
Critical Transition and Reversion of Tumorigenesis  

 

 

Dongkwan Shin1,2 and Kwang-Hyun Cho1* 

 

1Department of Bio and Brain Engineering, Korea Advanced Institute of Science and 

Technology (KAIST), Daejeon, 34141, Republic of Korea 

2Bioinformatics Branch, Division of Cancer Data Science, National Cancer Center,  

Goyang-si, Gyeonggi-do, 10408, Republic of Korea 

 

 

 

Supplementary Information 

Supplementary Text 

Supplementary Fig. 1- 6 

Supplementary Table 1- 2 

 

 

 

 

 

*Corresponding author. E-mail: ckh@kaist.ac.kr, Phone: +82-42-350-4325, Fax:+82-42-350-4310,

 Web: http://sbie.kaist.ac.kr/ 

 

http://sbie.kaist.ac.kr/


 2 

Supplementary Text 

Case study: Identifying IC and EC targets for cancer reversion by using 

single cell RNA-sequencing data of lung cancer 

 

To implement cancer reversion strategy using single cell data, we reconstructed a dynamic 

network model of lung cancer transition state as a case study by using single cell RNA-

sequencing data (scRNA-seq) from tumor and adjacent normal tissues1. Developing detailed 

dynamic models of molecular regulatory networks is one of the primary challenges in systems 

biology as it requires sophisticated technique in determining both the regulatory structure of a 

network and kinetic parameters of each regulation from sufficient time-series data. Therefore, 

in this case study, we focused on a small-scale network model that is sufficient to conceptually 

demonstrate the proposed cancer reversion strategy based on IC and EC, and determined 

arbitrary kinetic parameter values so that the network model has bistability on its attractor 

landscape (see Supplementary Fig. 1 for entire workflow for the reconstruction of a dynamic 

network model). With this simple model we explored all the genes to find a key target gene 

that can change the attractor landscape into a desired shape, rather than using complex network 

control methods such as FVS, control kernel and stable motifs.  

  

1. Inferring pseudo-time based on genetic alterations 

Cancer is known to be developed by the accumulation of genetic alterations. Therefore, 

inferring a pseudo-time trajectory of tumorigenesis needs to be based on genetic alterations 

rather than gene expression. To infer pseudo-time ordering by genetic alterations, we employed 

a computational method for trajectory inference based on SNP information (TBSP)2 that detects 

significant single nucleotide variations on RNA sequences from scRNA-seq data 

(Supplementary Fig. 2(a)).  SNVs detected from scRNA-seq data could be sufficiently 
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informative to correctly cluster the cells and align the clusters along the development of cancer 

because they are expressed and their functions are readily linked to cancer phenotypes. We 

analyzed scRNA-seq data (221 normal cells and 883 tumor cells) on tumor (core, middle, and 

edge) and matched normal tissue from a lung cancer patient (patient 5 in the reference1). To 

identify informative SNVs from scRNA-seq data, we aligned the data using Cellranger (version 

4.0) and we used GATK RNA-seq variant calling pipeline to call the vcfs from aligned bam 

files. After calling SNP at single cell levels, we used the TBSP algorithm to find out the order 

of tumorigenesis based on accumulation of DNA variation. From the result of the TBSP, we 

identified pseudo-time ordering of the development of lung cancer (Supplementary Fig. 2(b)). 

We found that some normal cells originating from tumor and normal tissue are located in very 

early time, T = 0, 1, and 2, and that there is an intermediate state where normal and cancer cells 

coexist (Supplementary Fig. 2(b) and (c)).      

  

2. Reconstructing the tumorigenic trajectory from normal to cancer cell states 

Although the intermediate state (T = 2 in Supplementary Fig. 2(c)) is likely a transition state, 

it is necessary to check whether the critical transition index, which is defined by gene-gene 

correlation divided by cell-cell correlation3, is maximized in the transition state. We selected 

randomly 500 genes during 1000 trials and calculated the critical transition index in each 

pseudo-time by SNP, showing that values at T = 2 is lower than other time points 

(Supplementary Fig. 3(a)), which implicates that the cluster at T = 2 is not a transition state. It 

may originate from the heterogeneity in the cluster at each time point. Heterogeneity is a typical 

characteristic of cancer. So, even if the cells exist at the same SNP pseudo-time, they can show 

different profiles in terms of gene expression. It means that we cannot assume that cells at the 

next time point (T = t+1) necessarily evolve from the cells at the previous time point (T = t). 

Therefore, one must identify different cell populations within a specific time point by clustering 
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and to link them over time to find out a correct trajectory from normal to cancer states. To do 

this, we employed the SCDIFF algorithm4 to obtain the sub-trajectory that explains the 

dynamic cell trajectory of tumorigenesis from the root cell cluster, where normal tissue-derived 

cells are dominant, to end clusters that contain only tumor tissue-derived cells through an 

intermediate cluster that includes mixture of both tissues (Supplementary Fig. 3(b)). 

Interestingly, the critical transition index of cluster 2 in the sub-trajectory is higher than the 

others, suggesting that the cluster 2 corresponds to a transition state (Supplementary Fig. 3(c)). 

 

3. Reconstructing a molecular regulatory network of the transition state 

To reconstruct a dynamic network model representing the transition state, we obtained 21 

differentially expressed genes and a relevant transcript factor between the transition state 

(cluster 2) and a tumor cell state (cluster 3) (Supplementary table 1). In this case study, we used 

existing knowledge of molecular interaction network including STRING5, Omnipath6, and 

Human Signaling Network7 to reconstruct a mechanism-based molecular regulatory network. 

First, we extracted the protein interaction network with 21 core genes from the STRING 

database, which includes both functional and physical associations and additional proteins 

connecting two input genes. After removing respiratory-related protein modules from the 

extracted network, the resulting network consisted of modules related to antigen processing 

and presentation, immune system, and cellular responses to stimuli (Supplementary Fig. 4(a)). 

Next, we determined the direction and regulatory sign of each link by using the Omnipath and 

Human Signaling Network databases, and excluded links that could not be determined or links 

that were incompatible between two databases. Genes that have the same function in network 

topology were merged, such as HLA representing HLA-A, HLA-B, HLA-C, HLA-DPA1, and 

so on. As a result, the final core network with eight genes consists of a coupled feedback loop 

formed of FOSB/FOS/JUN, a part related to antigen presentation such as HLA, and the other 
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part related to metastasis such as TIMP1 (Supplementary Fig. 4(b)).  

 

4. Determining kinetic parameters of the molecular regulatory network of the transition 

state 

The estimation of kinetic parameters for a dynamic network model is a critical challenge. In 

this case study, we used the sRACIPE8 algorithm to determine kinetic parameters so that our 

dynamic network model exhibits a bistability, where one stable state is related to a phenotype 

of normal cells and the other is that of cancer cells.   

Our network model can be described by the ordinary differential equations (ODEs), where the 

effect of each regulation is formulated as a Hill type function, as follows:  
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Next, we generated 6,000 models by randomizing each parameter within the range, simulated 

the dynamics of each model with a particular set of parameters, and repeated the simulations 

for 10,000 times with randomly selected initial conditions. From the ensemble of models, we 

can analyze the robust dynamical properties of the input network topology. Our network model 

shows two stable steady states in 2D probability density map of the simulated gene expression 

data projected to the first two principal components (Supplementary Fig. 5(a)). From the 

hierarchical clustering analysis, we observe that there are two main clusters, cluster 1 (up-

regulated TIMP1 and SPP1 and down-regulated HLA) and cluster 2 (the opposite pattern to 

cluster 1), as shown in Supplementary Fig. 5(b). Considering that HLA is an integrated gene 

related to antigen presentation and TIMP1 plays an important role in promoting tumorigenesis 

and metastasis, cluster 1 corresponds to a cancer-like state whereas cluster 2 is close to a 

normal-like state. For a bistable gene regulatory network, we determined a specific set of 
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kinetic parameters (Supplementary table 2) with which the dynamics of the model converges 

to two stable steady states, (high TIMP1, low HLA) and (low TIMP1, high HLA).   

 

5. Quantifying attractor landscape of the transition state 

Quantifying attractor landscape of the transition state by the dynamic network model is useful 

for understanding the bistability of the transition state and the corresponding phenotypic 

characteristic of each stable state. To do this, we employed a method based on Monte Carlo 

simulation which estimates the probability distribution, P, of cellular states by collecting a large 

number of time-course simulations with random initial conditions9. By projecting all the 

trajectories into a 2-dimensional plane of TIMP1 and HLA, which represent metastasis and 

antigen presentation respectively, we can obtain the quasi-potential 𝑈𝑈(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,𝐻𝐻𝐻𝐻𝐻𝐻) =

 − ln𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,𝐻𝐻𝐻𝐻𝐻𝐻) of the transition state, as shown in Supplementary Fig. 6(a), where the 

potential landscape shows two distinct attractors; normal (low TIMP1 and high HLA)- and 

cancer (high TIMP1 and low HLA)-like attractors.  

Next, we investigated how the shapes of the attractors in the potential landscape are changed 

when cancer genes in lung cancer rewire the gene regulatory network. FOSB was significantly 

down-regulated in both LUAD and LUSC, indicating that it may have a tumor suppressor 

function in the progression of lung cancer10,11. The expression of SPP1 in lung cancer tissues 

was significantly higher than in normal tissues, and patients with high SPP1 expression were 

also correlated with poor clinical prognosis12,13. Our perturbation analysis based on these 

evidences showed that the down-regulation of FOSB by increasing the degradation rate by 16 

times induced the disappearance of the normal-like attractor and the appearance of a long valley 

between the cancer-like attractor and some more malignant state. In addition, when the SPP1 

level was up-regulated by decreasing the degradation rate by 16 times, the position and the 

shape of the normal-like attractor was almost unchanged, but the cancer-like attractor was 
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shifted toward the high level of TIMP1, that is, more malignant state. Finally, we combined 

both perturbations to obtain a more malignant cancer state which has only a more malignant 

cancer-like attractor (Fig. 8(c) and Supplementary Fig. 6(a)).  

 

6. IC and EC for cancer reversion 

The ultimate goal of IC is to send the cancer state to a new transition state where normal- and 

cancer-like attractors coexist in the potential landscape. To find such a target, we executed 

perturbation simulation for all the genes and found that the up-regulation of FOSB by 

increasing the production rate induced the reappearance of a normal-like attractor on the 

potential landscape, although its shape is not the same as that of the original transition state 

(Fig. 8(d) and Supplementary Fig. 6(a)). The ultimate goal of EC is to block any trajectory 

converging to the cancer-like attractor and thus to allow only initial states that converge to the 

normal-like attractor. We traced all the initial states converging to the cancer-like attractor and 

excluded those trajectories in the potential landscape. The resulting landscape confirmed that 

there is only a normal-like attractor (Fig. 8(e) and Supplementary Fig. (b)), suggesting that this 

cellular system can behave as a normal cell under the EC condition. Comparing the two set of 

initial states that converge to the normal- and cancer-like attractor respectively, we found that 

the levels of FOS, FOSB, and HLA are significantly decreased in initial states converging to 

the cancer-like attractor (Fig. 8(e) and Supplementary Fig. 6(c)). In other words, EC can be 

implemented by drugs that activate the upstream signaling pathways of FOS, FOSB, and HLA 

(Fig. 8(f)).  

 

This case study demonstrated the implementation of IC and EC by constructing a gene 

regulatory network model and simulating its dynamic behaviors on the potential landscape. 

Although this example showed the whole process for cancer reversion from single cell data to 
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the identification of IC and EC targets, it has a crucial limitation. Without estimating parameters 

from the single cell transcriptomic data, an arbitrary parameter set was chosen while ensuring 

bistability. Recent advances in single cell transcriptomics have fostered the development of the 

dynamic network inference methods based on differential equations, such as SCODE, and 

Boolean model, such as BTR and SCNS (see Review articles14,15). However, due to the 

difficulty in identifying transition cells and their sparsity in a state space, modeling cell state 

transitions and controlling them is still an outstanding challenge in biology and computational 

science. A recent great work proposed an approach for modeling dynamic network models 

during transitions between distinct cell states by using omics data16. Applying such methods 

for understanding transitions to various types of omics data such as single cell data will enable 

to estimate a unique parameter set to fit the real data and to further identify more exact IC and 

EC targets for cancer reversion. 

 

 

 

 

 

 

 

 



 10 

References 

1 Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor m
icroenvironment. Nat. Med. 24, 1277-1289 (2018). https://doi.org:10.1038/s41591
-018-0096-5 

2 Ding, J., Lin, C. & Bar-Joseph, Z. Cell lineage inference from SNP and scRN
A-Seq data. Nucleic Acids Res. 47, e56 (2019). https://doi.org:10.1093/nar/gkz14
6 

3 Mojtahedi, M. et al. Cell Fate Decision as High-Dimensional Critical State Tra
nsition. PLoS Biol. 14, e2000640 (2016). https://doi.org:10.1371/journal.pbio.200
0640 

4 Ding, J. et al. Reconstructing differentiation networks and their regulation from 
time series single-cell expression data. Genome Res. 28, 383-395 (2018). https:/
/doi.org:10.1101/gr.225979.117 

5 Szklarczyk, D. et al. The STRING database in 2021: customizable protein-prote
in networks, and functional characterization of user-uploaded gene/measurement 
sets. Nucleic Acids Res. 49, D605-D612 (2021). https://doi.org:10.1093/nar/gkaa1
074 

6 Turei, D., Korcsmaros, T. & Saez-Rodriguez, J. OmniPath: guidelines and gate
way for literature-curated signaling pathway resources. Nat. Methods 13, 966-96
7 (2016). https://doi.org:10.1038/nmeth.4077 

7 Cui, Q. et al. A map of human cancer signaling. Mol. Syst. Biol. 3, 152 (200
7). https://doi.org:10.1038/msb4100200 

8 Kohar, V. & Lu, M. Role of noise and parametric variation in the dynamics of
 gene regulatory circuits. NPJ Syst. Biol. Appl. 4, 40 (2018). https://doi.org:10.
1038/s41540-018-0076-x 

9 Zhang, X., Chong, K. H., Zhu, L. & Zheng, J. A Monte Carlo method for in 
silico modeling and visualization of Waddington's epigenetic landscape with inte
rmediate details. Biosystems 198, 104275 (2020). https://doi.org:10.1016/j.biosyst
ems.2020.104275 

10 Daraselia, N. et al. Molecular signature and pathway analysis of human primar
y squamous and adenocarcinoma lung cancers. Am. J. Cancer Res. 2, 93-103 
(2012).  

11 Kim, D. S., Lee, W. K. & Park, J. Y. Association of FOSB exon 4 unmethyla
tion with poor prognosis in patients with late‑stage non‑small cell lung cancer. 
Oncol. Rep. 43, 655-661 (2020). https://doi.org:10.3892/or.2019.7431 

12 Tang, H., Chen, J., Han, X., Feng, Y. & Wang, F. Upregulation of SPP1 Is a 
Marker for Poor Lung Cancer Prognosis and Contributes to Cancer Progression 
and Cisplatin Resistance. Front. Cell Dev. Biol. 9, 646390 (2021). https://doi.or
g:10.3389/fcell.2021.646390 

13 Yi, X. et al. SPP1 facilitates cell migration and invasion by targeting COL11A
1 in lung adenocarcinoma. Cancer Cell Int. 22, 324 (2022). https://doi.org:10.11
86/s12935-022-02749-x 

14 Todorov, H., Cannoodt, R., Saelens, W. & Saeys, Y. Network Inference from S
ingle-Cell Transcriptomic Data. Methods Mol. Biol. 1883, 235-249 (2019). https:
//doi.org:10.1007/978-1-4939-8882-2_10 

15 Nguyen, H., Tran, D., Tran, B., Pehlivan, B. & Nguyen, T. A comprehensive s
urvey of regulatory network inference methods using single cell RNA sequenci
ng data. Brief. Bioinform. 22 (2021). https://doi.org:10.1093/bib/bbaa190 

16 Rukhlenko, O. S. et al. Control of cell state transitions. Nature 609, 975-985 

https://doi.org:10.1038/s41591-018-0096-5
https://doi.org:10.1038/s41591-018-0096-5
https://doi.org:10.1093/nar/gkz146
https://doi.org:10.1093/nar/gkz146
https://doi.org:10.1371/journal.pbio.2000640
https://doi.org:10.1371/journal.pbio.2000640
https://doi.org:10.1101/gr.225979.117
https://doi.org:10.1101/gr.225979.117
https://doi.org:10.1093/nar/gkaa1074
https://doi.org:10.1093/nar/gkaa1074
https://doi.org:10.1038/nmeth.4077
https://doi.org:10.1038/msb4100200
https://doi.org:10.1038/s41540-018-0076-x
https://doi.org:10.1038/s41540-018-0076-x
https://doi.org:10.1016/j.biosystems.2020.104275
https://doi.org:10.1016/j.biosystems.2020.104275
https://doi.org:10.3892/or.2019.7431
https://doi.org:10.3389/fcell.2021.646390
https://doi.org:10.3389/fcell.2021.646390
https://doi.org:10.1186/s12935-022-02749-x
https://doi.org:10.1186/s12935-022-02749-x
https://doi.org:10.1007/978-1-4939-8882-2_10
https://doi.org:10.1007/978-1-4939-8882-2_10
https://doi.org:10.1093/bib/bbaa190


 11 

(2022). https://doi.org:10.1038/s41586-022-05194-y 
 

https://doi.org:10.1038/s41586-022-05194-y


 12 

Supplementary Figures 

 

 

 

Supplementary Fig. 1. Workflow for reconstructing a dynamic network model representing 

the transition state by using single cell RNA-sequencing data from lung cancer.  
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Supplementary Fig. 2. Inference of pseudo-time based on SNVs detected from scRNA-seq. 

(a) Schematic of SNP calling from scRNA-seq. Introns are spliced out of the immature mRNA 

to form mature mRNA where only the coding exons remain. The TBSP algorithm detects SNVs 

different from the reference genome and identifies informative SNPs to correctly cluster the 

cells along the pseudo-time axis. (b) Arrangement of clusters along the pseudo-time axis. Pie 

chart shows the composition of cell origin of each cluster. (c) Pie chart of the composition of 

normal and cancer cells of each cluster.  
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Supplementary Fig. 3. Reconstructing tumorigenic sub-trajectory from normal to cancer cell 

states. (a) Critical transition index of each cluster along pseudo-time based on variants. (b) 

Inferred tumorigenic trajectory by integrating expression similarity with the pseudo-time based 

on variants. The sub-trajectory from the normal cell cluster to the cancer cell clusters through 

the intermediate cluster is shown in red. (c) The critical transition index for each cluster in the 

sub-trajectory. 
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Supplementary Fig. 4. Reconstructing a molecular regulatory network of the transition state. 

(a) The protein interaction network extracted from the STRING database. The network consists 

of genes relevant to antigen processing and presentation (KEGG pathways), immune system 

(Reactome pathways), and cellular responses to stimuli (Biological process of the Gene 

Ontology, data not shown). (b) Resulting molecular regulatory network with directed and 

signed links. The output nodes are shown in pink.  
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Supplementary Fig. 5. Determining kinetic parameters of the network model. (a) Probability 

density map of the sRACIPE-generated expression data projected onto the PCA space. (b) 

Hierarchical clustering analysis of simulated gene expression with randomly selected 

parameters. Each column corresponds to a stable steady state generated from the algorithm.    
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Supplementary Fig. 6. Potential landscape of the transition state and its changes for IC and 

EC treatments. (a) Potential landscape of the transition state, the cancer state, a new transition 

state after the IC treatment, and a normal-like state after the IC and EC treatment. (b) Potential 

landscape with only with initial states that converge to the cancer-like attractor. (c) Comparison 

of the two set of initial states that converge to the normal- and cancer-like attractor respectively.  
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Supplementary Tables 

 

Supplementary Table 1. The DEGs and TF list between the transition state (cluster 2) and the 

cancer state (cluster 3).  

 

Supplementary Table 2. Kinetic parameters of the dynamic network model with bistability 
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