COVID-19, Myocarditis and Pericarditis DeLisa Fairweather¹⁻³*#, Danielle J. Beetler^{1,3-4}*, Damian N. DiFlorio^{1,3-4}, Nicolas Musigk⁵, Bettina Heidecker⁵, Leslie T. Cooper Jr.¹

Supplementary Data

Tables

Supplementary Table 1. Animal models of myocarditis ¹⁻⁴					
	Virus-only models (e.g., CVB3*, EMCV, Rheovirus)	Autoimmune virus models (e.g., EAM, CVB3, MCMV)	Autoimmune models (e.g., EAM)		
Survival	20-30% by day 7	100% survival	100% survival		
Necrosis	High levels	Low, appears day 35	Low, appears day 45		
Viral replication	10^{7} - 10^{9} PFU/g heart	10^{3} - 10^{5} PFU/g heart	No virus in model		
Acute myocarditis	Peak at day 7	Peak at day 10	Peak at day 21		
Key cell mediators	CVB3: γδT cells &	CVB3: CD11b+	CD11b+		
	CD8 T cells	macrophages & MCs, T & B cells	macrophages & MCs, T & B cells		
Chronic myocarditis	Most do not survive	Starts day 35	Starts day 45		
Progression to DCM	Yes, in survivors	Yes (BALB/c, A/J)	Yes (BALB/c, A/J)		
Sex differences	Males worse	Males worse	Males worse		

* Abbreviations: CVB3, coxsackievirus B3; DCM, dilated cardiomyopathy; EAM, experimental autoimmune myocarditis; EMCV, encephalomyocarditis virus; MCMV, murine cytomegalovirus; MCs, mast cells; PFU, plaque forming units.

Supplementary	Table 2.	Several large	e epidemiological	studies o	of SARS-CoV-2	myocarditis and
pericarditis						

Location	n	Incidence or increased risk of myocarditis/ pericarditis after COVID-19*	Reference
US	1,452,773	16x greater risk with COVID; 9/100,000 no COVID vs.	5
		150/100,000 with COVID; myocarditis occurred 42.3%	
		more in 2020 than 2019; risk higher in males than	
		females	
US	718,365	5% increase myocarditis & 1.5% pericarditis	6
US	691,455	1-12 months after COVID infection, myocarditis	7
		HR=4.41, 95% CI 2.89-6.72; pericarditis HR=1.62, 95%	
		CI 1.45–1.81, more cases in younger age under 40 and	
		in males	
Israel	233,392	Myocarditis RR=18.28, 95% CI 3.95-25.12; incidence	8
		myocarditis 11/100,000 and 11/100,000 pericarditis	
		after COVID	

Israel	196,992	No association of myocarditis or pericarditis with "long- COVID" (i.e., developing after acute infection resolves)	9
US	193,113	14% increased risk of sequalae including myocarditis/cardiomyopathy	10
US	107,699	COVID-19 group, 79 (0.12%) patients had new-onset myocarditis compared to 29 (0.04%) in the non-COVID- 19 control	11
Spain	74,814	Myopericarditis OR=4.43, 95% CI 3.98-4.94	12
US	70,288	Myocarditis (OR 8.17, 95% CI 3.58–18.62, absolute risk 0.1%)	13
Europe and US	56,963	Myocarditis (definite/ probable) 240/100,000, (possible) 410/100,000 patients hospitalized for COVID-19	14
Hong Kong	11,441	Compared to the background rate, the rate of myopericarditis among vaccinated subjects in Hong Kong was similar 0.55/100,000 (5.5/million)	15

*Abbreviations: aRR, adjusted relative risk; CI, confidence intervals; IRR, incidence rate ratio; OR, odds ratio; RI, relative incidence; RR, relative risk or risk ratio

Supplemental Table 3. Large epidemiological studies of COVID-19 vaccine-associated myocarditis/pericarditis

Location	Vaccine	Incidence of myocarditis/pericarditis after 2 nd dose (95% CI)*	п	Reference
Worldwide	Moderna	Overall 9.23/100,000, males 18-24 years 53.76/100,000, males <40 years RR=3.10, (2.68-3.58)	252,000,000	16
US	Pfizer Moderna	US VAERS 82% of cases were male, 69% of cases were White; reporting rates highest after second dose: males 12-15 years 7.1/100,000, males 16-17 10.6/100,000, males 18-24 5.2/100,000 (Pfizer) and 5.6/100,000 (Moderna)	192,405,448	17
UK	Pfizer Moderna AstraZeneca	1/100,000 (Pfizer), 1.4/100,000 (Moderna), 0.5/100,000 (AstraZeneca) reporting rates overall for all doses, highest in 18-29 years group and males for mRNA vaccines, especially after second dose	53,000,000	18
Canada	Pfizer Moderna AstraZeneca Noravax Janssen Medicago	97.8% associated with mRNA vaccines, 62% of those associated with second dose: 65% male, median age 25 years (Pfizer); 76% male, median age 28 (Moderna)	32,438,982	19

	other			
France	Pfizer Moderna	Pfizer/BNT162b2 myocarditis OR=6.9 (5.7–8.4), pericarditis OR=2.7 (2.2–3.5); Moderna/mRNA- 1273 myocarditis OR=27 (19–39), pericarditis OR=5.3 (3.3–8.4)	32,000,000	20
Europe	Pfizer Moderna AstraZeneca	Increased risk after 1st & 2nd dose. Myocarditis Pfizer/BNT162b2 aRR=1.75 (1.43-2.14), Moderna/mRNA-1273 aRR=6.57 (4.64-9.28), Males 16-24 years BNT162b2 aRR=5.31 (3.68-7.68), mRNA-1273 aRR=13.83 (8.08- 23.68)	23,122,522	21
UK	Pfizer Moderna AstraZeneca	Increased risk from 1 st and 2 nd dose but increased risk of myocarditis only in those under 40 years of age	20,615,911	22
Singapore	Pfizer Moderna	Overall 0.1-1/100,000, incidence highest in young males <30 years	5,241,294	23
Israel	Pfizer	Myocarditis RR=5.34 (4.48-6.40), males 16-19 years greatest risk: IRR=13.60 (9.30-19.20)	5,000,000	24
Denmark	Pfizer Moderna AstraZeneca Janssen	40% of cases in patients 12-39 years, 73% of cases were male; Pfizer/BNT162b2 overall 1.4/100,000; males 1.5/100,000; females 1.3 females; age 12-39 males & females 1.6/100,000; Moderna/mRNA-1273 overall 4.2/100,00; males 6.3/100,000; females 2.0/100,000; age 12-39 males & females 5.7/100,000	3,482,295 498,814	25
Italy	Pfizer Moderna	Increased risk with Pfizer after 2nd dose and with Moderna for 1st and 2nd dose; Myocarditis BNT162b2 RR=1.99 (1.30 to 3.05); mRNA-1273 RR=2.63 (1.21 to 5.71); highest risk males 12-39 years with mRNA-1273 RI=11.91 (3.88 to 36.53)	2,861,809	26
US Military	Pfizer Moderna	Incidence not reported	2,810,000	27
Israel	Pfizer	Myocarditis 1st dose: 2.13/100,000 (1.56-2.70); Males 16-29 years 10.69/100,000 (6.93 to 14.46)	2,500,000	28

US	Pfizer Moderna	Increased risk in 18-39 years, 2.2/100,000 (Pfizer), 3.1/100,000 (Moderna), 86% of cases were male	2,403,307	29
US	Pfizer Moderna	Myocarditis 2.7 (95%CI, 1.4-4.8)- all were males, study did not separate data by vaccine type, all under 40 years of age- most under 25 years; 64% White	2,392,924	30
Hong Kong	Pfizer Sinovac	Sex and age not reported for myocarditis risk, myocarditis and pericarditis combined 10/100,000 (Pfizer), 3/100,000 (CoronaVac)	2,333,379	31
US	Pfizer Moderna J&J	Myocarditis 1 case/100,000; pericarditis 1.9 cases/100,000; 75% males for both; myocarditis young under 40 years, pericarditis older over 50 years; myocarditis 95% White, pericarditis 84% White	2,000,287	32
Israel	Pfizer	Vaccinated & matched controls of same size 2.7/100,000 (1.0-4.6); RR=3.24 (1.55 to 12.44), no analysis by sex and age	884,828	8

*Abbreviations: aRR, adjusted relative risk; CI, confidence intervals; IRR, incidence rate ratio; OR, odds ratio; RI, relative incidence; RR, relative risk or risk ratio; VAERS, vaccine adverse event reporting system

Developer	Common names	Vaccine type	Emergency Use Listing by WHO	Main usage
BioNTech /	BNT162b2,	nucleoside modified	31-Dec-20	approved
Pfizer	Comirnaty,	mRNA		in US,
	Tozinameran			widely
				used
AstraZeneca	Oxford-	recombinant ChAdOx1	16-Feb-21	widely
	AstraZeneca,	adenoviral vector		used
	CHADOX1	encoding spike protein		
	NCOV-19,	antigen		
	Covishield,			
	Vaxzevria,			
	AZD1222,			
	ChAdOx1_nCoV1,			
	SII			

Supplementary Table 4. Most common COVID-19 vaccines³³⁻³⁵

Johnson &	J&J, Janssen,	recombinant, replication	12-Mar-21	approved
Johnson	Jcovden,	incompetent adenovirus		in US,
	Ad26.COV 2.S	type 26 vector vaccine		widely
		encoding spike protein		used
Moderna	Moderna,	mRNA	30-Apr-21	approved
	Elasomeran,			in US,
	SpikeVax, mRNA			widely
	1273			used
China National	Sinopharm BIBP	Inactivated virus,	7-May-21	Southeast
Pharmaceutical		produced in Vero cells		Asia,
Group				Africa,
				South
				America
Sinovac Biotech	Coronavac	Inactivated virus,	1-Jun-21	Southeast
		produced in Vero cells		Asia,
				Africa,
				South
				America
Bharat Biotech	COVAXIN,		3-Nov-21	South
	BBV152			Asia,
				Africa,
				South
				America
Novavax	NVX-CoV2373,	protein subunit vaccine	20-Dec-21	approved
	Covovax,			in US,
	Nuvaxovoid			widely
				used
Gamaleya	Sputnik V	human adenovirus vector-	n/a	Russia
Research		based		
Institute				

*Abbreviations: n/a, not available; US, United States; WHO, World Health Organization.

References

 Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimmun. 2001;16:175-186

- Fairweather D, Stafford KA, Sung YK. Update on coxsackievirus B3 myocarditis. *Curr Opin Rheumatol*. 2012;24:401-407
- Pankuweit S KK. Viral myocarditis: From experimental models to diagnosis in patients. In: Caforio A, ed. *Myocarditis: Pathogenesis, diagnosis and treatment*. Switzerland: Springer Nature; 2020:91-110.
- Poli V BK, Fairweather D. Autoimmune myocarditis: Animal models. In: Caforio A, ed. Myocarditis: Pathogenesis, diagnosis and treatment. Switzerland: Springer Nature; 2020:111-128.
- Boehmer TK, Kompaniyets L, Lavery AM, Hsu J, Ko JY, Yusuf H, et al. Association between COVID-19 and myocarditis using hospital-based administrative data - United States, March 2020-January 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1228-1232
- Buckley BJR, Harrison SL, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH. Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID-19 patients. *Eur J Clin Invest.* 2021;51:e13679
- Wang W, Wang CY, Wang SI, Wei JC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TRINETX US collaborative networks. *EClinicalMedicine*. 2022;53:101619
- Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the BNT162b2
 mRNA COVID-19 vaccine in a nationwide setting. *N Engl J Med.* 2021;385:1078-1090
- Tuvali O, Tshori S, Derazne E, Hannuna RR, Afek A, Haberman D, et al. The incidence of myocarditis and pericarditis in post COVID-19 unvaccinated patients- A large population-based study. J Clin Med. 2022;11

- Daugherty SE, Guo Y, Heath K, Dasmarinas MC, Jubilo KG, Samranvedhya J, et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: Retrospective cohort study. *BMJ*. 2021;373:n1098
- Priyadarshni S, Westra J, Kuo YF, Baillargeon JG, Khalife W, Raji M. COVID-19 infection and incidence of myocarditis: A multi-site population-based propensity score-matched analysis. *Cureus*. 2022;14:e21879
- 12. Miro O, Sabate M, Jimenez S, Mebazaa A, Martinez-Nadal G, Pinera P, et al. A case-control, multicentre study of consecutive patients with COVID-19 and acute (myo)pericarditis: Incidence, risk factors, clinical characteristics and outcomes. *Emerg Med J*. 2022;39:402-410
- Murk W, Gierada M, Fralick M, Weckstein A, Klesh R, Rassen JA. Diagnosis-wide analysis of COVID-19 complications: An exposure-crossover study. *CMAJ*. 2021;193:E10-E18
- Ammirati E, Lupi L, Palazzini M, Hendren NS, Grodin JL, Cannistraci CV, et al. Prevalence, characteristics, and outcomes of COVID-19-associated acute myocarditis. *Circulation*. 2022;145:1123-1139
- 15. Chou OHI, Zhou J, Lee TTL, Kot T, Lee S, Wai AKC, et al. Comparisons of the risk of myopericarditis between COVID-19 patients and individuals receiving COVID-19 vaccines: A population-based study. *Clin Res Cardiol*. 2022;111:1098-1103
- Straus W, Urdaneta V, Esposito DB, Mansi JA, Rodriguez CS, Burton P, et al. Analysis of myocarditis among 252 million mRNA-1273 recipients worldwide. *Clin Infect Dis*. 2022
- Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. *JAMA*. 2022;327:331-340
- 18. GOV.UK. Archived coronavirus vaccine summary of yellow card reporting. 2023

- 19. Canada Go. Reported side effects following COVID-19 vaccination in Canada. 2023
- Le Vu S, Bertrand M, Jabagi MJ, Botton J, Drouin J, Baricault B, et al. Age and sex-specific risks of myocarditis and pericarditis following COVID-19 messenger RNA vaccines. *Nat Commun.* 2022;13:3633
- Karlstad O, Hovi P, Husby A, Harkanen T, Selmer RM, Pihlstrom N, et al. SARS-CoV-2 vaccination and myocarditis in a Nordic cohort study of 23 million residents. *JAMA Cardiol*. 2022;7:600-612
- 22. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. *Nat Med.* 2022;28:410-422
- 23. Authority HS. HSA's safety update #9 COVID-19 vaccine. 2021:1-10
- 24. Mevorach D, Anis E, Cedar N, Bromberg M, Haas EJ, Nadir E, et al. Myocarditis after BNT162b2 mRNA vaccine against COVID-19 in Israel. *N Engl J Med*. 2021;385:2140-2149
- Husby A, Hansen JV, Fosbol E, Thiesson EM, Madsen M, Thomsen RW, et al. SARS-CoV-2 vaccination and myocarditis or myopericarditis: Population based cohort study. *BMJ*. 2021;375:e068665
- 26. Massari M, Spila Alegiani S, Morciano C, Spuri M, Marchione P, Felicetti P, et al. Postmarketing active surveillance of myocarditis and pericarditis following vaccination with COVID-19 mRNA vaccines in persons aged 12 to 39 years in Italy: A multi-database, self-controlled case series study. *PLoS Med.* 2022;19:e1004056
- 27. Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. *JAMA Cardiol.* 2021;6:1202-1206

- 28. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, et al. Myocarditis after COVID-19 vaccination in a large health care organization. *N Engl J Med*. 2021;385:2132-2139
- 29. Goddard K, Lewis N, Fireman B, Weintraub E, Shimabukuro T, Zerbo O, et al. Risk of myocarditis and pericarditis following BNT162b2 and mRNA-1273 COVID-19 vaccination. *Vaccine*. 2022;40:5153-5159
- 30. Simone A, Herald J, Chen A, Gulati N, Shen AY, Lewin B, et al. Acute myocarditis following COVID-19 mRNA vaccination in adults aged 18 years or older. *JAMA Intern Med.* 2021;181:1668-1670
- 31. Wong CKH, Lau KTK, Xiong X, Au ICH, Lai FTT, Wan EYF, et al. Adverse events of special interest and mortality following vaccination with mRNA (BNT162b2) and inactivated (coronavac) SARS-CoV-2 vaccines in Hong Kong: A retrospective study. *PLoS Med.* 2022;19:e1004018
- 32. Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson IV, Robicsek A. Myocarditis and pericarditis after vaccination for COVID-19. *JAMA*. 2021;326:1210-1212
- 33. Organization WH. Coronavirus disease (COVID-19): Vaccines. 2022
- Organization WH. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process.
 2021:1-2
- 35. Center for Disease Control and Prevention. Overview of COVID-19 vaccines. 2022