Supplementary Figures

Supplementary Figure 1. NMR spectroscopy and assignments of SPX2. (a) 2D [¹⁵N,¹H]-TROSY experiment of [$U^{-2}H$,¹⁵N]-SPX2 in NMR buffer. Sequence-specific resonance assignments are indicated. (b) Zoom-in on the three resonance triplets from helices α 3 (Y65–F67), α 4 (L107–S109) and α 7 (A188–K190), plotted at the same contour levels. The resonances of helix α 7 have significantly reduced signal intensity compared to the others, indicating increased water exchange along with increased local dynamics.

Supplementary Figure 2. Characterization of SPX2 backbone dynamics by NMR spectroscopy. (a, b, c) NMR spin relaxation parameters $T_1(^{15}N)$, $T_2(^{15}N)$ and hetNOE of SPX2 in NMR buffer, measured at 600 MHz field strength. Red dashed lines indicate the position of helix α 7. Data were fitted from n = 8 relaxation time points. Error bars indicate fit error estimated by covariance method. (d) Secondary structure elements in Alphafold predictions for Vtc2 and Vtc3. Curl – helix; line – random coil. (e) Residue-specific H/D exchange of SPX2. I_D – intensities of resonances measured in D₂O-based MST buffer, I_H – intensities of resonances measured in H₂O-based MST buffer. Dashed horizontal lines (red/purple/light blue), indicate three threshold levels based on standard deviation for the classification of residues into high/medium/low exchange protection. (f) Protection against amide exchange plotted on a structural model of SPX2, as determined in D. Red/purple/light blue – high/medium/low protection; dark blue – no protection; yellow – residues experiencing intermediate chemical exchange; gray – residues not assigned. Source data are provided as a Source Data file.

Supplementary Figure 3. Characterization of the binding between TTM2, SPX2 and Vtc4 constructs. (a) MST binding experiment of TTM2 to Vtc4*. No binding is detected, as indicated by the flat fitting curve (red). *n*=3 replicates. (b) Co-immunoadsorption of the SPX4 and SPX2 domains. The FLAG-tagged SPX4 domain was expressed as a soluble protein in yeast strain BY4741 Δ pep4 Δ prb1. A whole-cell extract expressing SPX4-FLAG or an empty plasmid was incubated with anti-FLAG-antibodies covalently linked to magnetic beads. The beads were washed, incubated with purified recombinant SPX2 in the presence or absence of 10 μ M 1,5-IP₈, as indicated, washed again and analyzed by Western blotting, using antibodies to SPX2 (top blot) and FLAG (bottom blot). The experiment was performed *n*=3 times with similar results. (c) MST binding affinities of SPX2 to Vtc4* at elevated NaCl conditions. *n*=3 replicates. (d) Chemical shift perturbation plot of SPX2 induced by sodium chloride titration. Yellow -

residues experiencing intermediate chemical exchange, gray – residues not assigned. (e) Binding affinities of SPX2 $\Delta \alpha 1$ or SPX2 $\Delta \alpha 7$, respectively, to Vtc4* measured by MST. Orange asterisks display the protein lacking areas in the cartoon scheme. *n*=2 replicates. (f) MST binding affinities of SPX2 with single mutations to Vtc4* in the MST buffer. Asterisks show the mutated positions in the cartoon scheme. Graphs show the means and SEM; *n*=3 replicates. The dissociation constants determined by the fits are displayed along with a 95% confidence interval. Source data are provided as a Source Data file.

Supplementary Figure 4. IP₆ disrupts the interaction between SPX2 and Vtc4*. (a) Chemical structures of inositol phosphate (IP₆), 5-diphospho-inositol tetrakisphosphate (5-IP₇), 1,5-bis-diphospho-inositol tetrakisphosphate (1,5-IP₈). (b) NMR spectra of $[U^{-15}N]$ -SPX2 and unlabeled Vtc4* recorded in a molar ratio 1:3 in the absence and presence of a 40x molar excess of IP₆. (c) Cross-linking experiment of SPX2 binding to Vtc4* with the cross-linker CDI in absence (1st lane) or presence of 20x molar excess of IP₆ (2nd lane). Negative controls (3rd and 4th lane) are single components cross-linked in the absence of a IP₆. The buffer used was 25 mM HEPES pH 7.0, 150 mM NaCl, 0.5 mM EDTA, 0.5 mM TCEP. The red arrow indicates a band with the expected size of a cross-linked SPX2–Vtc4* complex. The experiment was conducted once.

Supplementary Figure 5. NMR titration series of SPX2 with IP_x. Superimposed 2D [¹⁵N,¹H]-TROSY spectra with different concentrations of IP_x, as indicated and zooms of three selected residues undergoing intermediate exchange. NMR titration was performed using (**a**) inositol phosphate (IP₆), (**b**) 5-diphospho-inositol tetrakisphosphate (5-IP₇), (**c**) 1,5-bis-diphosphoinositol tetrakisphosphate (1,5-IP₈) and [U-¹⁵N]-SPX2 in NMR Buffer with 250mM NaCl.

Supplementary Figure 6. Structural characterization of holo-state and pseudo-active mutants of SPX2. (a) Determination of dissociation constants of SPX2 bound to different nonhydrolysable IP_x by NMR on the example of glycine 124. Graphs show the means and SEM; n=3. (b, c, d) Chemical shift differences between the wild-type SPX2 and single-point mutations of SPX2 (Y19F, N121A, K127A). Yellow - residues experiencing intermediate chemical exchange, residues not assigned. Dashed horizontal gray – lines (red/purple/magenta), indicate three threshold levels based on standard deviation for the classification of residues into high/medium/low perturbation. (e, f) Secondary elements determination by secondary chemical shift (SS) plots of SPX2 in the presence of 10-fold molar excess of IP₆ and SS plot displaying differences between SS value in apo- and holo-state. Source data are provided as a Source Data file.

Supplementary Figure 7. Alignment of SPX2 in bacteriophage solution measured by residual dipolar couplings (RDCs). (a) Experimental versus calculated residual dipolar couplings of apo SPX2 in bacteriophage solution. Data points are colored per helix, as indicated. (b) Same for SPX2 with bound IP₆. (c) Display of the alignment tensors from the fits in A and B, on the structural model of SPX2, representing the value of a virtual N-H bond vector pointing in a particular direction of space. The red/blue isosurfaces represent the preferred/non-preferred orientation of the magnetic field with respect to the fixed protein frame. (d) Visualization of the alignment tensors in the coordinate system of the apo-SPX2 tensor. The axes are defined by three eigenvectors scaled by the corresponding eigenvalues in units of 10^{-32} m³. The orientation of the tensor along the Z-axis is only slightly changed. Source data are provided as a Source Data file.

Supplementary Figure 8. (a) Uncropped gel of Supplementary Figure 4c.

Supplementary Tables

Supplementary Table 1. Phosphorylation and mutation sides of SPX domains localized between helix $\alpha 6$ and the adjacent domain.

Protein	Organism			
Phosphorylation sites ^a				
Vtc2	S. cerevisiae	S182, S187, S192, S193, S196		
Vtc3	S. cerevisiae	S187, S190, S192, S195, S198		
Gde1	S. cerevisiae	S254, T255, S256		
Pho81	S. cerevisiae	T215		
Pho91	S. cerevisiae	S295, S311, S312, T297		
Syg1	S. cerevisiae	\$342		
SPX2	A. thaliana	S195		
PHO1;H3	A. thaliana	S188		
Mutation site ^b				
Xpr1	Human	L218S		

^a Reported in yeast database *thebiogrid.org* 4.2 and Arabidopsis database *PhosPhAt* 4.0¹⁻³.

^b Reported in ⁴.

Domain adjacent to SPX	UniProt identifier	Annotation	Species
TTM	A0A1G4IN84		Lachancea sp.
	A0A376B1S5	VTC3-like	Saccharomycodes ludwigii
	C8Z7T1	Vtc2p	Saccharomyces cerevisiae
	A0A1G4IPK6		Lachancea dasiensis
	J8Q8H7	Vtc2p	Saccharomyces arboricola
	A0A4T0X0U9		Candida inconspicua
	A0A0N7MMG7		Lachancea quebecensis
	A0A1X7QYL6	VTC2-like	Kazachstania saulgeensis
	A0A1L0CVH1	VTC3-like	Hanseniaspora guilliermondii
	G8JWC8		Eremothecium cymbalariae
	G0WEA1		Saccharomyces dairenensis
	J6EEI2	VTC3-like	Saccharomyces kudriavzevii
	A0A367Y0Z6	VTC2-like	Candida viswanathii
	Q750H3		Eremothecium gossypii
	A0A367YD17	VTC2-like	Candida viswanathii
	A0A1G4IWE9		Lachancea nothofagi
	N1P1U8	Vtc3p	Saccharomyces cerevisiae
	A0A1Q3AGE2		Candida mogii
	A0A1G4IN66		Lachancea meyersii
	A0A6C1E774	Pi metabolism transcription	Saccharomyces pastorianus
	A0A6C1EG68	VTC2 / 3	Saccharomyces pastorianus
	C5DXC4		Candida mogii
	A0A1G4M808		Lachancea fermentati
	A0A1Q3A2L8		Candida mogii
	J7R8F3		Saccharomyces naganishii
	A0A1S7HQC7	VTC2 / 3	Zygosaccharomyces parabailii
	G8ZR46		Candida colliculosa
	A0A1S7I1A1	VTC2 / 3	Zygosaccharomyces parabailii
	A0A1E3NSJ7		Pichia membranifaciens
	A0A6C1E346	VTC2 / 3	Saccharomyces pastorianus
	J8THM2	VTC2-like	Saccharomyces kudriavzevii
	A0A1B7TB83		Hanseniaspora valbyensis
	A0A0C7N0A4		Lachancea lanzarotensis
	Q02725	VTC3-like	Saccharomyces cerevisiae
	P43585	VTC2-like	Saccharomyces cerevisiae
	A0A0L8RA68	VTC3-like	Saccharomyces eubayanus
	A0A0L8RJY6	VTC2-like	Saccharomyces eubayanus
	A0A1E5R649	VTC2-like	Hanseniaspora opuntiae
	I2H317		Tetrapisispora blattae
	R9XJU5		Ashbya aceri
	B5VTE3		Saccharomyces cerevisiae
	A0A1Q2YBK4		Pichia membranifaciens
	A0A1B7SCC9		Ogataea polymorpha

Supplementary Table 2. UniRef100 sequences, in which the helix α 7 motif was identified.

	A0A0W0D5B2	VTC2-like	Candida alabrata
	C5DBH3		Lachancea thermotolerans
	A0A4C2E511	Pi metabolism transcription	Zvaosaccharomyces mellis
	A0A0A8LCC9		Kluyveromyces dobzhanskii
	Q6CNJ4		Kluyveromyces lactis
	A0A1E5RES9	VTC2-like	Hanseniaspora osmophila
	W0T7N7	VTC2-like	Kluyveromyces marxianus
	C8ZJ09	Vtc3p	Saccharomyces cerevisiae
	Q6FUM8		Candida glabrata
	A0A1E5RD13	VTC2-like	Hanseniaspora uvarum
	A0A1G4K314		Lachancea mirantina
	A7TJR7		Vanderwaltozyma polyspora
	A0A0L8VRX1	VTC2p	Saccharomyces boulardii
	A0A0L8VFX1	VTC3p	Saccharomyces boulardii
	H2ASH6		Kazachstania africana
	B5VI22		Saccharomyces cerevisiae
	G0VD31		Naumovozyma castellii
ANK	A0A1E4RMD6		Hyphopichia burtonii
	A0A1L0FMB3	Glycerophosphocholine phosphodiesterase	Hanseniaspora guilliermondii
	A0A178FA43	Glycerophosphocholine phosphodiesterase	Trichophyton rubrum
	A0A022WCM4		Trichophyton rubrum
	D4DGV3	Glycerophosphocholine phosphodiesterase	Trichophyton verrucosum
	A0A1B7TH22	Glycerophosphocholine phosphodiesterase	Hanseniaspora valbyensis
	A0A1E5RTU3	Glycerophosphocholine phosphodiesterase	Hanseniaspora opuntiae
	A0A178FIU7	Glycerophosphocholine phosphodiesterase	Trichophyton violaceum
	A0A022Y3L0		Trichophyton soudanense
	D4B066	Glycerophosphocholine phosphodiesterase	Arthroderma benhamiae
	A0A1E5RJK4	Glycerophosphocholine phosphodiesterase	Hanseniaspora uvarum
	A0A2J6SUV1	Glycerophosphocholine phosphodiesterase	Hyaloscypha bicolor
	W7I643	Glycerophosphocholine phosphodiesterase	Drechslerella stenobrocha
	E4V1Y0	Glycerophosphocholine phosphodiesterase	Arthroderma gypseum
	G9P286	Glycerophosphocholine phosphodiesterase	Hypocrea atroviridis
ZnF	A0A6G1HV83		Trichodelitschia bisporula
	A0A5C3LW70		Crucibulum laeve
EXS	A8BME6	EXS family protein	Giardia intestinalis
	E1F2R9	EXS family protein	Giardia intestinalis
	A0A103XSP9	EXS family protein	Cynara cardunculus
	V6TBZ6	EXS family protein	Giardia intestinalis
	A0A3B3BYR1	Xenotropic and polytropic retrovirus receptor 1	Oryzias melastigma

Supplementary Table 3. Thermal stability of SPX2 in presence of ligands.

Ligand	T _m [°C] ^a
No ligand	34.4 ± 0.1
IP ₆	47.2 ± 0.2
5-IP7	43.8 ± 0.0
1,5-IP ₈	38.2 ± 0.1

^a Melting temperature determined by nanoDSF (Prometheus).

Supplementary References

- 1. Heazlewood, J. L. *et al.* PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. *Nucleic Acids Res.* **36**, D1015-1021 (2008).
- 2. Durek, P. *et al.* PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. *Nucleic Acids Res.* **38**, D828–D834 (2010).
- 3. Zulawski, M., Braginets, R. & Schulze, W. X. PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. *Nucleic Acids Res.* **41**, D1176–D1184 (2013).
- 4. Legati, A. *et al.* Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. *Nat Genet.* **47**, 579–581 (2015).