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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author): expertise in proteomics method development

Swietlik et al have improved the process of recovering proteins labeled with azidonorleucine (ANL)
from a cell specific BONCAT method. This new method is then applied to studies of pancreatic
cancer looking at cell co-culture, extracellular matrix, and proteins circulating in mouse serum.
With their new process they identify roughly 10,000 proteins which is a significant increase in
protein identification numbers over previous ANL studies. The use of cre-loxed MetRS* allows cell
specific labeling of proteins via preferential incorporation of ANL over Met into proteins. This
process is not as efficient as MetRS incorporation of Met into proteins, and thus raises a few
questions. It is unclear if the new procedure is as specific as the authors claim it to be. Two
strategies for enrichment are employed in BONCAT where one enriches intact labeled proteins then
either elutes proteins off the column or digests proteins off the column. The improvement reported
here uses a cleavable disulfide. The second strategy enriches for ANL or AHA labeled peptides from
digested proteins and then elutes peptides off the avidin column. An advantage to the first
approach is many more peptides per protein are identified, but the disadvantage is identification is
not via a labeled peptide consequently you must be sure the negative control is a good control. An
advantage to the peptide strategy is identification is based on a labeled peptide, but the
disadvantage is Met is not a very frequent amino acid so there may not be very many peptides per
protein available. The identification of the labeled peptides makes the certainty of which proteins
are newly synthesized or cell specific high. In the Swietlik et al data how many labeled peptides
can be identified? The Maccoss lab developed a tool for mining DIA data for specific peptide
sequences called PECAN where you could specifically try to find labeled peptides in the data. How
many times was the negative control repeated? Was it consistent each time or did the identities of
proteins change and by how much, e.g. if you prepare 10 biological replicates of the negative
control with a tight protein identification FDR what is the overlap, 50%, 60%, 70%, etc? The
reported protein numbers are high and thus the authors need to be rigorous in establishing those
numbers are not simply due to non-specific interactions. Proving labeled peptides exist in their
data for a statistically significant number of the proteins that were identified (e.g. of the 10K
proteins) will go a long way to establish the legitimacy of the approach.

Summary- overall the paper is potentially an important contribution to the growing area of cell
specific proteomics. While I'm not an expert in pancreatic cancer it appears, some interesting
discoveries were made using this approach. Cell specific proteomics is potentially an important
companion to the emerging area of single cell proteomics (SCP). The potential increase in the
number of proteins identified in these studies is about 10X beyond what the current capability is
for single cell proteomic methods so it will allow the study of single cell types within complex tissue
matrices as SCP matures. And cell specific BONCAT allows you to ask different types of questions.

Other questions.
Line 396-397: Is this over 8000 mice?

Reviewer #2 (Remarks to the Author): expertise in pancreatic cancer cell biology

Swietlik et al. describe an improved method to selectively label and profile proteome contents in
pancreatic cancer model systems. The system utilizes azidonorleucine to label and subsequently
profile proteome using mass spectrometry. The study is well-designed and clearly written and
demonstrates differential proteome coverage over the flow cytometry-based dissociation/proteome
profiling methods, allowing for detection of some of the less abundant proteins, such as cytokines.
The study also demonstrates significant differences in how distinct subclasses of pancreatic
cancers, such as basal and classical, regulate myeloid cell polarization and composition of
extracellular matrix. Overall, this work is very interesting, although some minor questions remain
as to utility of this platform for diagnostic purposes, especially in the setting of human malignancy.
Minor points:

1. A demonstration of how well this method can be applied in the human malignancy setting would
be of great interest. At the very minimum, there needs to be a discussion of how the authors



envision pipelining such protocols for diagnostic purposes.

2. ECM proteins are typically abundantly expressed in pancreatic cancer. How does the new
method compare to other mass spec-based approaches (not based on flow cytometry) in
identifying differences in ECM composition? Does the improved coverage in the new method add
any information in this regard?

Reviewer #3 (Remarks to the Author): expertise in bioinformatics analysis of proteomics

In this manuscript, Swietlik et al. applied a combination of cell-selective metabolic labeling
(MetRS-based Anl labeling) and MS-based proteomics to study pancreatic ductal adenocarcinoma
(PDAC) subtypes and their tumoral microenvironment (TME). In a first step, they optimized the
labeling and MS analysis workflow for a deep cell proteome and secretome coverage and
demonstrated its superiority to cell sorting-based methods in vivo.

In a second part, they applied this optimized protocol to the analysis of PDAC cells from two
different subtypes (classical and mesenchymal) co-cultured with macrophages. Using this cell-
selective labeling, they were able to selectively study proteomes and secretomes of both PDAC
cells and macrophages.

They applied a similar strategy to an in vivo study of cancer cell-derived matrisome proteins
through the orthotopic transplantation of Anl labeled classical or mesenchymal PDAC in mice.
Finally, they studied PDAC subtypes cell-derived proteins in circulation in the serum of
orthotopically transplanted mice.

Although, the techniques used in this study are not new (use of CUAAC for metabolic labeling,
combination of MetRS-based Anl labeling with MS proteomics, application of this method in vivo,
DIA MS acquisition to improve protein identification), the authors demonstrated their combination
to be highly efficient for a cell-selective deep proteome coverage. More innovatively, they applied
these techniques to secretome analyses both in culture and in vivo which, to our knowledge, has
never been described in the literature so far.

Considering the rising incidence and high lethality of pancreatic ductal adenocarcinoma and the
need of a better comprehension of the tumor signaling with its microenvironment, the work
presented in this manuscript is of high interest. In addition to provide new insights in the PDAC cell
communication with the TME, it also reveals differences between classical and mesenchymal
subtypes. Moreover, it demonstrates, through the analysis of serum from PDAC transplanted mice,
that this strategy can be used to access cancer cell-derived proteins directly in body fluids which
might be essential for the understanding of long-distance signaling in tumor progression and
metastasis.

Although, on a statistical point of view, the findings described in this manuscript need to be
confirmed by larger studies, this work opens the way to a better comprehension of PDAC subtypes
signaling with its TME that may eventually lead to the identification of new biomarkers or
therapeutic targets. It also demonstrates the feasibility and usefulness of cell-selective proteomics
for short- and long-distance cell signaling studies that may be applied to other types of cancer.
Therefore, I believe this manuscript is of great interest to the readers of Nature communications,
provided that the authors can address the following points:

- Figure 1c and 1le: although the standard deviations are shown on the figures, it only represents
the variability in the total number of protein identifications for each method. It would be
interesting to know how many proteins (or which percentage) overlap between the 3 replicates for
each method to assess the technical variability. Moreover, coefficient of variation on the protein
intensities over the 3 technical replicates should be provided to assess the efficiency of the
methods for protein quantification.

- Figure 1g: Considering that a large proportion of signaling proteins have a low molecular weight
(e.g., cytokines) and that quantification of proteins on single peptides are usually less accurate. It
would be interesting to mention, on the figure or in the text, the proportion of proteins identified
with only 1 peptide or with 2 peptides and more.

- Line 199: The authors claimed they doubled the number of protein identifications with their
method in comparison to reference #28. However, this comparison is biased by the fact that they



used two different generation of MS instruments (Exploris 480 for this study; Fusion Lumos for ref
#28). The authors should remove this statement or discuss the influence of the MS type on the
results.

- Line 202-204 and Fig 2e: While it is understandable that flow cytometry method cannot capture
cell released proteins, the authors should comment on the reasons why the cell-selective labeling
is less efficient in capturing transmembrane proteins.

- Supp Fig 4: For an easier reading of the figure, it would be appreciated to have the mention
"classical" or "mesenchymal” next to the number of each cell line.

- Supp Fig 4: This figure would deserve a better description in the text. While it is obvious that the
PDAC cell proteomes are modified when co-cultured with BMM, it is not as clear for the secretome.
Conversely, both BMM proteomes and secretomes are changing upon co-culture with PDAC cells.

- Figure 3b: It is not clear in the legend if this figure represents GO terms enrichment for
proteome data only or for proteome + secretome. By reading the text, it seems to be proteome
only but it should be added in the legend. In this case, one can wonder why no GO enrichment
analysis has been performed on secretome data.

- Supp Fig 5: The proteins having significant abundance differences should be indicated on the
figure (e.g., the 68 cytokine function proteins mentioned line 242).

- Line 268: Define the abbreviations LPS and TLR4

- Fig 3d: On a graphical point of view, the distinction between the 3 yellow bars for the 3 BMM
cultures is not clear. In addition, the results do not show a clear relation between the PDAC
subtype differential expression of signaling proteins and the expression of their receptors on the
macrophage (moreover, it is not even commented on in the text). Therefore, there is a low
interest in representing the data in that way and the figure should better focus on the differences
between classical and mesenchymal subtypes.

- Line 285-287: Please reformulate this sentence which is unclear.

- Line 296: There is no data (in fig 3d or even in table 1) to support the statement that PDAC
subtypes expressed “high levels” of Cd47. The fig 3d only shows it is expressed at similar levels
between the two subtypes and table 1 do not show particularly high quantitative values for this
protein.

- Line 333: Since, the g-value associated to "MHC class I protein complex” term enrichment in fig.
3b is not significant, it cannot be stated that the MHCI antigen presentation-related protein
expression is elevated in mesenchymal PDAC cells in co-cultures.

- Fig 4d: GO terms above the figures could be presented as a table or as a figure of enrichment
analysis rather than a simple list.

- Line 413: the word “systematically” should be removed since Lamcl and Lamb1 do not have
higher abundance in Fig 5f.

- Line 494-496: The statement should be moderate on the fact that only one mesenchymal PDAC
cell line has been used for the analysis of serum circulating proteins, the second having been left
aside based on the PCA in Supp fig 7.

- In general, statistical considerations should be commented on in the discussion: the use of only 3
replicate mice for in vivo experiments, the use of only 2 cell lines per PDAC subtypes, the use of
one cell line per subtype in the mouse serum experiment. Although this can be explained by the
amount of work it involved, these choices should be explained and the results commented on from
a statistical point of view.



RESPONSE TO REVIEWERS' COMMENTS

We thank the reviewers for their valuable comments. We are glad that the reviewers kindly
acknowledge the usefulness of our deep cell-selective proteomics and appreciate the insights we
generated on cell non-autonomous disease mechanisms by its application to pancreatic cancer.

We also highly appreciate the critical points and constructive feedback.

In our revision, we have performed the suggested experiments and analyses. Specifically, we have
performed a series of additional experiments and analyses to address

1) the reproducibility of the workflow,
2) the comparison with other existing MS methods and
3) statistical concerns.

Furthermore, we have edited the text as suggested and incorporated requested changes in several
sections, as detailed in our point-by-point response below. Changes are highlighted in the main
text.

Reviewer #1:

Swietlik et al have improved the process of recovering proteins labeled with azidonorleucine (ANL)
from a cell specific BONCAT method. This new method is then applied to studies of pancreatic
cancer looking at cell co-culture, extracellular matrix, and proteins circulating in mouse serum.
With their new process they identify roughly 10,000 proteins which is a significant increase in
protein identification numbers over previous ANL studies. The use of cre-loxed MetRS* allows cell
specific labeling of proteins via preferential incorporation of ANL over Met into proteins.

This process is not as efficient as MetRS incorporation of Met into proteins, and thus raises a few
questions. It is unclear if the new procedure is as specific as the authors claim it to be. Two
strategies for enrichment are employed in BONCAT where one enriches intact labeled proteins
then either elutes proteins off the column or digests proteins off the column. The improvement
reported here uses a cleavable disulfide. The second strategy enriches for ANL or AHA labeled
peptides from digested proteins and then elutes peptides off the avidin column. An advantage to
the first approach is many more peptides per protein are identified, but the disadvantage is
identification is not via a labeled peptide consequently you must be sure the negative control is a
good control. An advantage to the peptide strategy is identification is based on a labeled peptide,
but the disadvantage is Met is not a very frequent amino acid so there may not be very many
peptides per protein available. The identification of the labeled peptides makes the certainty of
which proteins are newly synthesized or cell specific high.

In the Swietlik et al data how many labeled peptides can be identified? The Maccoss lab
developed a tool for mining DIA data for specific peptide sequences called PECAN where
you could specifically try to find labeled peptides in the data.

We thank the reviewer for the positive reception of our work and for evaluating our workflow in the
larger context of available enrichment methods for Anl labeling-based cell-selective proteomics.



We indeed benchmarked an enrichment method with cleavable disulfide-tags (Fig. 1 a-e).
However, our workflow and later biological experiments were based on a direct and covalent
capture strategy on alkyne-agarose and subsequent elution by on-resin digestion. In our hands,
this straight forward strategy combined with our lysis, click chemistry and clean up procedure has
greatly improved the Anl-protein enrichment efficiency compared to alternative workflows,
resulting in very high yields and very low levels of unspecific background (see, for example, Fig.
1b). However, like many other techniques that elute enriched proteins by on-resin digestion (such
as the popular copper-free DBCO-agarose-based enrichment (Azizian, Nancy G et al. (2021),
doi:10.1021/acs.jproteome.0c00666, Mahdavi, Alborz et al. (2016), doi:10.1021/jacs.5b08980), it
removes the vast majority of Anl-sites: After digestion, the peptides containing clicked Anl-
residues remain bound to the resin and are not analysed, which prevents a specificity evaluation
based on Anl-modified peptides. Accordingly, we can’t provide the suggested analysis of Anl-
containing peptides.

We agree that enrichment strategies that preserve modified peptides are attractive and offer
unique opportunities. For example, a recent publication demonstrates Anl-peptide-centric cell-
selective proteomics elegantly combined with multiplexing (Schiapparelli, Lucio M. et al. (2022),
doi: 10.1523/JNEUROSCI.0707-22.2022). Nonetheless, for reasons already touched upon by the
reviewer, we believe that choosing a protein-level enrichment strategy has provided strong
benefits for our particular study goals:

Given the low methionine frequency in the proteome, and the substochiometric Anl incorporation
(see Sup Fig 1), we expected very low Anl-protein amounts in small cell populations from tissues
(e.g. around 10-20 % of all tumor cells as determined by FACS (Supplementary Fig. 5)). Our
interest in extracellular proteins further increased the demands on assay sensitivity as secreted
proteins typically miss the starting methionine due to signal peptide cleavage, and crucial
intercellular signalling proteins such as cytokines are typically very small (for example, mature
human EGF has only a single methionine) and often have particularly low abundance. Therefore,
whole protein pulldowns that take all peptides of specifically enriched proteins into account
significantly improve the reliable detection and precise quantification for protein classes that are
in the focus of our study. Besides boosting sensitivity due to more available peptides per protein
and consequently higher chances for proteotypic peptides that are MS accessible, our strategy
also decreases single-peptide protein identifications.

To the best of our knowledge, the aforementioned study by Schiapparelli et al. is the most
comprehensive published analysis of Anl-peptide-level enrichment to date. The proteome
coverage ranges from 3521 identified Anl-peptides corresponding to 1932 proteins (including only
37 proteins with annotated extracellular location, according to Figure 1 and the extended data
table) in HEK cells after 24 hours of in vitro labeling, to 3168 proteins from in vivo labeled cortical
glutamatergic neurons. These results support our notion that a comprehensive analysis of
intercellular signaling might still be very challenging with current Anl-peptide-level enrichment-
based strategies.

We acknowledge the unique advantages of peptide-level enrichment methods and discuss
differences to protein-level enrichments now in the discussion:

"Direct analyses of labeled peptides offer straightforward solutions for multiplexed cell type-
resolved proteomics and the evaluation of enrichment specificity®’. However, with thorough
background interference controls, analyses of all peptides from labeled proteins yields increased
sensitivity and protein quantification accuracy.”

We strongly agree that assessing enrichment specificity with well-designed controls is essential
when analyses are not directly based on modified peptides. As described in more detail below,

we tightly controlled all of our individual experiments following the same proven principles many
other groups used previously (e.g. Alvarez-Castelao, Beatriz et al. (2017), doi:10.1038/nbt.4016,
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Azizian, Nancy G. et al. (2021), doi: 10.1021/acs.jproteome.0c00666, Rayaprolu, Sruti et al. (2022),
doi:10.1038/s41467-022-30623-x). We used wild-type (WT) (not MetRS*-expressing) cells as
negative controls to measure unspecific enrichment of proteins and evaluate their relative
contribution to the signal in MetRS* samples. We considered only proteins with at least 3-fold
enrichment compared to negative controls or exclusive identifications in MetRS* samples for
further analysis. Our strategy thereby aligns well with the most stringent filtering strategies used in
previous Anl enrichment studies (see, for example, Alvarez-Castelao et al. 2017).

How many times was the negative control repeated?

We thank the reviewer for bringing to our attention that our enrichment control procedure could
benefit from a clearer description.

We used WT cell controls that were treated and processed alongside with MetRS* samples for
each individual experiment to assess unspecific background and exclude unspecifically enriched
proteins. We have now extended the description of our general specificity control strategy in the
main text:

“...We applied the described filtering strategy to all subsequent MetRS* experiments in this study,
using at least three experiments with wild-type cells as negative controls for corresponding
MetRS* sample groups to define specifically enriched proteins and ensure high-confidence cell
selectivity. ...”

We further extended the Methods section to explicitly define negative controls for each
experiment, as follows:

“For technical experiments (Fig. 1 and 2), PDAC MetRS* tumor comparison experiments (Fig. 5),
and serum secretomics experiments with the PDAC lines 8661 and 8513 (Fig. 6), corresponding
WT controls were used in triplicates for each PDAC line. We used aggregated control sample
groups for multiple experimental groups in the co-culture experiments (Fig. 3 and 4): Three BMM
WT samples were used to control BMM MetRS* samples cultured in isolation. A group of four co-
cultured BMM WT + PDAC WT samples (one with each of the four PDAC lines) was used as
controls for all BMM MetRS* + PDAC WT co-culture samples. Both solo and co-cultured PDAC
MetRS* samples were controlled with the more conservative corresponding co-culture control
samples (PDAC WT + BMM WT in triplicates for each of the for PDAC lines).”

Our PRIDE upload contains every individual measured sample together with complete data tables
and a sample description list that provides context on where each sample was used.

Moreover, for transparency and convenient access, we provided supplementary tables with the
proteomics data of biological experiments and MetRS*-to-Ctrl sample ratio columns that allow
readers to quickly evaluate the amount of background interference for individual proteins and
samples in each experiment.

Was it consistent each time or did the identities of proteins change and by how much, e.g. if
you prepare 10 biological replicates of the negative control with a tight protein identification
FDR what is the overlap, 50%, 60%, 70%, etc?

This is an interesting question. To address this point and a related point asked by reviewer 3, we
have performed a series of additional experiments and analyses.

We have added a new figure (Supplementary Fig. 2) that provides insights on data completeness
and CVs between replicates, using our enrichment and acquisition method benchmark datasets
as an example.
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Supplementary Fig. 2: Technical reproducibility of MetRS*-based cell-selective proteomics experiments, related to Fig. 1.
a) Data completeness and b) precursor coefficients of variation (CVs) of MetRS* and Ctrl samples processed with different Anl
enrichment workflows (see Fig. 1a). ¢) Data completeness, d) precursor CVs, and e) intensity ratios of proteins identified in both
MetRS* and Ctrl samples after processing with our enrichment workflow and MS analysis by data-dependent acquisition (DDA) or
data-independent acquisition (DIA).

With 84.4 % (DDA) and 98.7 % (DIA) of all identifications quantified in all three replicates (93 %
(DDA) and 99.6 % (DIA) in at least two out of three), we achieved excellent data completeness in
MetRS* samples using our workflow (new Supplementary Fig. 2a and c). Coefficients of variations
(CVs) between our workflow replicates were lower than CVs of the DST method and comparable
to the DBCO-agarose-based workflow (new Supplementary Fig. 2b), which, however, had a much
higher unspecific background (see Fig. 1). Importantly, our direct comparison to conventional
FACS-based cell-selective proteomics with tumor samples also showed lower CVs and therefore
better technical reproducibility with our method (see Fig. 2).

Compared to MetRS* samples, negative controls had a lower data completeness and higher CVs.
We attribute this primarily to the high signal-to-noise ratio in this experiment and the consequently
very low peptide intensities in control samples, especially with our method. Higher technical
variation is expected in samples with low signal intensity, due to the heteroscedastic nature of MS
data (with variance inversely proportional to abundance).



As expected, data-independent acquisition (DIA) strongly increased identifications in both MetRS*
samples and controls, which also increased the overlap of identified proteins from 909 to 4985
protein groups (new Supplementary Fig. 2e). Although DIA median MetRS*/Ctrl log2 intensity
ratios shifted to a lower level compared to DDA, a median of 8.6 (almost 400fold higher median
intensity of overlapping proteins in MetRS* samples compared to negative controls) still indicated
an extremely high signal-to-noise ratio.
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Of note, after filtering for overlapping protein ratios between both acquisition methods (matched
by gene names, due to differences in protein grouping), the ratio distribution shift between DDA
and DIA data remained similar. This suggests that the shift is not driven by the increased
identifications with DIA, but rather by acquisition method- and software-inherent differences in
protein quantification.

To address the reviewer’s question directly, we have performed additional experiments, which
included 10 independent biochemical negative controls, as suggested.

Specifically, we prepared and measured three new replicates of MetRS* 8661 cells together with
ten replicates of corresponding WT 8661 cells as controls (10 million cells per sample, labeling for
8 h in Met-free media with 4 mM Anl). These new data confirm our previous results and provide
additional evidence for the technical reproducibility of our workflow. We include these results in a
new Supplementary Figure 4 (see below):

Overall detected peptide intensities in negative controls were very low (new Supplementary Fig.
4a), providing strong evidence for the high enrichment specificity of our workflow. The log2
intensity ratios between proteins identified in both MetRS* and WT control samples were very
high (new Supplementary Fig. 4c), indicating minimal background signal interference in the vast
majority of proteins quantified in MetRS* samples.

As a consequence of the high enrichment specificity and therefore low peptide intensities in WT
controls, data completeness was again lower in control samples compared to MetRS* samples
(new Supplementary Fig. 4b). Notably, results remained very consistent when control samples
were divided into groups of three and used separately to evaluate signal-to-noise ratios (MetRS*/
Ctrl log2 intensity ratios) (new Supplementary Fig. 4c). The vast majority of proteins with sparse
identifications in controls had high ratios far above the specificity cutoff (new Supplementary Fig.
4d). Conversely, the majority of proteins with lower MetRS*/ Ctrl ratios had very high data
completeness (new Supplementary Fig. 4d). Together, these results show not only that
background protein interference was minimal, but also that three negative control samples were
sufficient to reliably detect most unspecifically enriched proteins.



The reported protein numbers are high and thus the authors need to be rigorous in
establishing those numbers are not simply due to non-specific interactions. Proving labeled
peptides exist in their data for a statistically significant number of the proteins that were
identified (e.g. of the 10K proteins) will go a long way to establish the legitimacy of the
approach.

We thank the reviewer for bringing up this important point.

Although we are unable to provide information on enriched Anl-peptides for technical reasons

explained above, we hope to have convinced through our rigorous enrichment control strategy
and detailed analysis of technical reproducibility, as shown in our new Supplementary Figures,
that unspecific binding is well controlled in our experiments.

Of note, our general control and filtering strategy based on quantitative comparisons to
background controls is a well-established and widely used concept in MetRS*-based experiments
and similar methods, such as proximity labeling-based cell-selective proteomics techniques, and
can be considered a proven state-of-the-art (Alvarez-Castelao, Beatriz et al. (2017),
doi:10.1038/nbt.4016, Azizian, Nancy G. et al. (2021), doi: 10.1021/acs.jproteome.0c00666,
Rayaprolu, Sruti et al. (2022), doi:10.1038/s41467-022-30623-x, Alvarez-Castelao, Beatriz et al.
(2019), doi: 10.1038/s41596-018-0106-6, Liu, Yan et al. (2017), doi: 10.1038/s41596-018-0106-6,
Prabhakar, Priyadharshini et al. (2023), doi: 10.1002/glia.24304).

Apart from technical aspects, our experiments provide new biological insights into non-cell
autonomous mechanisms of cancer and confirm observations from previous studies independent
of MetRS*. For example, the pro-inflammatory secretory program of LPS treated macrophages
detected in our study aligns well with previous studies from our and other labs (Meissner, Felix et
al., (2013), doi: 10.1126/science.1232578; Eichelbaum, Katrin et al. (2012), doi: 10.1038/nbt.2356).
These studies are based on serum-free and azidohomoalanine labelling-based secretomics,
respectively, confirming the consistency across technologies and the high cell-specificity of our
data. Moreover, PDAC subtype-specific proteins detected in tumor-bearing mouse serum are
consistent between different experiments in our study (e.g. Fig. 5a and Fig. 6f) and corroborate
effective cell-selective protein enrichment, considering the extreme dominance and high dynamic
range of serum proteins. (Geyer, Philipp E. et al. (2017), doi: 10.15252/msb.20156297).

We added one sentence to the discussion to acknowledge confirmatory results obtained by
previous studies using distinct proteomics methods:

“Our findings not only recapitulated the pro-inflammatory secretory programs of macrophages as
determined previously by distinct proteomics methods independent of MetRS*'#® but identified
for example 68 cancer cell-derived proteins with cytokine function in serum-containing culture
media.”

Summary- overall the paper is potentially an important contribution to the growing area of cell
specific proteomics. While I'm not an expert in pancreatic cancer it appears, some interesting
discoveries were made using this approach. Cell specific proteomics is potentially an important
companion to the emerging area of single cell proteomics (SCP). The potential increase in the
number of proteins identified in these studies is about 10X beyond what the current capability is
for single cell proteomic methods so it will allow the study of single cell types within complex
tissue matrices as SCP matures. And cell specific BONCAT allows you to ask different types of
questions.

We thank the reviewer for acknowledging the complementary nature of our work in the context of
other emerging proteomic technologies.



Other questions.
Line 396-397: Is this over 8000 mice

We thank the reviewer for pointing out the ambiguity in this sentence. We have now rephrased it
to clarify that the numbers are referring to the PDAC subtypes and not individual mice:

“Particularly, serum samples from mice bearing the 8661 (classical) and 8513 (mesenchymal)
PDAC subtype tumors showed a good signal-to-noise ratio, ...”



Reviewer #2:

Swietlik et al. describe an improved method to selectively label and profile proteome contents in
pancreatic cancer model systems. The system utilizes azidonorleucine to label and subsequently
profile proteome using mass spectrometry. The study is well-designed and clearly written and
demonstrates differential proteome coverage over the flow cytometry-based
dissociation/proteome profiling methods, allowing for detection of some of the less abundant
proteins, such as cytokines. The study also demonstrates significant differences in how distinct
subclasses of pancreatic cancers, such as basal and classical, regulate myeloid cell polarization
and composition of extracellular matrix. Overall, this work is very interesting, although some minor
questions remain as to utility of this platform for diagnostic purposes, especially in the setting of
human malignancy.

We thank the reviewer for the positive evaluation of our study.

Minor points:

1) A demonstration of how well this method can be applied in the human malignancy setting
would be of great interest. At the very minimum, there needs to be a discussion of how the
authors envision pipelining such protocols for diagnostic purposes.

We thank the reviewer for this comment. We have now added a new section to the discussion
which addresses clinical translation:

“... Although our cell type-specific metabolic labelling approach cannot be directly applied to
human cancer patients, it offers several new possibilities for clinical translation. MetRS*
transduced human premalignant cells (e.g. from pancreatic intraepithelial neoplasia (PanIN) or
intraductal papillary mucinous neoplasm (IPMNs)), as well as PDAC cells and organoids (e.g. from
invasive tumors representing various stages of PDAC progression, differences in metastatic
capacity or molecular subtypes), can be transplanted into immunodeficient mice or mice with a
humanized immune system''®. Subsequent MetRS*-based proteomic profiling of tumors and body
fluids, such as the blood, enables not only a deeper understanding of PDAC development,
progression and subtype specification, but has also potential of biomarker identification. So far,
biomarkers for PanIN/IPMN and early PDAC detection, subtype classification, prognostic and
therapeutic stratification, and the monitoring of targeted interventions are widely lacking''®""8,
MetRS* based proteomic profiling holds the promise of biomarker discovery in tumors and
circulation, which can be subsequently tested and validated in prospective studies in cancer
patients. ...”

2) ECM proteins are typically abundantly expressed in pancreatic cancer. How does the new
method compare to other mass spec-based approaches (not based on flow cytometry) in
identifying differences in ECM composition? Does the improved coverage in the new method add
any information in this regard?

We thank the reviewer for this interesting question.

Recent pioneering work has demonstrated the high value of cancer cell-selective matrisome
analyses in primary tumors and metastases (Di Martino, Julie S. et al. (2022), doi:
10.1038/s43018-021-00291-9, Tian, Chenxi et al. (2019), doi: 10.1073/pnas.1908626116, Tian,
Chenxi et al. (2020), doi: 10.1158/0008-5472.can-19-2578). However, investigating extracellular
proteins with cell type-resolution is difficult using conventional MS-based proteomics techniques.
The previous studies relied on species differences between transplanted cancer cells and host
stromal cells to distinguish the cell type origin of tumor matrix proteins in xenotransplantation
models. While undoubtedly facilitating important discoveries, the approach has technical
limitations: Both the need for species-distinguishing peptides and the potential for dynamic range
issues caused by the co-analysis of abundant host proteins can reduce the cell-selective
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matrisome coverage. Moreover, only transplanted cells can be studied and xenotransplantations
require immunodeficient mice, which alters the tumor development and the matrix composition
(Winkler, Juliane et al. (2020), doi: 10.1038/s41467-020-18794-x, Cox, Thomas R. (2021),
doi:10.1038/s41568-020-00329-7, and see also e.g. Supplementary Fig. 7).

Accordingly, our approach offers several key advantages over traditional proteomics methods,
including the ability to achieve deep cell-selective coverage of the matrisome for any desired cell
type in fully immunocompetent mice.

We included these points now in the discussion:

“Here, we focused on another advantage of the technique - the accessibility of extracellular
proteins for click chemistry enrichment. Anl labeling facilitates the cell-selective analysis of
secreted proteins in tissue or body fluids, which is of great interest and difficult to achieve with
conventional techniques. For example, recent pioneering work has demonstrated the high value
of cancer cell-selective matrisome analyses in primary tumors and metastases’®, but relied on
xenotransplants and immunocompromised mice to achieve cell-selectivity. In comparison,
MetRS*-based cell-selective proteomics can provide additional value by overcoming the need for
species-distinguishing peptides and avoiding potential dynamic range issues caused by the co-
analysis of abundant host proteins, which can both reduce the cell-selective matrisome coverage.
Moreover, in principle any cell type can be studied, and without the need for
immunosuppression.”

Furthermore, we took the opportunity to compare our data to a PDAC matrisome study by Tian et
al. (Tian, Chenxi et al. (2019), doi: 10.1073/pnas.1908626116). To the best of our knowledge, this
study provides the most comprehensive published cell type-resolved PDAC matrisome analysis
(based on xenotransplantations), and also one of the most comprehensive non-cell-selective
PDAC matrisome proteomics datasets available.

As many ECM-focused proteomics studies, Tian et al. used a specialized sample preparation
workflow to enrich ECM proteins from tissue. ECM enrichment methods usually use
decellularization or sequential extraction of soluble proteins from tissue homogenates. This can
achieve high ECM protein purity, and typically effectively captures ECM components with low
solubility, including core matrix proteins like collagens (Krasny, Lukas et al. (2021), doi:
10.1080/14789450.2021.1984885). However, matrix-associated proteins are often
underrepresented and better covered by ECM enrichment-independent methods (Krasny, Lukas
et al. (2016), doi: 10.1042/bcj20160686, Krasny, Lukas et al. (2018), doi:
10.1016/].jprot.2018.02.026), as demonstrated also by our data.

We have summarised the matrisome coverage for both their cell-selective data and their non-cell-
selective mouse PDAC data in table 1.

Xenograft high Stromal- | Cancer- Both- Total matrisome

confidence (cell- | cell- cell- derived coverage mouse

selective) derived derived PDAC (non-cell-

selective)

Collagens 33 17 4 12 50
Glycoproteins 69 45 11 13 96
Proteoglycans 10 8 2 0 13
ECM regulators 61 43 8 10 85




Xenograft high Stromal- | Cancer- Both- Total matrisome
confidence (cell- | cell- cell- derived coverage mouse
selective) derived derived PDAC (non-cell-
selective)
ECM-affiliated 31 9 17 5 46
Secreted 16 7 7 2 31
factors
Total 220 129 220 129 | 220 129

Table 1: Example data from non-cell-selective and xenograft-based cell-selective PDAC
matrisome coverage (Tian, Chenxi et al. (2019), doi: 10.1073/pnas.1908626116)

Total PDAC cancer- Mesenchymal PDAC Classical PDAC cancer-

cell-derived cancer-cell-derived cell-derived
Collagens 30 29 21
Glycoproteins 107 97 92
Proteoglycans 14 15 13
ECM regulators 126 114 110
ECM-affiliated 55 53 50
Secreted factors 73 67 59
Total 405 405 405

Table 2: MetRS*-based cell-selective PDAC matrisome coverage in our study.

In total, we quantified over four times more cancer cell-derived matrisome proteins using fully
immunocompetent mice. Compared to the non-cell-selective PDAC matrisome experiments, we
identified less collagens but more matrix-associated proteins, particularly ECM regulators and

secreted factors.

In conclusion, deep MetRS*-based cell-selective tissue proteomics opens up completely new
perspectives for cell type of origin-resolved ECM analysis. It further demonstrates coverage
advantages even compared to non-cell-selective approaches with dedicated ECM enrichment
protocols, covering especially matrixome-associated proteins particularly well, which include

many intercellular messengers such as cytokines. For even more comprehensive profiling of core
matrix proteins, Anl enrichment could be combined with ECM-enrichment workflows in the future.
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Reviewer #3:

In this manuscript, Swietlik et al. applied a combination of cell-selective metabolic labeling
(MetRS-based Anl labeling) and MS-based proteomics to study pancreatic ductal
adenocarcinoma (PDAC) subtypes and their tumoral microenvironment (TME). In a first step, they
optimized the labeling and MS analysis workflow for a deep cell proteome and secretome
coverage and demonstrated its superiority to cell sorting-based methods in vivo.

In a second part, they applied this optimized protocol to the analysis of PDAC cells from two
different subtypes (classical and mesenchymal) co-cultured with macrophages. Using this cell-
selective labeling, they were able to selectively study proteomes and secretomes of both PDAC
cells and macrophages.

They applied a similar strategy to an in vivo study of cancer cell-derived matrisome proteins
through the orthotopic transplantation of Anl labeled classical or mesenchymal PDAC in mice.
Finally, they studied PDAC subtypes cell-derived proteins in circulation in the serum of
orthotopically transplanted mice.

Although, the techniques used in this study are not new (use of CUAAC for metabolic labeling,
combination of MetRS-based Anl labeling with MS proteomics, application of this method in vivo,
DIA MS acquisition to improve protein identification), the authors demonstrated their combination
to be highly efficient for a cell-selective deep proteome coverage. More innovatively, they applied
these techniques to secretome analyses both in culture and in vivo which, to our knowledge, has
never been described in the literature so far.

Considering the rising incidence and high lethality of pancreatic ductal adenocarcinoma and the
need of a better comprehension of the tumor signaling with its microenvironment, the work
presented in this manuscript is of high interest. In addition to provide new insights in the PDAC
cell communication with the TME, it also reveals differences between classical and mesenchymal
subtypes. Moreover, it demonstrates, through the analysis of serum from PDAC transplanted
mice, that this strategy can be used to access cancer cell-derived proteins directly in body fluids
which might be essential for the understanding of long-distance signaling in tumor progression
and metastasis.

Although, on a statistical point of view, the findings described in this manuscript need to be
confirmed by larger studies, this work opens the way to a better comprehension of PDAC
subtypes signaling with its TME that may eventually lead to the identification of new biomarkers or
therapeutic targets. It also demonstrates the feasibility and usefulness of cell-selective proteomics
for short- and long-distance cell signaling studies that may be applied to other types of cancer.
Therefore, | believe this manuscript is of great interest to the readers of Nature communications,
provided that the authors can address the following points:

We thank the reviewer for the thorough and positive review and also the helpful suggestions.

= Figure 1c and 1e: although the standard deviations are shown on the figures, it only represents
the variability in the total number of protein identifications for each method. It would be
interesting to know how many proteins (or which percentage) overlap between the 3 replicates
for each method to assess the technical variability. Moreover, coefficient of variation on the
protein intensities over the 3 technical replicates should be provided to assess the efficiency of
the methods for protein quantification.

We thank the reviewer for this comment. To address this point and related questions by reviewer

1, we now provide a new supplementary figure that includes additional analyses of the enrichment
and acquisition method comparison experiments.
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Supplementary Fig. 2: Technical reproducibility of MetRS*-based cell-selective proteomics experiments, related to Fig. 1.
a) Data completeness and b) precursor coefficients of variation (CVs) of MetRS* and Ctrl samples processed with different Anl
enrichment workflows (see Fig. 1a). ¢) Data completeness, d) precursor CVs, and e) intensity ratios of proteins identified in both
MetRS* and Ctrl samples after processing with our enrichment workflow and MS analysis by data-dependent acquisition (DDA) or
data-independent acquisition (DIA).

With 84.4 % (DDA) and 98.7 % (DIA) of all identifications quantified in all three replicates (93 %
(DDA) and 99.6 % (DIA) in at least two out of three), we achieved excellent data completeness in
MetRS* samples using our workflow (new Supplementary Fig. 2a and c). Coefficients of variations
(CVs) between our workflow replicates were lower than CVs of the DST method and comparable
to the DBCO-agarose-based workflow (new Supplementary Fig. 2b), which, however, had a much
higher unspecific background (see Fig. 1). Importantly, our direct comparison to conventional
FACS-based cell-selective proteomics with tumor samples also showed lower CVs and therefore
better technical reproducibility with our method (see Fig. 2).

Compared to MetRS* samples, negative controls had a lower data completeness and higher CVs.
We attribute this primarily to the high signal-to-noise ratio in this experiment and the consequently
very low peptide intensities in control samples, especially with our method. Higher technical
variation is expected in samples with low signal intensity, due to the heteroscedastic nature of MS
data (with variance inversely proportional to abundance).
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As expected, data-independent acquisition (DIA) strongly increased identifications in both MetRS*
samples and controls, which also increased the overlap of identified proteins from 909 to 4985
protein groups (new Supplementary Fig. 2e). Although DIA median MetRS*/Ctrl log2 intensity
ratios shifted to a lower level compared to DDA, a median of 8.6 (almost 400fold higher median
intensity of overlapping proteins in MetRS* samples compared to negative controls) still indicated
an extremely high signal-to-noise ratio.
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Of note, after filtering for overlapping protein ratios between both acquisition methods (matched
by gene names, due to differences in protein grouping), the ratio distribution shift between DDA
and DIA data remained similar. This suggests that the shift is not driven by the increased
identifications with DIA, but rather by acquisition method- and software-inherent differences in
protein quantification.
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Protein group CVs of the enrichment and acquisition methods compared in Figure 1.

We included precursor CVs in the new Supplementary Figure 2 for consistency with our FACS
and MetRS* comparison (Fig. 2d). Protein CVs follow the same trends: CVs in MetRS* samples
were very low, while CVs between Ctrls were higher, except for the DBCO method, which showed
a comparably high degree of unspecific enrichment and therefore a much stronger signal in Ctrls
(see Fig. 1b - c). As expected, DIA drastically improved identifications, data completeness, and
CVs, especially in the low signal intensity Ctrl samples. Overall, DIA analysis led to robust results,
even in negative Ctrls of experiments with very high Anl-protein yields and highly specific
enrichment, and consequently extremely low background signal (see also new Supplementary
Fig. 4).

- Figure 1g: Considering that a large proportion of signaling proteins have a low molecular weight
(e.g., cytokines) and that quantification of proteins on single peptides are usually less accurate. It
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would be interesting to mention, on the figure or in the text, the proportion of proteins identified
with only 1 peptide or with 2 peptides and more.

This is an important point. We do indeed see elevated numbers of proteins identified with a single
peptide in this fraction of the proteome. Still, the majority of identified signalling proteins were
identified with two or more peptides. As suggested, we have now added this information to the
description of Fig 1g:

“[...Of those, 103 protein groups are known ligands for intercellular communication according to
CellPhoneDB39, including 46 with described cytokine function (Fig. 1g).] Despite their often small
size and low abundance, 83 (81 %) and 41 (89 %) of the detected intercellular signalling proteins
and cytokines were identified with at least two peptides.”

= Line 199: The authors claimed they doubled the number of protein identifications with their
method in comparison to reference #28. However, this comparison is biased by the fact that
they used two different generation of MS instruments (Exploris 480 for this study; Fusion
Lumos for ref #28). The authors should remove this statement or discuss the influence of the
MS type on the results.

Having worked with MS instruments from both generations, we are confident that machine type
performance differences are much smaller than the difference in coverage between both studies.
However, we agree that it does bias the comparison. As we do not have access to a Lumos to
evaluate the instrument-related proportion of the coverage gains, we agree to remove the
statement.

- Line 202-204 and Fig 2e: While it is understandable that flow cytometry method cannot capture
cell released proteins, the authors should comment on the reasons why the cell-selective
labeling is less efficient in capturing transmembrane proteins.

This is a very interesting question. We attribute this primarily to differences in the sample
preparation, especially the lysis buffer composition:

Sorted cells were lysed in a sodium deoxycholate (SDC)-based buffer, a strong ionic detergent
which supports efficient transmembrane protein extraction and digestion (Varnavides, Gina et al.
(2022), doi: 10.1021/acs.jproteome.2c00265, Alfonso-Garrido, Javier et al. (2015), doi:
10.1007/s00216-015-8732-0). Moreover, lysates were not cleared, which has been shown to
further improve membrane protein coverage in SDC-based protocols (Kulak, Nils A. et al. (2014),
doi: 10.1038/nmeth.2834).

Most commonly used detergents that are very effective for membrane protein extraction are
detrimental for the reaction kinetics of copper-catalyzed click chemistry (Yang, Yinliang et al.
(2018), doi: 10.3390/molecules181012599). Instead, we used a phosphate-free high salt buffer
with high initial guanidine concentrations and the milder zwitterionic detergent CHAPS for Anl-
protein enrichment, we cleared lysates to reduce unspecific background binding to beads, and
we strongly diluted chaotrope and detergent concentrations before starting the click chemistry
capture reaction. While these steps were crucial for reaching superior click chemistry yields
together with good overall tissue protein extraction, the protocol is likely less effective for
membrane protein recovery than strong detergent-based lysis workflows.

We have now added a comment on the transmembrane protein enrichment in samples processed
with the FACS workflow:
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“Flow cytometry-sorted samples showed, for example, enrichment of transmembrane proteins,
likely facilitated by strong ionic detergent-based lysis, which enhances transmembrane protein
extraction and digestion*"*? but can interfere with CUAAC reactions®.“

= Supp Fig 4: For an easier reading of the figure, it would be appreciated to have the mention
"classical" or "mesenchymal" next to the number of each cell line.

We thank the reviewer for this suggestion. We have adjusted the figure accordingly (and also the
Supplementary Fig. 7).

Supp Fig 4: This figure would deserve a better description in the text. While it is obvious that
the PDAC cell proteomes are modified when co-cultured with BMM, it is not as clear for the
secretome. Conversely, both BMM proteomes and secretomes are changing upon co-culture
with PDAC cells.

We thank the reviewer this suggestion. We have clarified this point by adjusting the description of
Supplementary Fig. 4 as follows:

“Principal component analyses (PCAs) showed reciprocal adaptions of cancer cells and BMMs to
co-culture with changes of both global proteome expression and protein secretion, although less
clear for PDAC secretomes (Supplementary Fig. 6). PCAs further indicated distinct differences
between PDAC subtypes, and PDAC line-specific BMM responses.”

= Figure 3b: It is not clear in the legend if this figure represents GO terms enrichment for
proteome data only or for proteome + secretome. By reading the text, it seems to be proteome
only but it should be added in the legend. In this case, one can wonder why no GO enrichment
analysis has been performed on secretome data.

This is correct, we initially only analysed GO term enrichment between global proteomes.
However, we agree that a GO analysis of the secretomes may be interesting. We have now
performed this new analysis, added it to Figure 3 and describe the results in the manuscript.
This enrichment analysis does not only support our previous observations but indeed provides
new insights:
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New GO enrichment plots from new Fig. 3.

For example, increased detection of MHCI and other surface exposed transmembrane proteins in
PDAC secretomes upon co-culture suggest increased shedding activity. Moreover, in addition to
immunomodulatory signals and growth factors, enriched GO terms in co-cultured BMM
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secretomes reflect, for example, the upregulation of matrix modulating enzyme secretion
described in supplementary figure 5.

- Supp Fig 5: The proteins having significant abundance differences should be indicated on the
figure (e.g., the 68 cytokine function proteins mentioned line 242).

We thank the reviewer for bringing this to our attention. The data displayed in Supplementary
Figure 5 was already filtered to display only proteins with significantly differential abundance
(ANOVA, FDR = 0.05 and S0 = 0.1), however, we forgot to indicate this in the figure legend. We
have now added the selection criteria in the description.

= Line 268: Define the abbreviations LPS and TLR4

We thank the reviewer for pointing out the missing descriptions - we have added them now.

= Fig 3d: On a graphical point of view, the distinction between the 3 yellow bars for the 3 BMM
cultures is not clear. In addition, the results do not show a clear relation between the PDAC
subtype differential expression of signaling proteins and the expression of their receptors on
the macrophage (moreover, it is not even commented on in the text). Therefore, there is a low
interest in representing the data in that way and the figure should better focus on the
differences between classical and mesenchymal subtypes.

We thank the reviewer for making us aware that this figure benefits from graphical improvements
and a better description. We have now significantly revised the plots to resolve issues with the
data visualization and to add additional information:

* We noticed that the dynamic range of the color gradient of receptor expression levels in our
original version was not ideal. We have now introduced a three-color gradient that illustrates
receptor expression differences and dynamics clearer.

* We have added statistical information to highlight significant differences at the ligand and
receptor levels

* We have reorganised the figure to make space for larger text labels that are easier to read
* The three yellow bars have been enlarged for better differentiation

In addition, we have now highlighted an example of increased receptor expression on BMMs in
PDAC co-culture with implications for macrophage polarization:

"The majority of detected PDAC signal corresponding receptors on BMMs showed stable
expression, but some were regulated upon co-culture with cancer cells (Fig. 4a). Notably, BMMs
upregulated Pvr (Poliovirus receptor) expression upon interaction with both PDAC subtypes. Pvr
activation on macrophages has been linked to an anti-inflammatory phenotype’" and targeting the

Pvr-Tigit axis is being explored as a potential cancer immunotherapy strategy’.”

- Line 285-287: Please reformulate this sentence which is unclear.

We have added statistical information to the figure and rephrased the sentence:
“Some proteins were secreted without significant differences between subtypes, such as Tgfb1, a
known M2 promoter®, or, Tnf (at much lower abundance, see also Supplementary Table 1), an

important M2-suppressing factor in cancer®.“

- Line 296: There is no data (in fig 3d or even in table 1) to support the statement that PDAC
subtypes expressed “high levels” of Cd47. The fig 3d only shows it is expressed at similar
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levels between the two subtypes and table 1 do not show particularly high quantitative values
for this protein.

Although we detected CD47 at above average abundance compared to the expression of other
receptors and plasma membrane proteins (for example, it ranks 476 out of 1246 proteins with the
GOCC annotation “plasma membrane” in 8661), and at higher abundance than in BMMs (for
example, 2.5-4fold compared to the median intensity in isolated BMM proteomes), we agree that
this detail might not be very meaningful biologically, especially without providing reference levels
of other cell types. Therefore, we removed the statement.

- Line 3838: Since, the g-value associated to “MHC class | protein complex” term enrichment in
fig. 3b is not significant, it cannot be stated that the MHCI antigen presentation-related protein
expression is elevated in mesenchymal PDAC cells in co-cultures.

We thank the reviewer for this correction. We deleted “MHCI” and now only refer to “antigen
presentation-related protein expression”, which is justified as the term “antigen processing and
presentation of peptide antigen” is significantly enriched in mesenchymal PDAC co-culture
experiments.

- Fig 4d: GO terms above the figures could be presented as a table or as a figure of enrichment
analysis rather than a simple list.

We agree and have rearranged Fig. 5 (previously Fig. 4) and present enriched GO terms now in
table format.

= Line 413: the word “systematically” should be removed since Lamc1 and Lamb1 do not have
higher abundance in Fig 5f.

We agree and have removed “systematically” from our description.

= Line 494-496: The statement should be moderate on the fact that only one mesenchymal PDAC
cell line has been used for the analysis of serum circulating proteins, the second having been
left aside based on the PCA in Supp fig 7.

We were referring to proteins detected in primary tumors in this section of the discussion - here,
all four cancer cell lines were analysed and consistently showed these trends (see figure 6,
formerly figure 5).

We have rephrased the discussion section to clarify which datasets we are referring to and
narrowed conclusions to the selection of cancer lines tested in our study:

“Previous research has shown that mesenchymal PDAC tumors have a higher cellularity, less
activated CAFs and a less pronounced desmoplastic reaction®. Our cell-selective tumor analysis
revealed that, among the lines we tested, mesenchymal cancer cells themselves produce
significantly higher levels of matrisome proteins, particularly core matrix proteins, compared to
classical PDAC cells. Furthermore, mesenchymal cancer cells exhibited a distinct matrisome
signature that promotes epithelial-to-mesenchymal transition (EMT).”

- In general, statistical considerations should be commented on in the discussion: the use of only
3 replicate mice for in vivo experiments, the use of only 2 cell lines per PDAC subtypes, the use
of one cell line per subtype in the mouse serum experiment. Although this can be explained by
the amount of work it involved, these choices should be explained and the results commented
on from a statistical point of view.
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We agree and have added moderating statements to conclusions about PDAC subtypes in the
discussion.

Furthermore, we now include an additional passage to make the reader aware of statistical
limitations arising from the n-numbers:

“Our study has identified novel differentiating features among PDAC subtypes with high
consistency in our selected models. However, the limited sample size, with only two cell lines per
subtype and one line per subtype in the serum secretomics experiment, and the small number of
replicates in in vivo mouse experiments (three mice per line) do pose limitations to our findings.
Despite this, our results demonstrate the unique strengths of cell-selective proteomics analyses in
uncovering disease mechanisms and provide a foundation for further research with larger sample
sizes to statistically validate and expand upon these findings.”
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors addressed my questions adequately and the paper in my view is good to go. The
additional experiments added to the paper strengthened the paper.

Reviewer #2 (Remarks to the Author):

My comments have been addressed

Reviewer #3 (Remarks to the Author):

The authors have provided detailed answers to my questions and improved their manuscript by
adding new comments. They also provide an additional supplementary figure demonstrating the
very good technical reproducibility of the method. The figures on functional analysis and
intercellular signalling have been improved for more clarity and thus provide new insights on the
results of the study.

Therefore, I do recommend the publication of this work in Nature communications.



RESPONSE TO REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors addressed my questions adequately and the paper in my view is good to go. The additional
experiments added to the paper strengthened the paper.

Reviewer #2 (Remarks to the Author):

My comments have been addressed

Reviewer #3 (Remarks to the Author):

The authors have provided detailed answers to my questions and improved their manuscript by adding
new comments. They also provide an additional supplementary figure demonstrating the very good
technical reproducibility of the method. The figures on functional analysis and intercellular signalling

have been improved for more clarity and thus provide new insights on the results of the study.
Therefore, | do recommend the publication of this work in Nature communications.

We are glad, all three reviewers kindly acknowledge that we have addressed all points
satisfactorily and recommend the publication of our manuscript.



