**a**) light irradiation side and (**b**) back view.

Supplementary Fig. 28 The ¹H NMR spectra of liquid products in different flow reaction conditions.

Supplementary Fig. 29 The ¹H NMR spectra of liquid products in batch reaction conditions by the R-TiO2/ZnWO⁴ samples (**a**) with and (**b**) without dislocations.

Supplementary Fig. 30 The ¹H NMR spectra of liquid products in flow reactions by the R-TiO2/ZnWO⁴ mat with CH⁴ flow rates of (**a**) 50 mL/min and (**b**) 100 mL/min.