Journal of Hepatology, Volume 78

Supplemental information

Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores

Arun J. Sanyal, Julie Foucquier, Zobair M. Younossi, Stephen A. Harrison, Philip N. Newsome, Wah-Kheong Chan, Yusuf Yilmaz, Victor De Ledinghen, Charlotte Costentin, Ming-Hua Zheng, Vincent Wai-Sun Wong, Magdy Elkhashab, Ryan S. Huss, Robert P. Myers, Marine Roux, Aymeric Labourdette, Marie Destro, Céline Fournier-Poizat, Véronique Miette, Laurent Sandrin, and Jérôme Boursier

Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores

Arun J. Sanyal, Julie Foucquier, Zobair M. Younossi, Stephen A. Harrison, Philip
N. Newsome, Wah-Kheong Chan, Yusuf Yilmaz, Victor De Ledinghen, Charlotte
Costentin, Ming-Hua Zheng, Vincent Wai-Sun Wong, Magdy Elkhashab, Ryan S.
Huss, Robert P. Myers, Marine Roux, Aymeric Labourdette, Marie Destro, Céline
Fournier-Poizat, Véronique Miette, Laurent Sandrin, Jérôme Boursier

Table of contents

Supplementary methods	2
Supplementary figures	7
Supplementary tables	23
Supplementary references	51

Supplementary methods

Decision curve analysis

Decision curve analyses ^{1–3} were performed by calculating a clinical net benefit for FIB-4, LSM, Agile 3+ for the diagnosis of AF and FIB-4, LSM and Agile 4 for the diagnosis of cirrhosis in comparison to default strategies of treating all patients as having ("Treat all") or not having ("Treat none") AF or cirrhosis respectively. The net benefit put benefits and harms on the same scale so that they can be compared directly. It is calculated across a range of threshold probabilities (ThresP) considering the number of incorrect diagnoses a clinician is willing to accept to find one correct diagnosis of cirrhosis or AF using Agile 4, Agile 3+, FIB-4 and LSM instead of a liver biopsy (for example, if a clinician found it acceptable to use Agile 4 on 11 patients to find one correct diagnosis of cirrhosis, then the threshold probability is 1 correct diagnosis / 10 incorrect diagnoses = 10%) as:

$$Net \ benefit = \frac{TP}{N} - \frac{FP}{N} \times \frac{ThresP}{1 - ThresP}$$

Where TP is the true positive count, FP is the false positive count and N is the total number of patients. The strategy with the highest net benefit at a particular threshold probability has the highest clinical value.

Adjusted predictive values

The relationship between predictive values and the prevalence used for adjustment and sensitivity analysis was:

$$PPV = \frac{Se \times prevalence}{Se \times prevalence + (1 - Sp) \times (1 - prevalence)}$$
$$NPV = \frac{Sp \times (1 - prevalence)}{(1 - Se) \times prevalence + Sp \times (1 - prevalence)}$$

Performances of high specificity cut-off values for the diagnosis of cirrhosis

Rule-in cut-off values for at least 99% of specificity for the diagnosis of cirrhosis were derived in the training set for FIB-4, LSM and Agile 4. The rule-in cut-off of Agile 4 was then 0.843 with characteristics detailed in Table S12 and the dual cut-off approach represented in Fig. S14. As expected, the proportions of patients with indeterminate results increased compared to those observed with a cut-off for at least 95% of specificity. Nevertheless, it was always smaller for Agile 4 than FIB-4 and LSM in all datasets. The number of patients in the indeterminate zone for Agile 4 was moreover similar to that observed for LSM with a rule-in cut-off for at least 95% of specificity. Furthermore, even if the sensitivities decreased, the one of Agile 4 stayed superior to those of FIB-4 and LSM especially in the training set and the internal validation set and slightly in the NASH CRN and the French NAFLD cohorts. Finally, the PPV and the LR+ were highly increased especially in the internal validation set and the NASH CRN cohort (approximately 95% for Agile 4 vs 60% for FIB-4 and 80% for LSM) which would make it possible to give a quasi-certain diagnosis of cirrhosis.

Comparison of performances of FIB-4 4 and LSM 5 using published cut-off values with Agile 3+ for the diagnosis of advanced fibrosis

According to ⁴, the rule-out cut-off for FIB-4 for the diagnosis of advanced fibrosis was 1.3 for patients < 65 years old and 2.0 for patients \geq 65 years old and the rule-in cut-off was 2.67 for all patients. According to ⁵, the rule-out and rule-in cut-off values for LSM for the diagnosis of advanced fibrosis were 8.0 kPa and 12 kPa, respectively. The performances of FIB-4 and LSM with these cut-off values were computed and compared to Agile 3+ (Table S13). Although PPV in the rule-in zones of FIB-4 were higher than that achieved with LSM and Agile 3+ and with the results obtained with derived cut-off values (Table 2), their sensitivities were much lower and their numbers of patients with indeterminate results were higher. Moreover, concerning LSM, the number of patients with indeterminate results stayed higher and the sensitivity and the PPV in the rule-in zones remained lower than those of Agile 3+.

AUROCs of Agile 4 and Agile 3+ for patients with BMI<30 kg/m² vs BMI≥30 kg/m² were compared using Delong test (at a two-sided 5% significance level) in order to evaluate if the scores performances were impacted by elevated BMI (Table S14). For Agile 4, no significant difference was observed between both groups evidencing that Agile 4 performs as well in obese patients and non-obese patients. For Agile 3+, although no significant difference was observed in the internal validation set, one was observed in the NASH CRN and the French NAFLD cohorts.

Comparison of AUROCs of Agile 4 and Agile 3+ for patients with steatosis grade S0/S1 vs S≥2

AUROCs of Agile 4 and Agile 3+ for patients with steatosis grade S0/S1 vs S \geq 2 were compared using Delong test (at a two-sided 5% significance level) in order to evaluate if the scores performances were impacted by steatosis. For both Agile 3+ and Agile 4, no significant difference was observed between both groups evidencing that Agile 3+ and Agile 4 perform as well in patients with steatosis grades S0/S1 and S \geq 2.

Comparison of AUROCs of Agile 4 and Agile 3+ for diabetic vs non-diabetic patients

AUROCs of Agile 4 and Agile 3+ for diabetic vs non-diabetic patients were compared using Delong test (at a two-sided 5% significance level) (Table S16). There was no significant difference of performances between both groups whether Agile 4 or Agile 3+ in the internal validation set and the NASH CRN cohort. Significant differences were observed for both scores in the French NAFLD cohort. However, while AUROCs in diabetic patients were lower than those of non-diabetic patients, they remained very good in this at risk population (AUROCs \geq 0.80).

AUROCs of Agile 4 and Agile 3+ for patients with LSM measured with M vs XL probe were compared using Delong test (at a two-sided 5% significance level) (Table S19). For Agile 4, no significant difference of performances between both groups was observed in the internal validation set, the NASH CRN and the French NAFLD cohorts. For Agile 3+, there was no significant difference of performance in the internal validation set only, while significant differences in the both external validation set. However, while AUROCs in patients with LSM measured with XL probe were lower than those of patients with LSM measured with M probe, they remained very good (AUROCs \geq 0.80).

Performances of 90% sensitivity and 90% specificity cut-off values for the diagnosis of advanced fibrosis and cirrhosis

Rule-out cut-off values for at least 90% sensitivity and rule-in cut-off values for at least 90% specificity were derived on the training set for Agile 4, FIB-4 and LSM for the diagnosis of cirrhosis and Agile 3+, FIB-4 and LSM for the diagnosis of advanced fibrosis.

The cut-off values of Agile 4 were 0.169 and 0.388 for rule-out and rule-in, respectively, with characteristics detailed in Table S18. In comparison with results of Agile 4 in Table 2, less specificities of Agile 4 in the rule-out zone, less PPV and sensitivities in the rule-in zone were obtained. However, performances of Agile 4 remained better than those of FIB-4 and LSM.

The rule-out cut-off of Agile 3+ was 0.351 (rule-in cut-off being already achieved for at least 90% specificity In Table 2), with characteristics detailed in Table S18. In comparison with results of Agile 3+ in Table 2, less specificities of Agile 3+ in the rule-out zone and more patients with indeterminate results are obtained. However, performances of Agile 3+ remained better compared to FIB-4 and LS.

AUROCs of Agile 4 and Agile 3+ for patients with LB with length > 15 mm vs length≤15 mm were compared using Delong test (at a two-sided 5% significance level) (Table S19). There was no difference of performances between both groups for Agile 4 and a very slight difference (very close to a 5%-significance level) between both groups for Agile 3+ in the internal validation set. No difference was observed for Agile 4 in the NASH CRN cohort but a significant difference was observed for Agile 3+. Moreover, no difference was observed between both whether Agile 4 or Agile 3+ in the French NAFLD cohort. Let's notice the imbalance between both subgroups as much in terms of number of patients as target prevalence that induce a bias for the comparisons.

Performances of sequential use of Agile scores after use of LSM alone compared to Agile score alone The sequential use of LSM followed by Agile scores was performed as described in Fig. S19. The number of patients ruled-out, ruled-in and with indeterminate results using LSM followed by Agile or Agile scores alone are compared in Figs S20 and S21 on the training and validation sets; for advanced fibrosis and cirrhosis identification, respectively.

Supplementary figures

Fig. S1: Training and internal validation set flow chart

Fig. S2: Calibration plots for Agile 4 on the training set (A) and the internal validation set (B) The calibration plot characterizes the agreement between observed proportion and predicted probabilities. Calibration of the data is estimated using a smoothed regression line using locally estimated scatterplot smoothing (LOESS) that allows inspection of the calibration across the range of predicted values and determination of whether there are segments of the range in which the model is poorly calibrated ⁶. Triangles represent participants grouped by similar predicted risk. The dotted line represents the ideal calibration. The solid line is the calibration estimated on the data using locally estimated scatterplot smoothing (LOESS).

Fig. S3: ROC curves of FIB-4, liver stiffness measurement (LSM) and Agile 4 for the diagnosis of

cirrhosis in the (A) training and (B) internal validation sets

- Treat all - Treat none - FIB-4 - LSM - Agile 4

Fig. S4: Decision curves of FIB-4, liver stiffness measurement (LSM) and Agile 4 for the diagnosis of cirrhosis in comparison to default strategies of treating all patients as having ("Treat all") or not

("Treat none") cirrhosis in the (A) training and (B) internal validation sets

Fig. S5: Calibration plot for Agile 4 on the NASH CRN cohort

The calibration plot characterizes the agreement between observed proportion and predicted probabilities. Calibration of the data is estimated using a smoothed regression line using locally estimated scatterplot smoothing (LOESS) that allows inspection of the calibration across the range of predicted values and determination of whether there are segments of the range in which the model is poorly calibrated ⁶. Triangles represent participants group by similar predicted risk. The dotted line represents the ideal calibration. The solid line is the calibration estimated on the data using locally estimated scatterplot smoothing (LOESS).

Fig. S6: Calibration plot for Agile 4 on the French NAFLD cohort

The calibration plot characterizes the agreement between observed proportion and predicted probabilities. Calibration of the data is estimated using a smoothed regression line using locally estimated scatterplot smoothing (LOESS) that allows inspection of the calibration across the range of predicted values and determination of whether there are segments of the range in which the model is poorly calibrated ⁶. Triangles represent participants group by similar predicted risk. The dotted line represents the ideal calibration. The solid line is the calibration estimated on the data using locally estimated scatterplot smoothing (LOESS).

Fig. S7: Sensitivity, specificity, adjusted positive predictive value (PPV) and adjusted negative predictive value (NPV) of Agile 4 for the diagnosis of cirrhosis in the internal validation set

Fig. S8: Calibration plots for Agile 3+ on the training (A) and the internal validation sets (B)
The calibration plot characterizes the agreement between observed proportion and predicted probabilities.
Calibration of the data is estimated using a smoothed regression line using locally estimated scatterplot smoothing (LOESS) that allows inspection of the calibration across the range of predicted values and determination of whether there are segments of the range in which the model is poorly calibrated ⁶. Triangles represent participants group by similar predicted risk. The dotted line represents the ideal calibration. The solid line is the calibration estimated on the data using locally estimated scatterplot smoothing (LOESS).

Fig. S9: Calibration plot for Agile 3+ on the NASH CRN cohort

The calibration plot characterizes the agreement between observed proportion and predicted probabilities. Calibration of the data is estimated using a smoothed regression line using locally estimated scatterplot smoothing (LOESS) that allows inspection of the calibration across the range of predicted values and determination of whether there are segments of the range in which the model is poorly calibrated ⁶. Triangles represent participants group by similar predicted risk. The dotted line represents the ideal calibration. The solid line is the calibration estimated on the data using locally estimated scatterplot smoothing (LOESS).

Fig. S10: Calibration plot for Agile 3+ on the French NAFLD cohort

The calibration plot characterizes the agreement between observed proportion and predicted probabilities. Calibration of the data is estimated using a smoothed regression line using locally estimated scatterplot smoothing (LOESS) that allows inspection of the calibration across the range of predicted values and determination of whether there are segments of the range in which the model is poorly calibrated ⁶. Triangles represent participants group by similar predicted risk. The dotted line represents the ideal calibration. The solid line is the calibration estimated on the data using locally estimated scatterplot smoothing (LOESS).

Fig. S11: ROC curves of FIB-4, liver stiffness measurement (LSM) and Agile 3+ for the diagnosis of advanced fibrosis in (A) training and (B) internal validation sets

- Treat all - Treat none - FIB-4 - LSM - Agile 3+

Fig. S12: Decision curves of FIB-4, liver stiffness measurement (LSM) and Agile 3+ for the diagnosis of advanced fibrosis in comparison to default strategies of treating all patients as having ("Treat all") or not ("Treat none") AF in the (A) training and (B) internal validation sets

Fig. S13: Sensitivity, specificity, adjusted positive predictive value (PPV) and adjusted negative predictive value (NPV) of Agile 3+ for the diagnosis of advanced fibrosis in the internal validation set

Fig. S14: Percentage of patients in rule-out (<85% Sensitivity cut-off), indeterminate and rule-in zones

(≥99% Specificity cut-off) for the diagnosis of cirrhosis with FIB-4, LSM and Agile 4

(A) Training set (n=1434), (B) Internal validation set (n=700), (C) NASH CRN cohort (n=585), (D) French NAFLD cohort (n=1042). Results of FIB-4, LSM and Agile 4 are represented in green, blue and yellow, respectively. On each bar, the solid and transparent parts represent the percentage of patients with and without cirrhosis according to liver biopsy (LB), respectively.

Fig. S15: Sequential use of LSM by VCTE followed by Agile scores for the identification of patients

with (a) cirrhosis and (b) advanced fibrosis.

Ruled out cut-off values for LSM by VCTE are with 90% Sensivity according to Eddowes et al. (4).

Fig. S16: Percentage of patients in rule-out, indeterminate and rule-in-zone with a sequential use of LSM followed by Agile 4 versus Agile 4 alone for the diagnosis of cirrhosis.

(A) Training set (n=1434), (B) Internal validation set (n=700), (C) NASH CRN cohort (n=585), (D) French NAFLD cohort (n=1042). Results of LSM + Agile 4 and Agile 4 are represented in purple and yellow, respectively. On each bar, the solid and transparent parts represent the percentage of patients with and without advanced fibrosis according to liver biopsy (LB), respectively.

Fig. S17: Percentage of patients in rule-out, indeterminate and rule-in-zone with a sequential use of

LSM followed by Agile 3+ versus Agile 3+ alone for the diagnosis of advanced fibrosis.

(A) Training set (n=1434), (B) Internal validation set (n=700), (C) NASH CRN cohort (n=585), (D)

French NAFLD cohort (n=1042). Results of LSM + Agile 3+ and Agile 3+ are represented in purple and

yellow, respectively. On each bar, the solid and transparent parts represent the percentage of patients

with and without advanced fibrosis according to liver biopsy (LB), respectively.

Supplementary tables

Table S1: Transparent reporting of a multivariable prediction model for individual prognosis or

Section/Topic	Item	Checklist Item	Page
Title and abstra	nct		
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	1
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	3
Introduction	-		
Background and	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	4
objectives	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.	4
Methods			
Source of	4a	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	5 Table S2 Table S3
data	4b	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	Table S2 Table S3
	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	5 Table S2 Table S3
Participants	5b	Describe eligibility criteria for participants.	6 Table S2 Table S3
	5c	Give details of treatments received, if relevant.	Not applicable
	6a	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	7
Outcome	6b	Report any actions to blind assessment of the outcome to be predicted.	7 Table S2 Table S3
Predictors	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	8-9 Table 1 Table S2 Table S3
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.	5
Sample size	8	Explain how the study size was arrived at.	7-8
Missing data	9	Describe how missing data were handled (e.g., complete- case analysis, single imputation, multiple imputation) with details of any imputation method.	Cases with missing data were excluded.
	10a	Describe how predictors were handled in the analyses.	7-8

diagnosis TRIPOD checklist

	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	7-8
Statistical analysis	10c	For validation, describe how the predictions were calculated.	7-8
methods	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	7-8
	10e	Describe any model updating (e.g., recalibration) arising from the validation, if done.	Not applicable
Risk groups	11	Provide details on how risk groups were created, if done.	Not applicable
Development vs. validation	12	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	8-9
Results			
	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	Table S2 Table S3
Participants	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	Table 1
	13c	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	Table 1
Model	14a	Specify the number of participants and outcome events in each analysis.	Table 1
development	14b	If done, report the unadjusted association between each candidate predictor and outcome.	Not applicable
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	9, 11
	15b	Explain how to the use the prediction model.	9, 11
Model performance	16	Report performance measures (with CIs) for the prediction model.	9-12 Table 2 Table 3
Model- updating	17	If done, report the results from any model updating (i.e., model specification, model performance).	Not applicable
Discussion	1		
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	13-14
Interpretation	19a	For validation, discuss the results with reference to performance in the development data, and any other validation data.	12-14
	19b	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	12-14
Implications	20	Discuss the potential clinical use of the model and implications for future research.	12-14
Other informat	ion		

Supplementar y information	21	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	Not applicable
Funding	22	Give the source of funding and the role of the funders for the present study.	3, 8

		China Hong- Kong NAFLD cohort	China Wenzhou NAFLD cohort	Malaysian NAFLD cohort	Turkish NAFLD cohort	UK NAFLD cohort	Canadian overweight cohort	Clinical trial cohort
Study descriptio n	Funding	Grant from the Research grant Council of Hong-Kong government	Training funding by the High level creative Talents from Department of public health in Zhejiang province	Research grant from the university of Malaya	Scientific research fund from Marmara university	Echosens and UK Nationale Institute for Health Research (NIHR)	Echosens	Gilead Sciences
	Enrolment dates (first and last inclusion)	From 2003/05 to 2017/11	From 2017/01 to 2018/03	From 2012/11 to 2015/10 and from 2016/09 to 2018/03	From 2016/01 to 2018/09	From 2014/03 to 2017/01	From 2009/07 to 2010/07	Jan 2017 to Mar 2018
	Study design	Prospective cross-sectional single centre study	Prospective cross-sectional single centre study·	Prospective cross-sectional single centre study	Prospective cross-sectional single centre study	Prospective cross-sectional multicenter study	Prospective multicenter study	Prospective, multicenter, international, double-blind, randomized, placebo- controlled clinical trials (use of baseline and screen failure data only)
	PMID if data were used for publication	PMID- 30658987	NA	PMID- 24548002	NA	PMID- 32027858	PMID- 22435761	PMID- 32147362

 Table S2: Description of the cohorts included in the internal dataset (training and internal validation sets).

	PMID- 28506907 PMID- 23032979 PMID-2010754 PMID- 30658997		PMID- 25788185 PMID- 25184298 PMID- 31442603 PMID- 31310032		PMID- 30689971	PMID- 22027584 PMID- 21898479	PMID- 31271665
Center description	Hepatology tertiary care	Hepatology tertiary care	Hepatology tertiary care	Hepatology tertiary care	Hepatology tertiary care	Hepatology tertiary care	Outpatient clinics
							including tertiary and secondary care centers.
Eligibility	Inclusion: age >	Inclusion: age	Inclusion:	Inclusion:	Inclusion: age >	Inclusion: age >	Clinical
criteria	18 years;	18-75 years;	NAFLD	evidence of	18 years;	18 years; BMI	suspicion of
	biopsy-proven	BMI < 35	patients	hepatic	biopsy-proven	≥ 28 kg/m ² ;	NASH with F3-
	NAFLD	kg/m²; US, CT	diagnosed on	steatosis on US;	NAFLD within	liver biopsy	F4 fibrosis; no
	Exclusion:	or MRI	US following	abnormal liver	2 weeks before	within 1 month	prior history of
	other liver	imaging	exclusion of	enzymes or	or after	after the	hepatic
	disease;	showing fatty	other cause of	organomegaly;	FibroScan	enrollment or 6	decompensation
	excessive	liver disease;	CLD including	absence of	examination;	months before	,
	alcohol	abnormal ALT	alcohol (>14	secondary	negative for	the enrollment;	transplantation,
	consumption	but below 5	units per week	causes of	hepatitis B	abdominal	or HCC; MELD
	(>20g/day in	ULN; no	in women and	hepatic fat	surface antigen,	ultrasound	<=12; Child-
	women and >	alcohol	>21 units per	accumulation	anti-hepatitis C	technically	Pugh A; ALT
	30g/day in	drinking history	week in men).	(e.g. significant	virus antibody,	possible.	<10 x ULN;
	men);	or daily alcohol	Exclusion:	alcohol	hepatitis C	Exclusion:	HbA1c <9%, no
	secondary fatty	intake < 20 g	decompensated	consumption	virus RNA, and	Confirmed	excessive
	liver (e·g·	for male and 10	cirrhosis;	(>20g/day in	hepatitis B	diagnosis	alcohol
	DILI); history	g for female.	history of HCC,	women and	virus DNA.	and/or history	consumption
	of liver surgery	Exclusion:	patients on liver	>30g/day in	Exclusion:	of malignancy,	(>14 units/week
	or liver	decompensated	transplant list	men) and	ascites,	or other	in women and
	transplantation;	cirrhosis;		previous use of	pregnancy,	terminal	>21 units/week
	history of HCC;	history of HCC,			active	disease; ascites;	in men)

	history of	patients on liver	steatogenic	implantable	pregnancy;	
	malignancy	transplant list	drugs).	medical device	active	
	unless if	1	Exclusion:	(such as	implantable	
	complete		patients with	pacemaker or	medical device	
	remission > 5		viral hepatitis,	defibrillator),	(such as	
	years;		DILI,	liver	pacemaker or	
	decompensated		autoimmune	transplantation,	defibrillator);	
	cirrhosis;		hepatitis,	cardiac failure	liver	
	patients on liver		metabolic/genet	or clinically	transplantation;	
	transplant list		ic liver disease	significant	patient with	
	-		or low platelets	valvular	heart disease;	
			count (< 100 x	disease,	refusal to	
			$10^{9}/L$), history	haemochromato	undergo a liver	
			of malignancy	sis, refusal to	biopsy;	
			and heart	have liver	excessive	
			failure;	biopsy or blood	alcohol	
			decompensated	tests, alcohol	consumption	
			cirrhosis;	consumption	(>10g/day in	
			history of HCC,	above	women and >	
			patients on liver	recommended	20g/day in	
			transplant list	limits (> 14	men)	
				units per week		
				for women and		
				> 21 units per		
				week for men),		
				diagnosis of		
				active		
				malignancy or		
				other terminal		
				disease, or		
				participation in		
				another clinical		
				trial within the		
				previous 30		
				days.		

FibroSca	Probe used	M and XL	M only	M only	M and XL	M and XL	M and XL	M and XL
informati on	Probe selection	Both probes on all patients	NA	NA	Automatic probe selection tool	Automatic probe selection tool	Both probes on all patients	M or XL, depending on patient characteristics. In some cases, devices with automatic probe selection tool used.
	Number of FibroScan operators and experience	N=4 Experience >100 VCTE examinations for all	N=1 5 years' experience	N=2 Experience >200 VCTE examinations for both	N=1 Experience >10000 VCTE examinations	N = 14	N = 10	At least one experienced operator per site. No specific level of experience explicitly stated in protocol.
	Patients fasting for at least 3 hours?	Yes	Yes, more than 95%	Yes	Yes	Yes	No (not recommended at the time the study was conducted)	This was the recommendatio n but the information was not recorded.
	Median time interval in days (IQR) between FS examination and LB	1(16.8)	0(2)	0(0)	6(23)	0 (7)	34 (37)	37 (36)
Histologi cal informati on	Reason to send a patient to LB	Persistent elevated transaminase, high metabolic burden	Persistent elevated transaminase or elevated LSM by VCTE or	Persistent ALT or AST \geq 40 or reasons for NASH to be suspected (e·g·	Evidence of hepatic steatosis on US, abnormal liver enzymes or	Abnormal liver enzymes and an ultrasound scan showing an echobright liver	Standard of care	Clinical suspicion of NASH with F3- F4 fibrosis

	suspicious of advanced disease, elevated LSM by VCTE	CAP (especially LSM)	significant fibrosis at LSM by VCTE, obese patient with metabolic syndrome)	organomegaly, absence of secondary causes of hepatic fat accumulation ($e \cdot g \cdot significant$ alcohol consumption and previous use of steatogenic drugs), LSM by VCTE > 6 kPa or rarely patients with LSM by VCTE < 6 kPa to exclude other CLD			
LB reading	Central reading by a single expert pathologist	Routine reading by a single expert pathologist	Central reading by a single expert pathologist	Central reading by a single expert pathologist	Independent reading by two experienced pathologists. In case of disagreement, they reviewed together to reach consensus.	Central reading by two expert pathologists. In case of disagreement, they reviewed together to reach consensus	Central reading by a single expert pathologist
Type of needle	16G	16G	18G	16G	Clinical routine	Clinical routine	No. It was advised but it was up to the sites. The

				information was
				not collected.

		NASH CRN cohort	French NAFLD cohort
Study description	Funding	NIH NIDDK	Angers University Hospital Bordeaux University Hospital Grenobles Alpes University Hospital
	Enrolment dates (first and last inclusion)	11 July 2014 – 27 March 2019	2004-2019
	Study design	Prospective cohort study	Prospective cross sectional multicenter study
	PMID if data were used for publication	PMID-29705261 PMID-28859228	PMID-33307138 PMID-33236409 PMID-26659452 PMID-31102719 PMID-27151181
	Center description	Tertiary care centers	Hepatology tertiary care
	Eligibility criteria	Inclusion: At least 18 years of age; written informed consent; Liver biopsy \leq 120 days prior to enrollment (or previously enrolled in prior NASH CRN study); collection of serum and plasma within 90 days of enrollment and liver biopsy; absence of regular or excessive use (AUDIT \geq 7) of alcohol in prior 2 years; willingness to be in study for \geq 1 year. Exclusion: Clinical/histologic evidence of alcoholic liver disease; other chronic liver disease; history of prolonged parenteral nutrition; short bowel syndrome; history of biliopancreatic diversion; history of bariatric surgery; known HIV positive; other condition likely to interfere with study follow-up; decompensated cirrhosis:	Inclusion: Patients with biopsy-proven NAFLD and no other concomitant cause of chronic liver disease Exclusion: decompensated cirrhosis; history of HCC, patients on liver transplant list; excessive alcohol consumption (> 210 g/week for men and 140 g /week for women)

		history of HCC, patients on liver transplant list Exclusion Criteria specific to FibroScan: Use of implantable active medical device;wound near application site of FibroScan pregnancy ascites	
FibroScan device	Probe used	M and XL	M and XL
informatio n	Probe selection	Automatic probe selection tool	M probe if BMI <30, XL probe if BMI >30
	Number of FibroScan operators and experience	Operators were trained and certified by Echosens North America. To be certified, 40-60 scans on 4-6 patients were required. There were 50 certified FibroScan operators.	In each investigating center: experienced nurses/MD with more than >500 FibroScan examination each one
	Patients fasting for at least 3 hours?	Yes	Angers & Bordeaux: Yes Grenoble: outpatients, fasting not controlled
	Median time interval in days (IQR) between FS examination and LB	43 (54)	0 (0)
Histological informatio n	Reason to send a patient to LB	 To evaluate suspected NASH To evaluate disease status in patients known to have NAFLD 	Abnormal liver function tests, hyperferritinaemia, metabolic syndrome, abnormal non-invasive tests of liver fibrosis (FIB-4, NFS, FibroMeter, LSM by VCTE)
	LB reading	Histology data were based on consensus readings by 9-member NASH CRN Pathology Committee, who were blinded to LSM and other biologicial/clinical data, study, and visit.	In each center, liver biopsy was read by an experienced pathologist expert in chronic liver disease
	Type of needle	15 to 18G	Angers & Bordeaux: 16G Grenoble: 17G

	F<4		F=4		F<3		F≥3	
	Median	Ν	Median	Ν	Median	Ν	Median	N
	(IQK)		(IQR)		(IQK)		(IQK)	
	r or r		r or r		0r		r or r	
Domographies	II (70)	Į	П (70)		II (70)	<u> </u>	П (70)	<u> </u>
Demographics	52.0 (17.0)	1000	50.0 (11.0)	225	50.0 (17.9)	(()	50.0 (12.0)	770
Age (years)	53.0(17.0)	1099	39.0(11.0) 125(40.2)	225	30.0(17.8)	002 662	39.0(12.0)	772
$DMI (1_{ra}/m^2)$	394(34.0) 312(770)	1099	133(40.3)	208	307(30.3)	5002	342(44.3)	725
Divit (Kg/III ⁻)	31.3 (7.70)	1017	52.8 (9.02)	308	30.3 (7.10)	390	32.0 (8.20)	755
$\frac{\text{Nietabolic}}{\text{D}^2 + 1 + 12}$	50((4(0)	1000	217((4.9))	225	215(225)	(())	500 ((5.0)	770
Diabetes (type 1 and 2)	506 (46.0)	1099	21/(64.8)	333	215(32.5)	662	508 (65.8)	112
Hypertension	520 (47.3)	1099	199 (39.4)	335	245 (37)	662	4/4 (61.4)	112
Blood		1000						
AST (U/L)	38.0 (30.5)	1099	44.0 (29.0)	335	34.0 (25.8)	662	44.0 (34.0)	772
ALT(U/L)	51.0(51.5)	1099	44.0 (31.0)	335	49.0 (52.0)	662	49.0 (42.0)	772
AAR	0.750	1099	1.00	335	0.704	662	0.903	772
	(0.342)		(0.401)		(0.318)		(0.417)	
Platelets count (G/L)	234 (87.5)	1099	156 (74.0)	335	244 (84.0)	662	191 (91.2)	772
HDL (mmol/L)	1.11	835	1.24	279	1.11 (0.37)	462	1.16 (0.44)	652
	(0.379)		(0.491)					
LDL (mmol/L)	2.66 (1.33)	815	2.33 (1.11)	273	2.90 (1.29)	457	2.41 (1.22)	631
Albumin (g/L)	45.0 (4.00)	1008	44.0 (4.00)	330	45.0 (5.00)	603	44.0 (5.00)	735
GGT (UI/L)	54.0 (61.5)	1007	78.0 (94.8)	330	49.0 (56.8)	602	66.0 (80.0)	735
Triglycerides (mmol/L)	1.72 (1.08)	840	1.52 (0.83)	279	1.70 (1.02)	464	1.63 (1.04)	655
Fasting glucose	6.00 (2.11)	992	6.55 (2.91)	323	5.69 (1.93)	594	6.49 (2.61)	721
(mmol/L)						_		_
Non-invasive tests								
FIB-4	1.20	1099	2.56 (1.82)	335	0.992	662	1.93 (1.52)	772
	(0.851)				(0.648)			
LSM by VCTE (kPa)	9.10 (6.65)	1099	21.1 (16.0)	335	7.40 (3.88)	662	15.7 (11.8)	772
Fibrosis stage								
NASH CRN scoring		1099		335		662		772
system	202 (18.4)		-		202 (30.5)		-	
F0	269 (24.5)		-		269 (40.6)		-	
F1	191 (17.4)		-		191 (28.9)		-	
F2	437 (39.8)		-		-		437 (56.6)	
F3	-		335 (100)		-		335 (43.4)	
F4								

	F<4		F=4		F<3		F≥3	
	Median (IQR)	N	Median (IQR)	N	Median (IQR)	N	Median (IQR)	Ν
	or		or		or		or	
	n (%)		n (%)		n (%)	<u> </u>	n (%)	
Demographics	-	1		1		1	ſ	1
Age (years)	54.0 (17.0)	535	60.0 (13.0)	165	52.0 (18.2)	320	59.0 (14.0)	380
Male sex	287 (53.6)	535	72.0 (43.6)	165	179 (55.9)	320	180 (52.6)	380
BMI (kg/m ²)	31.3 (7.90)	495	32.4 (8.10)	151	31.0 (8.00)	289	32.0 (8.40)	357
Metabolic								
Diabetes (type 1 and 2)	252 (47.1)	535	105 (63.6)	165	112 (35.0)	320	245 (64.5)	380
Hypertension	247 (46.2)	535	97 (58.8)	165	114 (35.6)	320	230 (60.5)	380
Blood								
AST (U/L)	37.0 (27.0)	535	44.0 (29.0)	165	33.5 (24.2)	320	43.0 (30.2)	380
ALT (U/L)	48.0 (48.0)	535	42.0 (33.0)	165	48.5 (47.5)	320	45.0 (41.5)	380
AAR	0.781	535	1.02	165	0.701	320	0.926	380
	(0.364)		(0.500)		(0.333)		(0.406)	
Platelets count (G/L)	235 (85.5)	535	160 (83.0)	165	251 (84.2)	320	192 (90.8)	380
HDL (mmol/L)			1.15	140	1.09		1.14	
	1.11 (0.38)	401	(0.427)		(0.347)	218	(0.414)	323
LDL (mmol/L)	2.64 (1.29)	394	2.38 (1.20)	136	2.74 (1.30)	217	2.40 (1.15)	313
Albumin (g/L)	45.0 (5.00)	491	44.0 (5.00)	163	45.0 (5.00)	292	44.0 (4.00)	362
GGT (UI/L)	55.0 (60.5)	491	86.0 (102)	163	51.5 (55.2)	292	70.0 (78.8)	362
Triglycerides (mmol/L)	1.70 (1.04)	405	1.53 (0.92)	140	1.61 (0.96)	221	1.66 (1.04)	324
Fasting glucose	5.9 (2.38)	484	6.55 (2.39)	161	5.7 (1.78)	286	6.61 (2.89)	359
(mmol/L)								
Non-invasive tests		-		-		-	-	
FIB-4	1.18	535	2.41 (1.79)	165	0.988	320	1.94 (1.49)	
	(0.961)				(0.676)			380
LSM by VCTE (kPa)	8.90 (6.80)	535	20.9 (15.2)	165	7.00 (4.60)	320	14.4 (11.1)	380
Fibrosis stage								
NASH CRN scoring		535		165		320		380
system	97 (18.1)		-		97 (30.3)		-	
F0	130 (24.3)		-		130 (40.6)		-	
F1	93 (17.4)		-		93 (29.1)		-	
F2	215 (40.2)		-				215 (56.6)	
F3	-		165 (100)		-		165 (43.4)	
F4								

	F<4		F=4		F<3		F≥3	
	Median	Ν	Median	Ν	Median	Ν	Median	Ν
	(IQR)		(IQR)		(IQR)		(IQR)	
	or		or		or		or	
-	n (%)		n (%)		n (%)	<u> </u>	n (%)	
Demographics				-				
Age (years)	53.5 (17.0)	510	60.0 (15.5)	75	52.0 (18.0)	371	59.0 (15.8)	214
Male sex	196 (38.4)	510	23.0 (30.7)	75	156 (42.0)	371	63.0 (29.4)	214
BMI (kg/m ²)	34.5 (9.00)	509	35.1 (10.0)	75	34.0 (9.05)	371	35.3 (9.10)	213
Metabolic								
Diabetes (type 1 and 2)	217 (42.5)	510	51 (68.0)	75	135 (36.4)	371	133 (62.1)	214
Hypertension	284 (55.7)	510	50 (66.7)	75	194 (52.3)	371	140 (65.4)	214
Blood								
AST (U/L)	36.0 (26.0)	510	45.0 (30.5)	75	33.0 (23.0)	371	45.0 (32.0)	214
ALT (U/L)	50.0 (43.8)	510	40.0 (31.0)	75	48.0 (41.0)	371	48.5 (44.8)	214
AAR	0.768	510	1.03	75	0.73	371	0.872	214
	(0.302)		(0.475)		(0.306)		(0.34)	
Platelets count (G/L)	234 (92.5)	510	162 (82.0)	75	243 (96.0)	371	201 (91.5)	214
HDL (mmol/L)	1.11		1.11	73	1.11		1.11	
	(0.388)	508	(0.362)		(0.388)	369	(0.388)	212
LDL (mmol/L)	2.64 (1.29)	497	2.22 (1.25)	71	2.66 (1.24)	361	2.46 (1.29)	207
Albumin (g/L)	44.0 (4.00)	508	43.0 (5.50)	75	44.0 (5.00)	369	43.0 (4.75)	214
GGT (UI/L)	40.0 (47.0)	507	86.5 (124)	74	37.0 (36.0)	369	63.0 (85.2)	212
Triglycerides (mmol/L)	1.64 (1.17)	508	1.54 (0.89)	73	1.55 (0.98)	369	1.74 (1.30)	212
Fasting glucose	5.77 (1.80)	507	6.49 (3.03)	75	5.72 (1.55)	368	6.36 (2.37)	214
(mmol/L)								
Non-invasive tests		I		T		1		1
FIB-4	1.21	510	2.69 (2.24)	75	1.02	371	1.78 (1.39)	214
	(0.841)				(0.720)			
LSM by VCTE (kPa)	7.80 (5.30)	510	20.40	75	6.80 (4.35)	371	14.0 (11.3)	214
			(14.3)					
Fibrosis stage		I		T		1		1
NASH CRN scoring		510		75		371		214
system								
F0	121 (23.7)		-		121 (32.6)		-	
F1	134 (26.3)		-		134 (36.1)		-	
F2	116 (22.7)		-		116 (31.3)		-	
F3	139 (27.3)		-		-		139 (65)	
F4	-		75 (100)		-		75 (35)	

Table S7: Patients' characteristics of French NAFLD cohort

	F<4		F=4		F<3		F≥3	
	Median	Ν	Median	Ν	Median	Ν	Median	Ν
	(IQR)		(IQR)		(IQR)		(IQR)	
	or		or		or		or	
	n (%)		n (%)		n (%)		n (%)	
Demographics								
Age (years)	57.1 (15.6)	909	62.5 (11.5)	133	55.1 (16.2)	642	61.4 (12.3)	400
Male sex	551 (60.6)	909	71.0 (53.4)	133	395 (61.5)	642	227 (56.8)	400
BMI (kg/m ²)	31.2 (8.0)	905	29.8 (7.9)	132	31.0 (7.7)	638	31.6 (7.8)	399
Metabolic								
Diabetes (type 1 and	411 (45.2)	909	97 (72.9)	133	226 (35.2)	642	282 (70.5)	400
2)								
Hypertension	-	-	-	-	-	-	-	-
Blood		1	ſ			1	ſ	
AST (U/L)	38.0 (24.0)	909	56.0 (33.0)	133	35.0 (19.0)	642	50.0 (27.5)	400
ALT (U/L)	56.0 (47.0)	909	58.0 (37.0)	133	55.0 (45.0)	642	59.0 (44.6)	400
AAR	0.700		0.910	133	0.670		0.840	400
	(0.350)	909	(0.620)		(0.320)	642	(0.430)	
Platelets count (G/L)	223 (84.0)		174 (88.0)	133	226.5		203 (85.0)	400
		909			(82.0)	642		
HDL (mmol/L)	1.138	873	1.118	124	1.168	612	1.108	385
	(0.379)		(0.407)		(0.379)		(0.369)	
LDL (mmol/L)	3.10 (1.44)	837	2.80 (1.47)	117	3.24 (1.33)	586	2.76 (1.50)	365
Albumin (g/L)	43.0 (4.8)	901	41.7 (5.3)	132	43.6 (5.0)	636	42.0 (4.6)	397
GGT (UI/L)	72.0 (98.0)	909	141.0	133	66.0 (92.5)	642	99.0	400
			(231.0)				(124.2)	
Triglycerides	1.53 (1.05)	878	1.46 (0.87)	124	1.50 (0.97)	618	1.57 (1.03)	384
(mmol/L)	5 00 (3 10)	0.05		100		(22)		200
Fasting glucose	5.80 (2.10)	885	6.65 (3.15)	126	5.60 (1.70)	623	6.40 (2.90)	388
(mmol/L)								
Non-invasive tests	1.01 (0.00)	000	2.55 (2.10)	-	1 1 4 (0 77)	(10	1.00 (1.20)	400
FIB-4	1.31 (0.98)	909	2.55 (2.18)	122	1.14(0.77)	642	1.99 (1.38)	400
LSM by VCTE (kPa)	7.80 (5.40)	909	21.3 (23.5)	133	6.70 (3.90)	642	12.6 (12.1)	400
Fibrosis stage		000	l	100		(10		400
NASH CRN scoring		909		133		642		400
system	11((12))				116 (19.1)			
FU F1	110(12.8)		-		110(18.1)		-	
	240(20.4)		-		240(3/.4)		-	
	200(31.4)		-		200 (44.3)		-	
	207 (29.4)		-		-		207(00.8)	
F4	-		100.0)		-		155 (55.2)	

Table S8: List of predictors selected during the backward stepwise selection on a multivariable

Parameter	Estimate	Standard Error	Ζ	<i>p</i> -values
(Intercept)	-1.53676	0.69064	-2.22511	0.02607
LSM	0.12355	0.01079	11.44585	< 0.0001
AGE	0.01975	0.0089	2.21852	0.02652
AAR	0.91865	0.24717	3.71675	0.0002
PLT	-0.01634	0.00154	-10.5791	< 0.0001
TRIG	-0.2262	0.11078	-2.04193	0.04116
SEX	-0.61571	0.18346	-3.35615	0.00079
DIAB	0.72261	0.18518	3.9021	0.0001

logistic regression for Agile 4 (score construction step 1).

LSM: liver stiffness; AAR: AST:ALT ratio; AST: aspartate aminotransferase; ALT: alanine

aminotransferase; PLT: platelet; TRIG: triglycerides; DIAB: diabetes status.

Table S9: List of predictors selected during the backward stepwise selection on a multivariable

Parameter	Estimate	Standard Error	Ζ	<i>p</i> -values
(Intercept)	-4.80695	1.13487	-4.23568	0.00002
LSM	0.24394	0.01724	14.14583	< 0.0001
AGE	0.03372	0.00749	4.50306	0.00001
ALB	0.03228	0.02005	1.60985	0.10743
AAR	1.25035	0.27242	4.58976	< 0.0001
PLT	-0.00907	0.00122	-7.45825	< 0.0001
LDL	-0.18206	0.08135	-2.23799	0.02522
SEX	-0.37034	0.1609	-2.30167	0.02135
DIAB	0.79185	0.15403	5.14076	< 0.0001
AHT	0.23289	0.15644	1.48869	0.13657

logistic regression for Agile 3+ (score construction step 1).

LSM: liver stiffness; ALB: albumin; AAR: AST:ALT ratio; AST: aspartate aminotransferase; ALT: alanine

aminotransferase; PLT: platelet; LDL: low-density lipoproteins; DIAB: diabetes status; AHT: arterial

hypertension.

Table S10: Details of predictors' removal procedure (score construction step 2) using likelihood ratio

Removed variables	Deviance	LRT	Adj. LRT
Kennoved variables	Deviance	P-values	P-values
Age	-5.04	0.0248	0.0289
TRIG	-4.36	0.0367	0.0367
DIAB	-15.8	7.18e-05	1.68e-04
AGE,TRIG	-9.85	0.00727	0.0102
AGE,DIAB	-23.7	7.09e-06	2.78e-05
TRIG,DIAB	-18.2	1.12e-04	1.96e-04
AGE,TRIG,DIAB	-26.4	7.95e-06	2.78e-05

test selection	procedure on	nested model	s for Agile 4.

TRIG: triglycerides; DIAB: diabetes status; LRT: likelihood ratio test; Adj.: adjusted. Note that for this step of score construction the aim was to decrease the number of variables included in the model to simplify its use with the following a priori assumptions: keep LSM, sex and FIB-4 components as all are readily available at time of VCTE procedure, except for age which has been shown to be linked to a decrease in performances of FIB-4 in patients 65 years of age old or older⁴. At the end of this step, triglycerides and age

were removed from the predictors of Agile 4.

Domoved warishing	Davianas	LRT	Adj. LRT
Removed variables	Deviance	P-values	P-values
AGE	-28.1122117	< 0.001	< 0.001
ALB	-5.7453895	0.017	0.020
LDL	-3.4650793	0.063	0.067
DIAB	-23.7081946	< 0.001	< 0.001
AHT	-0.5499118	0.458	0.458
AGE, ALB	-32.5257856	< 0.001	< 0.001
AGE, LDL	-35.6524340	< 0.001	< 0.001
AGE, DIAB	-59.2931137	< 0.001	< 0.001
AGE, AHT	-32.8680722	< 0.001	< 0.001
ALB, LDL	-9.4455398	0.009	0.011
ALB, DIAB	-28.8694456	< 0.001	< 0.001
ALB, AHT	-6.3134905	0.043	0.047
LDL, DIAB	-29.9629013	< 0.001	< 0.001
LDL, AHT	-4.0360988	0.133	0.137
DIAB, AHT	-25.8923807	< 0.001	< 0.001
AGE, ALB, LDL	-40.2126815	< 0.001	< 0.001
AGE, ALB, DIAB	-62.8752749	< 0.001	< 0.001
AGE, ALB, AHT	-37.1926983	< 0.001	< 0.001
AGE, LDL, DIAB	-72.0737029	< 0.001	< 0.001
AGE, LDL, AHT	-40.9593754	< 0.001	< 0.001
AGE, DIAB, AHT	-70.2726483	< 0.001	< 0.001
ALB, LDL, DIAB	-35.4561815	< 0.001	< 0.001
ALB, LDL, AHT	-10.0319000	0.018	0.021
ALB, DIAB, AHT	-31.0337739	< 0.001	< 0.001
LDL, DIAB, AHT	-32.4627695	< 0.001	< 0.001
AGE, ALB, LDL, DIAB	-75.8295091	< 0.001	< 0.001
AGE, ALB, LDL, AHT	-45.4029040	< 0.001	< 0.001
AGE, ALB, DIAB, AHT	-73.5777593	< 0.001	< 0.001
AGE, LDL, DIAB, AHT	-85.3141461	< 0.001	< 0.001
ALB, LDL, DIAB, AHT	-37.9315963	< 0.001	< 0.001
AGE, ALB, LDL, DIAB, AHT	-88.7114147	< 0.001	< 0.001

test selection procedure on nested models for Agile 3+.

ALB: albumin; LDL: low-density lipoproteins; DIAB: diabetes status; AHT: arterial hypertension; LRT: likelihood ratio test; Adj.: adjusted. Note that for this step of score construction the aim was to decrease the number of variables included in the model to simplify its use with the following a priori assumptions: keep LSM, sex and FIB-4 components as all are readily available at time of VCTE procedure, except for age which has been shown to be linked to a decrease in performances of FIB-4 in patients 65 years of age or older⁴. At the end of this step, albumin, LDL and hypertension were removed from the predictors of Agile

	Т	raining s	et	Intern	al validat	tion set	NAS	H CRN c	ohort	Fre	nch NAF cohort**	LD
	FIB-4	LSM	Agile 4	FIB-4	LSM	Agile 4	FIB-4	LSM	Agile 4	FIB-4	LSM	Agile 4
Rule out cut-off (≥85% Se)	<1.39	<12.1	<0.25 1	<1.39	<12.1	<0.25 1	<1.39	<12.1	<0.25 1	<1.39	<12.1	<0.25 1
% patients	50%	58%	67%	49%	59%	68%	57%	70%	77%	49%	72%	81%
Se/Sp	0.85/0.	0.86/0.	0.85/0.	0.87/0.	0.79/0.	0.79/0.	0.85/0.	0.88/0.	0.87/0.	0.85/0.	0.76/0.	0.71/0.
	60	71	82	61	71	83	63	79	86	54	79	88
NPV	0.96*	0.97*	0.97*	0.97*	0.96*	0.96*	0.97	0.98	0.98	0.96	0.96	0.96
LR-	0.25	0.20	0.18	0.21	0.29	0.26	0.23	0.15	0.15	0.28	0.30	0.32
Indeterminate												
zone												
[85%Se ;												
99%Sp[
% patients	47%	39%	28%	48%	38%	27%	41%	27%	21%	48%	25%	16%
Rule in cut-off	<i>≥</i> 4.94	≥45.5	≥0.843	≥4.94	≥45.5	≥0.843	≥4.94	≥45.5	≥0.843	<i>≥</i> 4.94	≥45.5	≥0.843
(≥99% Sp)												
% patients	3%	3%	6%	3%	2%	4%	2%	2%	2%	3%	3%	3%
Se/Sp	0.11/0.	0.11/0.	0.21/0.	0.10/0.	0.09/1	0.18/1	0.11/0.	0.15/0.	0.17/1	0.17/0.	0.17/0.	0.18/0.
	99	99	99	99			99	99		99	99	99
PPV	0.64*	0.64*	0.75*	0.61*	0.78*	0.94*	0.62	0.79	1	0.65	0.81	0.80
LR+	12.14	11.81	20.58	10.38	24.32	97.27	10.88	24.93	Inf	12.53	30.07	27.34

validation set, the NASH CRN and the French NAFLD cohorts using a rule-in cut-off values with a 99% specificity

Se: sensitivity; Sp: specificity. * Due to the high prevalence of cirrhosis and advanced fibrosis in the training set and the internal validation set, PPV and NPV

for these datasets were adjusted on the prevalence of external validation, i.e. F4 = 13% and $F \ge 3 = 37\%$. No adjustment was done for the calculation of PPV

and NPV on the NASH CRN and the French NAFLD cohorts. ** Analysis performed by Pr Boursier and his team.

diagnosis of advanced fibrosis in	the training set. the internal	validation set, the NASH CRI	N and the French NAFLD cohorts
	······································		

	Tr	aining set	t	Internal	validatio	n set	NASH	CRN coh	ort	French NA	AFLD co	hort**
	FIB-4	LSM	Agile 3+	FIB-4	LSM	Agile 3+	FIB-4	LSM	Agile 3+	FIB-4	LSM	Agile 3+
Rule out cut-off	<1·3 (<65 y)	<8.0	<0.451	<1·3 (<65 y)	<8.0	<0.451	<1·3 (<65 y)	<8.0	<0.451	<1·3 (<65 y)	<8.0	<0.451
	<2·0 (≥65 y)			<2·0 (≥65 y)			<2·0 (≥65 y)			<2·0 (≥65 y)		
% patients	51%	32%	44%	52%	33%	42%	57%	45%	54%	52%	46%	53%
Se/Sp	0.71/0.77	0.91/0	0.85/0.78	0.71/0.78	0.90/0	0.87/0.7	0.68/0.71	0.82/0	0.82/0.7	0.70/0.67	0.87/0.	0.83/0.7
		·57			·61	6		·63	5		66	5
NPV	0.82*	0.91*	0.90*	0.82*	0.91*	0.91*	0.79	0.88	0.88	0.78	0.89	0.87
LR-	0.37	0.17	0.19	0.38	0.16	0.17	0.46	0.25	0.24	0.45	0.21	0.23
Indeterminate												
zone												
% patients	32%	26%	13%	32%	26%	17%	31%	25%	16%	34%	26%	18%
Rule in cut-off	>2.67	>12.0	≥0.679	>2.67	>12.0	≥0.679	>2.67	>12.0	≥0.679	>2.67	>12.0	≥0.679
% patients	17%	42%	43%	16%	41%	42%	12%	30%	30%	14%	28%	29%
Se/Sp	0.29/0.97	0.68/0	0.71/0.90	0.29/0.98	0.64/0	0.69/0.9	0.26/0.95	0.60/0	0.61/0.8	0.29/0.95	0.54/0.	0.61/0.9
		·87			·87	1		·88	7		87	0
PPV	PPV 0.85* 0.75* 0		0.81*	0.90*	0.73*	0.81*	0.77	0.74	0.73	0.79	0.75	0.79
LR+	9.97	5.15	7.16	15.30	4.63	7.33	5.71	4.97	4.70	5.94	4.75	6.20

Se: sensitivity; Sp: specificity. * Due to the high prevalence of cirrhosis and advanced fibrosis in the training set and the internal validation set, PPV and NPV

for these datasets were adjusted on the prevalence of external validation, i $\cdot e \cdot F4 = 13\%$ and $F \ge 3 = 37\%$. No adjustment was done for the calculation of PPV

and NPV on the NASH CRN and the French NAFLD cohorts.

Table S14: Comparison of AUROCs of Agile 4 and Agile 3+ for patients with BMI<30kg/m² vs BMI≥30kg/m² in the internal validation set, the NASH

CRN and the French NAFLD cohorts

	Internal v	alidation set (N	=646)	NASH C	RN cohort (N=	584)	French NA	FLD cohort (N	=1037)
	BMI<30	BMI≥30		BMI<30	BMI≥30		BMI<30	BMI≥30	
	kg/m ²	kg/m²		kg/m²	kg/m²		kg/m²	kg/m²	
n (%)	249 (39%)	397 (61%)		133 (23%)	451 (77%)		440 (42%)	597 (58%)	
Fibrosis									
stages n(%)	50 (20%)	39 (10%)		47 (35%)	74 (16%)		56 (13%)	59 (10%)	
FO	50 (20%)	70 (18%)		28 (21%)	106 (24%)		116 (26%)	123 (20%)	
F1	28 (11%)	52 (13%)		24 (18%)	92 (20%)		105 (24%)	179 (30%)	
F2	67 (27%)	139 (35%)		19 (14%)	119 (26%)		94 (21%)	173 (29%)	
F3	54 (22%)	97 (24%)		15 (11%)	60 (13%)		69 (16%)	64 (11%)	
F4									
	AUROC	AUROC	Delong	AUROC	AUROC	Delong	AUROC	AUROC	Delong
	[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test
	BMI<30	BMI≥30	p-value	BMI<30	BMI≥30	p-value	BMI<30	BMI≥30	p-value
	kg/m²	kg/m²		kg/m²	kg/m²		kg/m²	kg/m²	
Agile 4	0.88	0.91	0.279	0.96	0.93	0.337	0.89	0.89	0.968
	[0.84;0.93]	[0.88; 0.94]		[0.91;1.00]	[0.89;0.96]		[0.85; 0.94]	[0.86;0.93]	
Agile 3+	0.93	0.89	0.066	0.94	0.84	<0.001	0.90	0.84	0.005
	[0.90;0.96]	[0.85; 0.92]		[0.90;0.98]	[0.81; 0.88]		[0.87;0.93]	[0.81; 0.87]	

		Internal v	alidation set (N=	=699)	NASH C	RN cohort (N=5	85)	French NAFLD cohort (N=1033)			
	Ī	S0/S1	S≥2		S0/S1	S≥2		S0/S1	S≥2		
n (%)		437 (63%)	262 (37%)		258 (44%)	327 (56%)		383 (37%)	650 (63%)		
Fibrosis		· · ·			· · ·						
stages n(%)		55 (13%)	42 (16%)		61 (24%)	60 (18%)		66 (17%)	47 (7%)		
	FO	46 (11%)	84 (32%)		52 (20%)	82 (25%)		117 (31%)	123 (19%)		
	F1	50 (11%)	43 (16%)		45 (17%)	71 (22%)		79 (21%)	206 (32%)		
	F2	144 (33%)	70 (27%)		56 (22%)	83 (25%)		73 (19%)	190 (29%)		
	F3	142 (32%)	23 (9%)		44 (17%)	31 (10%)		48 (12%)	84 (13%)		
	F4										
		AUROC 195%CII	AUROC [95%CI]	Delong test	AUROC 195%CII	AUROC [95%CI]	Delong test	AUROC [95%CI]	AUROC 195%CII	Delong test	
		S0/S1	S≥2	p-value	S0/S1	S≥2	p-value	S0/S1	S≥2	p-value	
Agile 4		0.87 [0.84;	0.90 [0.84;	0.438	0.93 [0.89;	0.94 [0.90;	0.903	0.92 [0.83;0.91]	0.87 [0.83;0.91]	0.069	
_		0.91]	0.95]		0.97]	0.97]					
Agile 3+		0.90 [0.87;	0.87 [0.83;	0.266	0.89 [0.85;	0.85 [0.80;	0.176	0.89 [0.86;0.92]	0.86 [0.83;0.89]	0.142	
		0.93]	0.92]		0.93]	0.89]					

CRN and the French NAFLD cohorts

Table S16: Comparison of AUROCs of Agile 4 and Agile 3+ for diabetic vs non-diabetic patients in the internal validation set, the NASH CRN and the

		Internal va	alidation set (N=′	700)	NASH C	RN cohort (N=58	85)	French NA	FLD cohort (N=1	1042)
		Diabetic	Non-diabetic		Diabetic	Non-diabetic		Diabetic	Non-diabetic	
n (%)		357 (51%)	343 (49%)		268 (46%)	317 (54%)		508 (48.8%)	534 (51.2%)	
Fibrosis										
stages n(%)		21 (6%)	76 (22%)		24 (9%)	97 (31%)		23 (5%)	93 (17%)	
	FO	60 (17%)	70 (20%)		56 (21%)	78 (25%)		76 (15%)	164 (31%)	
	F1	31 (9%)	62 (18%)		55 (20%)	61 (19%)		127 (25%)	159 (30%)	
	F2	140 (39%)	75 (22%)		82 (31%)	57 (18%)		185 (36%)	82 (15%)	
	F3	105 (29%)	60 (18%)		51 (19%)	24 (7%)		97 (19%)	36 (7%)	
	F4									
		AUROC	AUROC	Delong	AUROC	AUROC	Delong	AUROC	AUROC	Delong
		[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test
		Diabetic	Non-diabetic	p-value	Diabetic	Non-diabetic	p-value	Diabetic	Non-diabetic	p-value
Agile 4		0.88 [0.84; 0.92]	0.90 [0.86; 0.94]	0.542	0.92 [0.88; 0.97]	0.94 [0.90; 0.98]	0.611	0.82 [0.77;0.87]	0.96 [0.94;0.98]	< 0.001
Agile 3+		0.89 [0.85; 0.92]	0.90 [0.86; 0.93]	0.701	0.82 [0.77; 0.87]	0.88 [0.83; 0.92]	0.0946	0.80 [0.76;0.84]	0.89 [0.86;0.92]	< 0.001

French NAFLD cohorts

		Internal va	alidation set (N=7	700)	NASH C	RN cohort (N=58	85)	French NA	FLD cohort (N=	999)
		M probe	XL probe		M probe	XL probe		M probe	XL probe	
n (%)		411 (59%)	289 (41%)		214 (37%)	371 (63%)		564 (56%)	435 (44%)	
Fibrosis										
stages n(%)		72 (18%)	25 (8%)		64 (30%)	57 (15%)		62 (11%)	48 (11%)	
F	70	96 (23%)	34 (12%)		46 (21%)	88 (24%)		144 (26%)	87 (20%)	
F	71	59 (14%)	34 (12%)		45 (21%)	71 (19%)		144 (26%)	128 (29%)	
F	72	112 (27%)	103 (36%)		38 (18%)	101 (27%)		131 (23%)	130 (30%)	
F	73	72 (18%)	93 (32%)		21 (10%)	54 (15%)		83 (14%)	42 (10%)	
F	74									
		AUROC	AUROC	Delong	AUROC	AUROC	Delong	AUROC	AUROC	Delong
		[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test
		M probe	XL probe	p-value	M probe	XL probe	p-value	M probe	XL probe	p-value
Agile 4	0	0.89 [0.86; 0.93]	0.96 [0.93; 0.99]	0.728	0.88 [0.84; 0.92]	0.92 [0.88; 0.96]	0.0729	0.89 [0.86; 0.93]	0.88 [0.83; 0.93]	0.643
Agile 3+	0	0.91 [0.88; 0.93]	0.88 [0.84; 0.92]	0.289	0.91 [0.87; 0.95]	0.84 [0.80; 0.88]	0.0215	0.90 [0.87; 0.92]	0.82 [0.78; 0.86]	0.001

set, the NASH CRN and the French NAFLD cohorts

Table S18: Diagnostic performances of FIB-4, LSM and Agile 3+ for the diagnosis of advanced fibrosis and of FIB-4, LSM and Agile 4 the diagnosis of cirrhosis in the training, internal and external validation sets using rule-out cut-off values with a 90% sensitivity and rule-in cut-off values with a 90%

specificity

		r	Training set			Internal VS		NA	SH CRN col	nort	French NAFLD cohort**		
		FIB-4	LSM	Agile	FIB-4	LSM	Agile	FIB-4	LSM	Agile	FIB-4	LSM	Agile
	Rule out cut-off (≥90% Se)	<1.26	<11.1	<0.169	<1.26	<11.1	<0.169	<1.26	<11.1	<0.169	<1.26	<11.1	<0.169
	% patients	44%	51%	60%	43%	53%	62%	48%	66%	71%	43%	67%	75%
	Se/Sp	0.90/0.54	0.90/0.64	0.90/0.75	0.90/0.54	0.87/0.65	0.85/0.76	0.89/0.54	0.89/0.74	0.89/0.80	0.89/0.4	0.81/0.7	0.76/0.8
	NPV	0.97*	0.98*	0.98*	0.97*	0.97*	0.97*	0.97	0.98	0.98	0.97	0.96	0.96
	LR-	0.19	0.15	0.14	0.18	0.21	0.20	0.20	0.14	0.13	0.24	0.25	0.29
F4 target	Indeterminate zone [90%Se ; 90%Sp[
	% patients	37%	28%	15%	38%	27%	14%	38%	21%	14%	41%	21%	12%
	Rule in cut-off (≥90% Sp)	≥2.54	≥19.4	≥0.388	≥2.54	≥19.4	≥0.388	≥2.54	≥19.4	≥0.388	≥2.54	≥19.4	≥0.388
	% patients	19%	21%	25%	19%	20%	24%	14%	13%	15%	16%	12%	13%
	Se/Sp	0.50/0.90	0.58/0.90	0.74/0.90	0.44/0.89	0.56/0.91	0.69/0.90	0.52/0.92	0.57/0.94	0.71/0.94	0.50/0.8	0.53/0.9 4	0.58/0.9
	PPV	0.43*	0.46*	0.53*	0.38*	0.48*	0.50*	0.49	0.57	0.63	0.41	0.56	0.55
	LR+	5.09	5.71	7.43	4.15	6.21	6.72	6.63	9.14	11.63	4.77	8.70	8.49
	Rule out cut-off (≥90% Se)	<0.99	<8.10	<0.351	<0.99	<8.10	< 0.351	<0.99	<8.10	<0.351	<0.99	<8.10	<0.351
	% patients	29%	32%	37%	29%	33%	36%	32%	46%	48%	27%	46%	45%
et	Se/Sp	0.90/0.50	0.90/0.58	0.90/0.69	0.89/0.51	0.90/0.61	0.92/0.69	0.93/0.46	0.85/0.63	0.86/0.68	0.94/0.4 0	0.86/0.6 6	0.90/0.6 7
arg	NPV	0.89*	0.91*	0.92*	0.89*	0.91*	0.94*	0.91	0.88	0.90	0.91	0.88	0.91
3 t:	LR-	0.20	0.16	0.14	0.22	0.16	0.12	0.16	0.24	0.20	0.16	0.21	0.15
F≥	Indeterminate zone [90%Se ; 90%Sp[% potionts	38%	31%	20%	350/	310/	220%	40%	200%	220%	40%	310/	26%

Rule in cut-off	≥1.81	≥13.6	≥0.679	≥1.81	≥13.6	≥0.679	≥1.81	≥13.6	≥0.679	≥1.81	≥13.6	<i>≥</i> 0.679
(≥90% Sp)												
% patients	33%	37%	43%	36%	36%	42%	28%	25%	30%	33%	23%	29%
Se/Sp	0.53/0.90	0.61/0.90	0.71/0.90	0.57/0.90	0.57/0.90	0.69/0.91	0.50/0.84	0.53/0.91	0.61/0.87	0.56/0.8	0.48/0.9	0.61/0.9
										1	2	0
PPV	0.76*	0.78*	0.81*	0.77*	0.77*	0.81*	0.64	0.78	0.73	0.65	0.79	0.79
LR+	5.29	5.91	7.16	5.56	5.71	7.33	3.11	6.12	4.70	3.04	5.86	6.19

* Due to the high prevalence of cirrhosis and advanced fibrosis in the training set and the internal validation set, PPV and NPV for these datasets were adjusted

on the prevalence of external validation, i.e. F4 = 13% and $F \ge 3 = 37\%$. No adjustment was done for the calculation of PPV and NPV on the NASH CRN

cohort and the French NAFLD cohort. ** Analysis performed by Pr Boursier and his team. AUROC=Area under the receiver operating curve, CI=Confidence

interval, FIB-4=Fibrosis-4 index, Agile=Agile 3+ and Agile 4, LR-=Negative likelihood ratio, LR+=Positive likelihood ratio, LSM=Liver stiffness

measurement, NAFLD=Nonalcoholic fatty liver disease, NASH CRN=Nonalcoholic Steatohepatitis Clinical Research Network, NPV=Negative predictive

value, PPV=Positive predictive value, Se=Sensitivity, Sp=Specificity, VS=Validation set

	Internal	validation set (N=6	668)	NASH C	RN cohort (N=58	85)	French NA	FLD cohort (N=	1041)
	LB	LB		LB	LB		LB	LB	
	length>15mm	length≤15mm		length>15mm	length≤15mm		length>15mm	length≤15mm	
n (%)	229 (34%)	439 (66%)		464 (79%)	121 (21%)		931 (89.4%)	110 (10.6%)	
Fibrosis									
stages n(%)	39 (17%)	44 (10%)		88 (19%)	33 (27%)		108 (12%)	7 (6%)	
FO	58 (25%)	58 (13%)		104 (22%)	30 (25%)		218 (23%)	22 (20%)	
F1	49 (22%)	41 (10%)		98 (21%)	18 (15%)		261 (28%)	25 (23%)	
F2	64 (28%)	150 (34%)		116 (25%)	23 (19%)		233 (25%)	34 (31%)	
F3	19 (8%)	146 (33%)		58 (13%)	17 (14%)		111 (12%)	22 (20%)	
F4									
	AUROC	AUROC	Delong	AUROC	AUROC	Delong	AUROC	AUROC	Delong
	[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test	[95%CI]	[95%CI]	test
	LB	LB	p-value	LB	LB	p-value	LB	LB	p-value
	length>15mm	length≤15mm		length>15mm	length≤15mm		length>15mm	length≤15mm	
Agile 4	0.92 [0.86;	0.86 [0.82; 0.89]	0.0919	0.93 [0.89;	0.96 [0.92;	0.1968	0.89	0.92	0.339
	0.98]			0.96]	1.00]		[0.85; 0.92]	[0.86;0.98]	
Agile 3+	0.84 [0.79;	0.91 [0.88; 0.93]	0.0424	0.85 [0.81;	0.93 [0.89;	0.0046	0.87	0.88	0.566
_	0.90]			0.88]	0.97]		[0.84;0.89]	[0.83;0.94]	

internal validation set, the NASH CRN and the French NAFLD cohorts.

Supplementary references

- 1. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. *Med Decis Making*. 2006;26(6):565. doi:10.1177/0272989X06295361
- 2. Majumdar A, Campos S, Gurusamy K, Pinzani M, Tsochatzis EA. Defining the Minimum Acceptable Diagnostic Accuracy of Noninvasive Fibrosis Testing in Cirrhosis: A Decision Analytic Modeling Study. *Hepatology*. 2020;71(2):627-642. doi:10.1002/HEP.30846
- 3. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. *BMJ*. 2016;352. doi:10.1136/BMJ.I6
- 4. McPherson S, Hardy T, Dufour JF, et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. *Am J Gastroenterol*. 2017;112(5):740-751. doi:10.1038/ajg.2016.453
- 5. Papatheodoridi M, Hiriart JB, Lupsor-Platon M, et al. Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease. *J Hepatol*. December 2020. doi:10.1016/j.jhep.2020.11.050
- 6. Steyerberg EW. *Clinical Prediction Models*. Cham: Springer International Publishing; 2019. doi:10.1007/978-3-030-16399-0