Supporting Information

Design, synthesis and biological activity of new CB2 receptor ligands: from orthosteric and allosteric modulators to dualsteric/bitopic ligands

Francesca Gado,^{1,#,¥} Rebecca Ferrisi,^{1,#} Beatrice Polini,^{1,2} Kawthar A. Mohamed,³ Caterina Ricardi,²

Elena Lucarini,⁴ Sara Carpi,^{1,5} Federica Domenichini,¹ Lesley A. Stevenson,⁶

Simona Rapposelli,^{1,7} Giuseppe Saccomanni,¹ Paola Nieri,¹ Gabriella Ortore,¹

Roger G. Pertwee,⁶ Carla Ghelardini,⁴ Lorenzo Di Cesare Mannelli,⁴ Grazia Chiellini,^{2,7*} Robert B. Laprairie,^{3,8*} Clementina Manera^{1,7,*}

¹Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;

²Department of Pathology, University of Pisa, 56126 Pisa, Italy;

³College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.

⁴Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

⁵NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 56126 Pisa, Italy.

⁶Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, Scotland, UK;

⁷CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, 56126 Pisa, Italy;

⁸Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.

Corresponding Authors

*Clementina Manera: clementina.manera@unipi.it;

*Robert B. Laprairie: robert.laprairie@usask.ca;

*Grazia Chiellini: grazia.chiellini@unipi.it

CONTENTS OF SUPPORTING INFORMATION

S3 Extended Data Table S1. Statistics for inhibition of forskolin-stimulated cAMP and βarrestin2 recruitment.

S4 Extended Data Table S2. Statistics for inhibition of forskolin-stimulated cAMP.

S5 Extended Data Table S3. Statistics for $[{}^{3}H]$ CP55,940 binding E_{min} ; Extended Data Table S4. Statistics for forskolin-stimulated cAMP.

S6, S7 Extended Data Table S5. Statistics for Behavioral Tests performed in vivo.

S7 Figure S1: FM-6b, EC-21a, FD-22a, and FD-24a inhibit cAMP accumulation in CHO cells lacking

CB2R

S8 **Figure S2**. Summary of receptor cavities

S8 Figure S2. EC-21a docking.

S9 **Figure S3**. Docking of FD-compounds

S9 Figure S4. Comparison between the potential CB2R allosteric region with the superimposed

CBR1

S10-S18 ¹H- and ¹³C-NMR Spectra of compounds **FD-22a**, **FD-24a**, **FD-25a**, **FD-30a FD-27a FD-28a**, **FD-32a** and **FD-31a** and HPLC chromatogram of **FD-22a**

	ANOVA	F(DFn,DFd)	p value
Figure 2	ME Drug	F(7,80)=113.0	< 0.0001
	ME Assay	F(1,80)=3.248	< 0.0001
	INT	F(7,80)=17.39	< 0.0001
Inhibition of F	SK-stimulated cAMP (% CI	P55,940) <i>E</i> _{max}	
Figure 2a,b	Comparison	Adjusted p va	lue
	CP55,940 vs. EC-21a	< 0.0001	
	CP55,940 vs. FM-6b	0.0001	
	CP55,940 vs. FD-22a	< 0.0001	
	CP55,940 vs. FD-24a	< 0.0001	
	CP55,940 vs. FD-25a	< 0.0001	
	CP55,940 vs. FD-27a	< 0.0001	
	CP55,940 vs. FD-32a	< 0.0001	
βarrestin2 rec	ruitment (% CP55,940) <i>E</i> _{max}		
Figure 2c,d	Comparison	Adjusted p va	lue
	CP55,940 vs. EC-21a	< 0.0001	
	CP55,940 vs. FM-6b	< 0.0001	
	CP55,940 vs. FD-22a	< 0.0001	
	CP55,940 vs. FD-24a	< 0.0001	
	CP55,940 vs. FD-25a	< 0.0001	
	CP55,940 vs. FD-27a	< 0.0001	
	CP55,940 vs. FD-32a	< 0.0001	

Extended Data Table S1. Statistics for inhibition of forskolin-stimulated cAMP and β arrestin2 recruitment.

CB2R activity was quantified for cAMP inhibition using the DiscoveRx HitHunter assay (CHO *h*CB2R) in cells treated with compounds for 90 min, and for β arrestin2 recruitment using the DiscoveRx PathHunter assay (CHO *h*CB2R) in cells treated with compounds for 90 min. Data were fit to a variable slope (three-parameter) non-linear regression in GraphPad (v. 9). Data for EC₅₀ were analyzed by mean with 95% confidence interval (C.I.) and assessed by non-overlapping 95% C.I. (Table 1, no further analysis here). Data for *E*_{max} were analyzed by mean ± S.E.M. with two-way ANOVA followed by Dunnett's post-hoc test (within assay). n = 6 independent experiments performed in triplicate. Data from this Table are graphed in Figure 2 and presented in Table 1.

	ANOVA	F(DFn,DFd)	p value	
Figure 3	ME Treatment	F(9,35)=19.94	< 0.0001	
Inhibition	of FSK-stimulated cAMP (% CP55,940) Ema	X		
Figure 3	Comparison	Adjusted	p value	
	CP55,940 vs. FM-6b	0.20	9	
	CP55,940 vs. EC-21a	< 0.00	01	
	CP55,940 vs. 10 nM FM-6b + EC-21a	0.0087		
	CP55,940 vs. FD-22a	0.000)2	
	CP55,940 vs. 50 nM FD-22a + EC-21a	< 0.00	01	
	CP55,940 vs. 100 nM SR144528 + FD-22a	< 0.00	01	
	CP55,940 vs. FD-24a	< 0.00	01	
	CP55,940 vs. 5 nM FD-24a + EC-21a	0.980	8	
	CP55,940 vs. 100 nM SR144528 + FD-24a	4a < 0.0001		
	FM-6b vs. EC-21a	< 0.00	01	
	FM-6b vs. 10 nM FM-6b + EC-21a	0.704	3	
	FM-6b vs. FD-22a	0.20	9	
	FM-6b vs. 50 nM FD-22a + EC-21a	0.0004		
	FM-6b vs. 100 nM SR144528 + FD-22a	0.045	59	
	FM-6b vs. FD-24a	0.004	6	
	FM-6b vs. 5 nM FD-24a + EC-21a	0.980	8	
	FM-6b vs. 100 nM SR144528 + FD-24a	0.004	1	
	EC-21a vs. 10 nM FM-6b + EC-21a	0.000)7	
	EC-21a vs. FD-22a	0.000)1	
	EC-21a vs. 50 nM FD-22a + EC-21a	0.832	.9	
	EC-21a vs. 100 nM SR144528 + FD-22a	0.051	2	
	EC-21a vs. FD-24a	0.01		
	EC-21a vs. 5 nM FD-24a + EC-21a	< 0.00	01	
	EC-21a vs. 100 nM SR144528 + FD-24a	0.332	.9	

Extended Data Table S2. Statistics for inhibition of forskolin-stimulated cAMP.

CB2R activity was quantified for cAMP inhibition using the DiscoveRx HitHunter assay (CHO *h*CB2R) in cells treated with compounds for 90 min. Data were fit to a variable slope (three-parameter) non-linear regression in GraphPad (v. 9). Data for EC₅₀ were analyzed by mean with 95% confidence interval (C.I.) and assessed by non-overlapping 95% C.I. (Table 2, no further analysis here). Data for E_{max} were analyzed by mean \pm S.E.M. with one-way ANOVA followed by Tukey's post-hoc test. n = 3-6 independent experiments performed in triplicate. Data from this Table are graphed in Figure 3 and presented in Table 2.

Extended Data Table S5. Statistics for [Π]CF 55,940 binding E_{\min} .							
	ANOVA	F(DFn,DFd)	p value				
Figure 4	ME Drug	F(4,20)=128.8	< 0.0001				
	ME Receptor	F(1,20)=20.14	0.0002				
	INT	F(4,20)=15.05	< 0.0001				
[³ H]CP55,940	binding at hCB1R (% [³ H]	CP55,940 bound) <i>E</i> _{min}					
Figure 4A	Comparison	Adjusted p val	ue				
	CP55,940 vs. EC-21a	< 0.0001					
	CP55,940 vs. FM-6b	0.0064					
	CP55,940 vs. FD-22a	< 0.0001					
	CP55,940 vs. FD-24a	< 0.0001					
[³ H]CP55,940	binding at hCB2R (% [³ H]	CP55,940 bound) <i>E</i> _{min}					
Figure 4B	Comparison	Adjusted p val	ue				
	CP55,940 vs. EC-21a	< 0.0001					
	CP55,940 vs. FM-6b	0.3338					
	CP55,940 vs. FD-22a	0.0003					
	CP55,940 vs. FD-24a	< 0.0001					
[³ H]CP55,940	binding to CB1R and CB2	R from CHO-K1 cells were	quantified as				

Extended Data Table S3. Statistics for $[^{3}H]$ CP55,940 binding E_{min} .

[³H]CP55,940 binding to CB1R and CB2R from CHO-K1 cells were quantified as described in Figure 4 and Table 3. Data were fit to a variable slope (three-parameter) nonlinear regression in GraphPad (v. 9). Data for K_i were analyzed by mean with 95% confidence interval (C.I.) and assessed by non-overlapping 95% C.I. (Table 3, no further analysis here). Data for E_{min} were analyzed by mean \pm S.E.M. with two-way ANOVA followed by Dunnett's post-hoc test (within assay). n = 3 independent experiments performed in duplicate. Data from this Table are graphed in Figure 4 and presented in Table 3.

	ANOVA	F(DFn,DFd)	p value
Figure 4	ME Treatment	F(6,21)=434.2	< 0.0001
	Residual	21	
[³ H]CP55,940) binding at hCB1R (% [³ H]CP55	940 bound) E_{\min}	
Figure 4A	Comparison	Adjusted p	value
	+10 µM FSK vs. Untreated	< 0.000	1
	+10 μM FSK vs. CP55,940	0.9593	
	+10 μM FSK vs. FM-6b	< 0.000	1
	CP55,940 vs. FD-22a	< 0.000	1
	CP55,940 vs. FD-24a	< 0.000	1

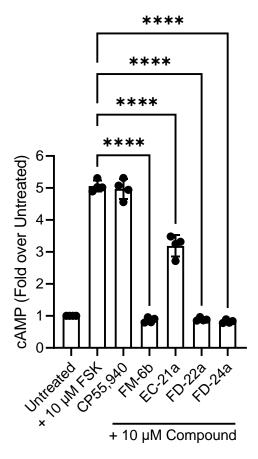
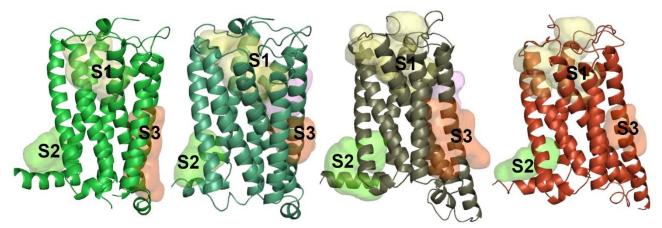

cAMP accumulation was quantified using the DiscoveRx HitHunter assay (CHO-K1 cells) in cells treated with compounds for 90 min. Data were analyzed in GraphPad (v. 9). Data are mean \pm S.E.M. with one-way ANOVA followed by Dunnett's post-hoc test. n = 4 independent experiments performed in triplicate. Data from this Table are graphed in Figure S1.

Fig. 9	Data Table S5. Statistics for Behavioral Tests perfor Experimental groups comparison	Time (min)	p value
	vehicle + vehicle vs oxaliplatin + vehicle	0	0.00134
	-	15	< 0.0001
		30	< 0.0001
		45	< 0.0001
		60	< 0.0001
		75	< 0.0001
	oxaliplatin + vehicle vs oxaliplatin + FD22a 1 mg kg ⁻¹	0	0.83272
	oxunphum · 1022u 1 mg kg	° 15	0.80272
		30	0.2073
		45	0.3597
		60	0.22678
		75	0.73019
	oxaliplatin + vehicle vs	0	0 44594
	oxaliplatin + FD22a 5 mg kg ⁻¹	0	0.44584
		15	0.03184
		30	0.00116
		45 60	0.00193
		80 75	0.1323
	oxaliplatin + vehicle vs		
	oxaliplatin + FD22a 20 mg kg ⁻¹	0	0.88519
		15	0.04099
		30	0.00462
		45	0.00278
		60	0.02878
		75	0.70909
Fig. 10	vehicle + vehicle vs oxaliplatin + FD22a 20 mg kg ⁻¹ + MC21a 10 mg kg ⁻¹	0	< 0.0001
		15	0.00078
		30	< 0.0001
		45	< 0.0001
		60	0.00154
		75	< 0.0001
	vehicle + vehicle vs oxaliplatin + FD22a 20 mg kg ⁻¹ + SR144428 10 mg kg ⁻¹	0	0.00534
	vehicle + vehicle vs oxaliplatin + FD22a 20 mg kg ⁻¹ + SR144428 10 mg kg ⁻¹	0 15	0.00534 < 0.0001


Extended Data	Table S5.	Statistics	for	Behavioral	Tests	performed	in	vivo.
						-	_	

45	< 0.0001
60	< 0.0001
75	< 0.0001

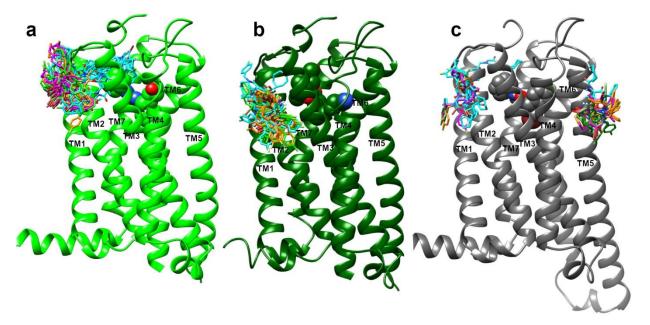
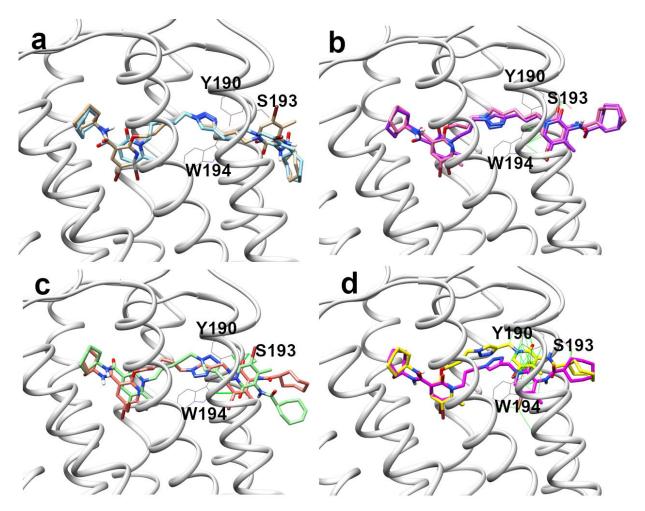
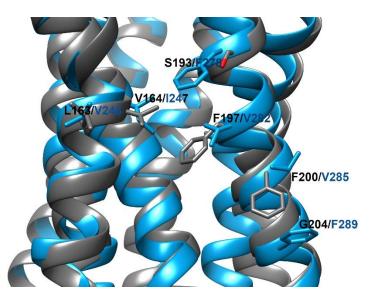
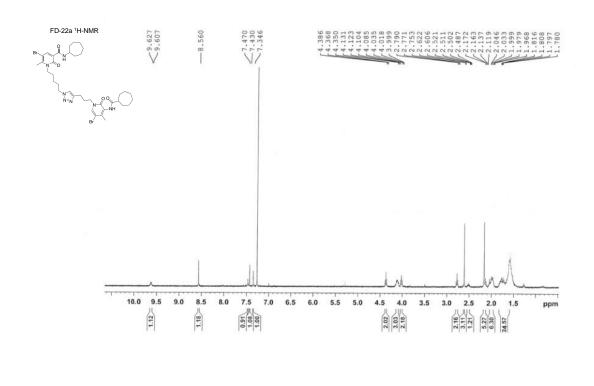
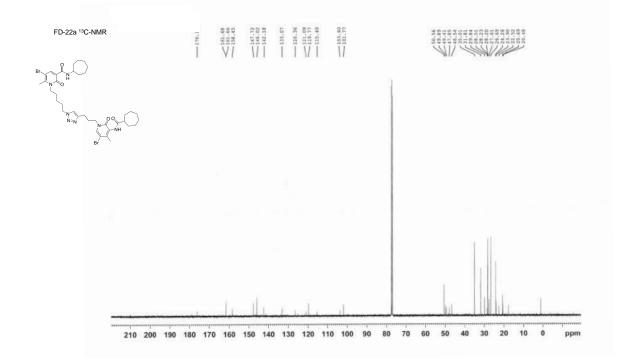

Data were analyzed by mean \pm S.E.M. with one-way ANOVA followed by Bonferroni's posthoc test. Each value represents the mean of 16 mice per group, performed in 2 different experimental sets. The table is graphed in Figures 9 and 10.

Figure S1: FM-6b, EC-21a, FD-22a, and FD-24a inhibit cAMP accumulation in CHO cells lacking CB2R. Inhibition of FSK-stimulated cAMP accumulation in CHO-K1 cells lacking CB2R. cAMP accumulation data are expressed as fold over untreated cells. Cells were treated with 10 μ M FSK and 10 μ M compounds simultaneously as indicated. Data are mean \pm S.E.M. of 4 independent experiments performed in triplicate. Statistical data for these graphs are presented in Table S4.

Figure S2: Summary of receptor cavities predicted by Flap program in 5ZTY structure (light green, inactive form), 6KPC (dark green, agonist-bound form), 6PT0 (grey, agonist and Gi-bound complex) and 6KPF (brown, agonist and Gi-bound complex).

Figure S3: Results of **EC-21a** docking in 5ZTY (a), 6KPC (b) and 6PT0 (c) structures calculated using all GOLD scoring functions: ASP (orange colored), GOLDSCORE (cyan colored), CHEMSCORE (green colored) and PLP (magenta colored)


Figure S4. Docking of a) FD-22a (light cyan) and FD-24a (beige); b) FD-25a (purple) and FD-30a (pink); c) FD-27a (light green) and FD-28a (salmon); d) FD-31a (yellow) and FD-32a (magenta) in 6PT0 structure. Clashes are reported as green lines.

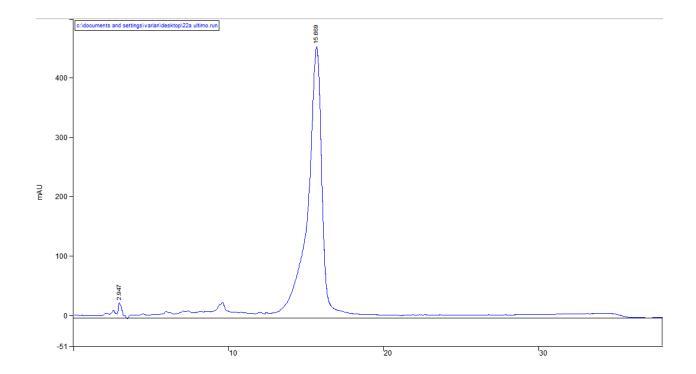
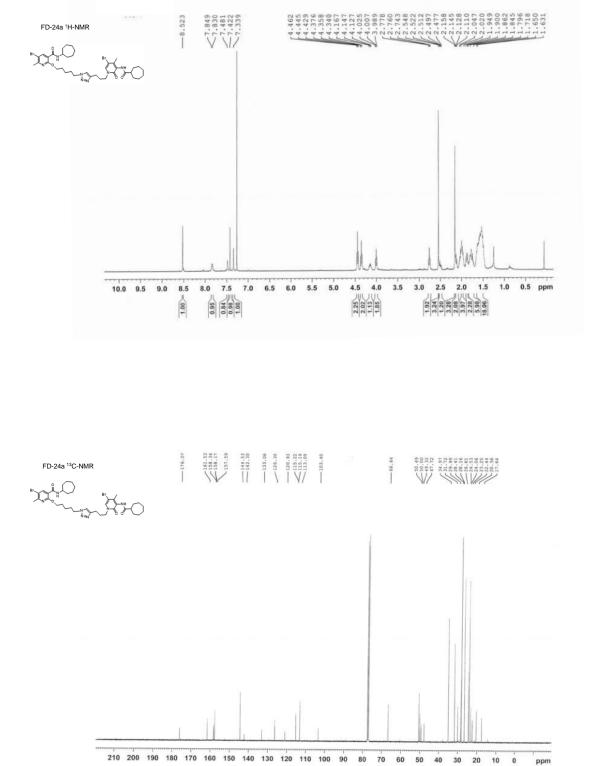
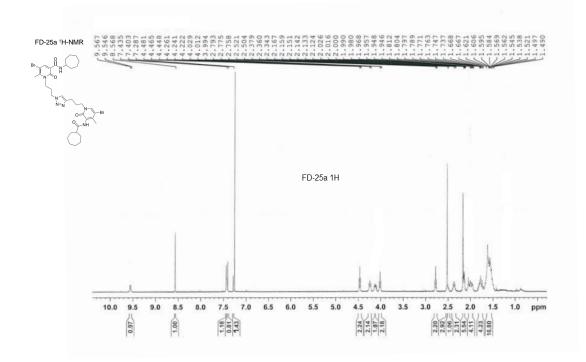
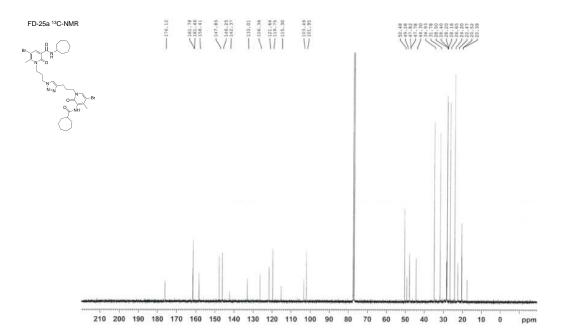


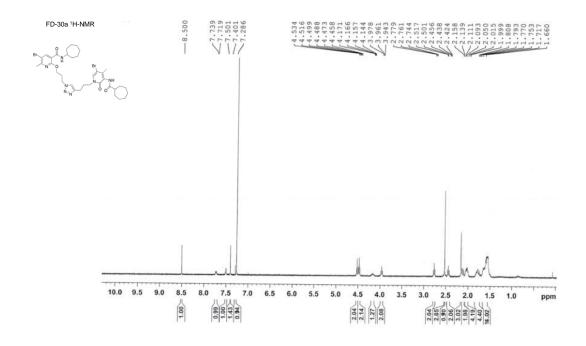
Figure S5. Comparison between the potential allosteric region of CB2R (grey colored) with the superimposed CBR1 (blue colored): non conserved residues are highlighted with analogues colors.

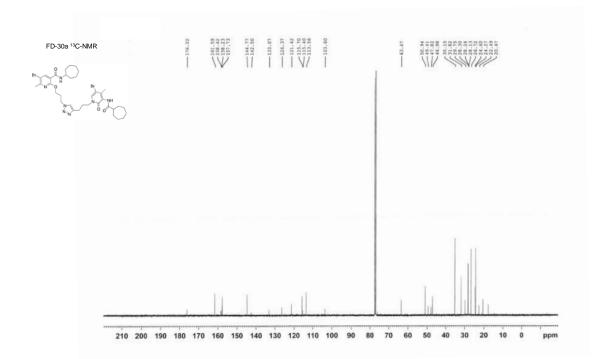
¹H-, ¹³C-NMR Spectra of compounds **FD-22a**, **FD-24a**, **FD-25a**, **FD-30a FD-27a FD-28a**, **FD-32a** and **FD-31a** and HPLC chromatogram of **FD-22a**




Operator : Workstation: HPLC Instrument : Varian Star #1 Channel : 1 = 220.00 nm Detector Type: 330 UV-Vis. PDA Bus Address : 71 Sample Rate : 0.63 Hz Run Time : 51.013 min


** LC Workstation Version 6.41 ** 01938-61c0-ea4-04b0 **


Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: Percent


			Ret.	Time			Width	
Peak	Peak	Result	Time	Offset	Area	Sep.	1/2	Status
No.	Name	0	(min)	(min)	(counts)	Code	(sec)	Codes
1		1.1598	2.947	0.000	1630791	BB	13.3	
2		98.8402	15.669	0.000	138984480	BB	46.9	
	Totals:	100.0000		0.000	140615271			

