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Appendix Figure S1. Transcriptional Regulation of Metabolism Across

Development

(A)Diagram showing alternative criterion using CV for categorizing metabolic and non-
metabolic genes into four categories across development: lowly expressed, invariant,
moderately variant and highly variant (left). This analysis was done to make sure the
result that metabolic genes are more highly variant across tissues than development
is not driven by the use of different statistical approaches (i.e., CV in tissue data set
and VS in development). To eliminate this effect, we reevaluated the development
dataset with the CV approach using the same threshold as with tissues, and found
that, the percentage of highly variant genes during development was lowered from
31% to 15% with this method. Thus, using the same metric resulted in an even greater
difference between metabolic genes exhibiting variation across tissues versus those
exhibiting variation during development. Pie charts showing metabolic (center) and
non-metabolic (right) gene expression variation in the development dataset using CV
as criterion.

(B)Pie chart showing percentage of tissue-specific genes showing high variation in

expression across development dataset.
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Appendix Figure S2. Pathway and Phenotypic Enrichment Analysis of Metabolic

Genes Based on Expression Variation



(A)Bar graph showing enriched WormPaths pathways/categories for iCEL1314 genes
in the four quadrants Q1, Q2, Q3 and Q4 in Figure 1H. The significance levels are
indicated by asterisks or ‘ns’(not significant). Not significant (ns) pathways are not
shown.

(B)Bar graph showing phenotypes enriched for highly variant metabolic genes (FDR-
corrected p-value<0.001).

(C)Bar graph showing WormPaths pathways/ categories enriched for moderately variant
metabolic. The significance levels legend as indicated in (A).

(D)Bar graph showing phenotypes enriched for moderately variant metabolic genes

(FDR-corrected p-value<0.001)
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Appendix Figure S3. Mountain Plots Showing WormPaths Pathways Significantly

Enriched For Coexpression in Order of Decreasing Significance
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Appendix Figure S4. Mean Silhouette Score (MSS) to Evaluate Cluster Quality of

Stringent and Relaxed Clusters

(A) Plot showing the distribution of the MSS of all clusters obtained using dynamic cut
tree algorithm with stringent parameters (deepSplit=2, minClusterSize=3). The green
vertical line shows the MSS of shunt cluster.

(B) Scatter plot with individual silhouette scores of genes in the propionate shunt cluster,
with stringent parameters. MSS of this pathway is shown.

(C) Plot showing the distribution of the MSS of all clusters obtained using dynamic cut
tree algorithm with relaxed parameters (deepSplit=3, minClusterSize=6). The green

vertical line shows the MSS of shunt cluster.



(D) Scatter plot with individual silhouette scores of the cluster containing propionate shunt

genes, with relaxed parameters. MSS of this pathway is shown along with the overall

MSS threshold.
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Appendix Figure S5. Enrichment of TFs to (Sub-)Pathways

(A)Plot showing enrichment to coexpression of nhr-79 with peroxisomal fatty acid

degradation and cluster 16 (NES=2, FDR<0.05).

(B) Plot showing enrichment to coexpression of nhr-31 with vacuolar ATPases and cluster

5(NES=2, FDR<0.05).

(C)Plot showing enrichment to coexpression of nhr-68 with propionate shunt (NES=2,

FDR<0.05) and cluster 12(NES=2).



