Supplementary Figures

Supplementary Figure 1. NMR spectroscopy and assignments of SPX2. (**a**) 2D [15N,1 H]-TROSY experiment of [U²H,¹⁵N]-SPX2 in NMR buffer. Sequence-specific resonance assignments are indicated. (**b**) Zoom-in on the three resonance triplets from helices α 3 (Y65–F67), α 4 (L107– S109) and α 7 (A188–K190), plotted at the same contour levels. The resonances of helix α 7 have significantly reduced signal intensity compared to the others, indicating increased water exchange along with increased local dynamics.

Supplementary Figure 2. Characterization of SPX2 backbone dynamics by NMR spectroscopy. (**a, b, c**) NMR spin relaxation parameters *T*1(15N), *T*2(15N) and hetNOE of SPX2 in NMR buffer, measured at 600 MHz field strength. Red dashed lines indicate the position of helix α7. Data were fitted from *n* = 8 relaxation time points. Error bars indicate fit error estimated by covariance method. (**d**) Secondary structure elements in Alphafold predictions for Vtc2 and Vtc3. Curl – helix; line – random coil. (**e**) Residue-specific H/D exchange of SPX2. I_D – intensities of resonances measured in D₂O-based MST buffer, I_H – intensities of resonances measured in H2O-based MST buffer. Dashed horizontal lines (red/purple/light blue), indicate three threshold levels based on standard deviation for the classification of residues into high/medium/low exchange protection. (**f**) Protection against amide exchange plotted on a structural model of SPX2, as determined in D. Red/purple/light blue – high/medium/low protection; dark blue – no protection; yellow – residues experiencing intermediate chemical exchange; gray – residues not assigned. Source data are provided as a Source Data file.

Supplementary Figure 3. Characterization of the binding between TTM2, SPX2 and Vtc4 constructs. (**a**) MST binding experiment of TTM2 to Vtc4*. No binding is detected, as indicated by the flat fitting curve (red). *n*=3 replicates. (**b**) Co-immunoadsorption of the SPX4 and SPX2 domains. The FLAG-tagged SPX4 domain was expressed as a soluble protein in yeast strain BY4741 ∆pep4 ∆prb1. A whole-cell extract expressing SPX4-FLAG or an empty plasmid was incubated with anti-FLAG-antibodies covalently linked to magnetic beads. The beads were washed, incubated with purified recombinant SPX2 in the presence or absence of 10 μ M 1,5-IP₈, as indicated, washed again and analyzed by Western blotting, using antibodies to SPX2 (top blot) and FLAG (bottom blot). The experiment was performed *n*=3 times with similar results. (**c**) MST binding affinities of SPX2 to Vtc4* at elevated NaCl conditions. *n*=3 replicates. (**d**) Chemical shift perturbation plot of SPX2 induced by sodium chloride titration. Yellow -

residues experiencing intermediate chemical exchange, gray – residues not assigned. (**e**) Binding affinities of SPX2∆α1 or SPX2∆α7, respectively, to Vtc4* measured by MST. Orange asterisks display the protein lacking areas in the cartoon scheme. *n*=2 replicates. (**f**) MST binding affinities of SPX2 with single mutations to Vtc4* in the MST buffer. Asterisks show the mutated positions in the cartoon scheme. Graphs show the means and SEM; *n*=3 replicates. The dissociation constants determined by the fits are displayed along with a 95% confidence interval. Source data are provided as a Source Data file.

Supplementary Figure 4. IP6 disrupts the interaction between SPX2 and Vtc4*. (**a**) Chemical structures of inositol phosphate (IP₆), 5-diphospho-inositol tetrakisphosphate (5-IP₇), 1,5-bisdiphospho-inositol tetrakisphosphate (1,5-IP8). (**b**) NMR spectra of [*U*-15N]-SPX2 and unlabeled Vtc4* recorded in a molar ratio 1:3 in the absence and presence of a 40x molar excess of IP6. (**c**) Cross-linking experiment of SPX2 binding to Vtc4* with the cross-linker CDI in absence (1st lane) or presence of 20x molar excess of IP₆ (2nd lane). Negative controls (3rd) and $4th$ lane) are single components cross-linked in the absence of a IP₆. The buffer used was 25 mM HEPES pH 7.0, 150 mM NaCl, 0.5 mM EDTA, 0.5 mM TCEP. The red arrow indicates a band with the expected size of a cross-linked SPX2–Vtc4* complex. The experiment was conducted once.

Supplementary Figure 5. NMR titration series of SPX2 with IP_x. Superimposed 2D [¹⁵N,¹H]-TROSY spectra with different concentrations of IPx, as indicated and zooms of three selected residues undergoing intermediate exchange. NMR titration was performed using (**a**) inositol phosphate (IP6), (**b**) 5-diphospho-inositol tetrakisphosphate (5-IP7), (**c**) 1,5-bis-diphosphoinositol tetrakisphosphate (1,5-IP₈) and [U-¹⁵N]-SPX2 in NMR Buffer with 250mM NaCl.

Supplementary Figure 6. Structural characterization of holo-state and pseudo-active mutants of SPX2. (**a**) Determination of dissociation constants of SPX2 bound to different nonhydrolysable IP_x by NMR on the example of glycine 124. Graphs show the means and SEM; *n*=3. (**b, c, d**) Chemical shift differences between the wild-type SPX2 and single-point mutations of SPX2 (Y19F, N121A, K127A). Yellow - residues experiencing intermediate chemical exchange, gray – residues not assigned. Dashed horizontal lines (red/purple/magenta), indicate three threshold levels based on standard deviation for the classification of residues into high/medium/low perturbation. (**e, f**) Secondary elements determination by secondary chemical shift (SS) plots of SPX2 in the presence of 10-fold molar excess of IP $_6$ and SS plot displaying differences between SS value in apo- and holo-state. Source data are provided as a Source Data file.

Supplementary Figure 7. Alignment of SPX2 in bacteriophage solution measured by residual dipolar couplings (RDCs). (**a**) Experimental versus calculated residual dipolar couplings of apo SPX2 in bacteriophage solution. Data points are colored per helix, as indicated. (**b**) Same for SPX2 with bound IP₆. (c) Display of the alignment tensors from the fits in A and B, on the structural model of SPX2, representing the value of a virtual N-H bond vector pointing in a particular direction of space. The red/blue isosurfaces represent the preferred/non-preferred orientation of the magnetic field with respect to the fixed protein frame. (**d**) Visualization of the alignment tensors in the coordinate system of the apo-SPX2 tensor. The axes are defined by three eigenvectors scaled by the corresponding eigenvalues in units of 10^{-32} m³. The orientation of the tensor along the Z-axis is only slightly changed. Source data are provided as a Source Data file.

Supplementary Figure 8. (**a**) Uncropped gel of Supplementary Figure 4c.

Supplementary Tables

Supplementary Table 1. Phosphorylation and mutation sides of SPX domains localized between helix α6 and the adjacent domain.

^a Reported in yeast database thebiogrid.org 4.2 and Arabidopsis database PhosPhAt 4.0¹⁻³.

^b Reported in ⁴.

Supplementary Table 2. UniRef100 sequences, in which the helix α7 motif was identified.

Supplementary Table 3. Thermal stability of SPX2 in presence of ligands.

a Melting temperature determined by nanoDSF (Prometheus).

Supplementary References

- 1. Heazlewood, J. L. *et al.* PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. *Nucleic Acids Res.* **36**, D1015- 1021 (2008).
- 2. Durek, P. *et al.* PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. *Nucleic Acids Res.* **38**, D828–D834 (2010).
- 3. Zulawski, M., Braginets, R. & Schulze, W. X. PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. *Nucleic Acids Res.* **41**, D1176–D1184 (2013).
- 4. Legati, A. *et al.* Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. *Nat Genet.* **47**, 579–581 (2015).