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This work is built on a series of studies on modelling and analyses of eliminating transmission of
gambiense human African trypanosomiasis (gHAT) in the Democratic Republic of Congo (DRC). The
series of studies includes a model fitting paper [1] and a model projections paper [2]. The key difference
between the model utilised in the present study and the recent papers [1,2] is the way it can generate
new projections which allow for (1) reduction in active screening (AS) coverage, (2) lower detection rates
of passive screening (PS) from both stage 1 and stage 2, and (3) suspension or delay enrollment of vector
control (VC) for 2020 and 2021. There are no fundamental differences in the model itself, only the
simulation of these different future scenarios. To aid the reader of the present study, much of the same
model information is provided here. Note that the gHAT model is fitted to individual health zone HAT
Atlas data [3] independently and health zones with fewer than 10 data points (number of screening
events plus non-zero passive cases) are excluded in the previous and this studies.
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S1.1 The compartmental gHAT model
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Fig A. Illustration of compartmental gHAT model. Multi-host gHAT model is composed of one
host species able to confer gHAT (humans), a further non-reservoir species (others) and tsetse. After
incubation period, infected human hosts follow the progression which includes infectious stage 1 disease,
I, iy, infectious stage 2 disease, Iy, and non-infectious (due to hospitalisation) disease, R. Pupal stage
tsetse, Py, emerge into unfed adults. Unfed tsetse are susceptible, Sy, and following a blood-meal
become either exposed, Fy, or have reduce susceptibility to the trypanosomes, Gy . Tsetse select their
blood-meal from one of the host types dependant upon innate feeding preference and relative host
abundance. High-risk humans are more likely to receive bites than low-risk humans. Any blood-meals
taken upon “other” hosts do not result in infection. The transmission of infection between humans and
tsetse is shown by grey paths. This figure is adapted from the original model schematic [4], which was
published under a CC-BY licence.

The gHAT model we considered in this study is a variant “Model 4” of the Warwick model presented
in the literature [1,4-6], starting with Rock et al. [4]. An illustration in Fig. A and mathematical
descriptions by Equation (1) highlight that this compartmental multi-host model captures improvements
in passive screening at fixed health facilities (ng (Y) for stage 1 and vy (Y) for stage 2) and systematic
non-participation of high-risk groups (subscript H4, are r-fold more likely to receive bites and never
show up in active screenings) in the population. This participating structure, i.e. low-risk humans
randomly participate in active screening and high-risk humans are assumed to never participate, is
supported by data in previous model fits [1].

Human hosts are modelled by the SEIIRS model with two infectious compartments, stage 1 disease,
I, and stage 2 disease, Isg. Vectors are modelled by using compartments for appropriately modelling
tsetse when used in a host-vector model with disease [5]. Pupal stage tsetse, Py, emerge into unfed
susceptible adults, Sy, and following a blood-meal become either exposed, Ey , or have reduced
susceptibility to the Trypanosoma brucei gambiense parasites, Gy - this effect is known as the teneral
phenomenon. Following an infection, tsetse have an extrinsic incubation period (EIP) before becoming
onwardly infectious. To incorporate a more realistic EIP distribution, there are three exposed classes,
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E1v, Eay, E3y, which result in a gamma-distributed EIP (rather than an exponential with only one).
Tsetse bites are assumed to be taken on humans or non-reservoir animals. However, the non-reservoir
animal species do not need to be explicitly modelled, i.e. this model variant does not include tsetse to
non-human animal transmission.

Tsetse select their blood-meal from one of the host types dependant upon innate feeding preference
and relative host abundance. We assume tsetse preferentially feed on humans with a probability fg
which is taken to be 0.09 [7]. The proportion of tsetse bites taken on low-risk and high-risk humans are
f1 and f4, depending on the relative availability /attractiveness and the relative abundance of two risk
groups. High-risk humans are assumed to be r-fold more likely to receive bites, i.e. s =1 and s4 = 7.

$iNmi
2.5 8iNm;

In order to reduce the dimensionality of our ODE system (by one), the vector equations are
non-dimensionalised using the scaling Ny /Ny, where Ny is the total human population, and Ny is the
puNy

H
appearing in host equations (py is the probability of a human being infected by a single infectious
bloodmeal) and is referred to as the effective vector density.

Therefore, f;’s can be calculated using f; =

tsetse population size. This results in a new non-dimensionalised parameter, m.g, which is
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S1.2 Model fitting

S1.2.1 Parameters

Table A provides the estimates of fixed parameters available in the literature used in the previous gHAT
model [1,4,5]. The parameters fitted during the model fitting are defined in Table B. Prior and
posterior distributions of all fitted parameters in Kwamouth health zone are summarised in Table B and
Fig. B. Posterior distributions for these parameters are estimated using MCMC methods [1] and are
available in our graphical user interface at https://hatmepp.warwick.ac.uk/fitting/v2/, or can be
downloaded in Open Science Framework at https://osf.io/ck3tr/.

Table A. Model parametrisation (fixed parameters). Notation, brief description, and the used
values for fixed parameters.

Notation Description Value
Ny Total human population size Fixed for each health zone [8]
in 2015
LE Natural human mortality rate 5.4795x 1077 days™! [9]
By Total human birth rate = ugNpg
oH Human incubation rate 0.0833 days™* [10]
YH Stage 1 to 2 progression rate 0.0019 days~—! [11,12
Wi Recovery rate or 0.006 days—! [13
waning-immunity rate
Sens Active screening diagnostic 0.91 [14]
sensitivity
By Tsetse birth rate 0.0505 days~—! [5]
&y Pupal death rate 0.037 days ~!
K Pupal carrying capacity = 111.09Ny [5]
P(pupating) Probability of pupating 0.75
Ly Tsetse mortality rate 0.03 days~! [10
oy Tsetse incubation rate 0.034 days~! [15,16
a Tsetse bite rate 0.333 days~! [17]
Py Probability of tsetse infection 0.065 [10]
per infectious bite
€ Reduced non-teneral 0.05 [4]
susceptibility factor
fo Proportion of blood-meals on 0.09 [7]
humans
disp, ¢ Overdispersion parameter for 4x10~% [1]
active detection
disppass Overdispersion parameter for 2.8x107° (1]

passive detection

I Value of By is chosen to maintain constant population size without interventions.
2 Value of K is chosen to reflect the observed bounce back rate.
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Table B. Model parametrisation (posteriors of fitted parameters). Notation, brief description,
information on prior distributions, and representative percentiles of the posterior distributions
(Kwamouth health zone) for fitted parameters.

Notation Description Prior Posterior
distribution (median [95% CI])
Ry Basic reproduction number 1+ Exp(10) 1.09
(NGM approach) [1.06, 1.14]
r Relative bites taken on 1+T(3.68,1.09) 6.61
high-risk humans [3.15, 10.75]
k1 Proportion of low-risk people  B(16.97,3.23) 0.90
[0.82, 0.95]
bpre Pre-1998 relative exit rate from  B(1,1) 0.92
stage 2 factor [0.73, 1.00]
ny™ Post-1998 treatment rate I'(3.54,5.32 x 107°) 1.24 x10~*
from stage 1 (days™1) [0.60, 2.74] x10~*
AP Post-1998 exit rate I'(2.45,0.00192) 1.88 x1073
from stage 2 (days™1) [0.46, 5.42] x1073
Spec Active screening diagnostic 0.998 + 0.9991
specificity (1—0.998) B(7.23,2.41) [0.9987, 0.9997]
U Proportion of stage 2 B(20, 40) 0.27
passive cases reported [0.18, 0.40]
dchange Midpoint year for passive 2000 + 2005.8
improvement (2017 — 2000) B(5, 6) [2004.4, 2007.3]
T Hmp Relative improvement in I'(2.013,1.049) 2.52
passive stage 1 detection rate [0.92, 5.46]
YHomp Relative improvement in I'(1.001, 5) 0.51
passive stage 2 detection rate [0.24, 0.97]
dsteep Speed of improvement in I'(39.57,0.0270) 0.94
passive detection rate (years™!) [0.68, 1.29]

I Exp(.), T'(.) and B(.) in prior distributions are the exponential, gamma (shape, scale) and beta distributions.
See Equation (2) for improved passive detections formulated by dchange, NHamp YHamp and dsteep-
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Fig B. Prior and posterior distributions of all fitted parameters in Kwamouth health
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zone. Black lines are the prior distributions of fitted parameters. Blue histograms from 2,000 posteriors

show the posterior distributions from fitting our gHAT model to data.
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S1.2.2 Formulation of improved passive detections

Previous analysis on provincial-level staged data (Lumbala et al. for 2000-2012 [18] and WHO HAT
Atlas data 20152016 [3]) indicated that improved passive detection has happened across Kwilu, Mai
Ndombe, Kwango and Kongo Central provinces [1]. In our model, improved passive detections in year YV
were formulated by logistic functions

V) = ppost |:1 + "MHamp ] s
”7H( ) /r]H 1 + exp (_dsteep (Y - dchange)) (2)

OS ’yHam
vu(Y) =5 ) }

1+
|: 1+ €xXp (_dsteep(y - dchange))

Parameter definitions and their priors are provided in Table B, posterior characteristics for Kwamouth
health zone are summarised in Table B and Fig. B. N.B. It was assumed that improvements in both
stages shared the same midpoint year and speed of improvement within a health zone. However, the
amplitude of variation in each health zone came from the fitting of health-zone-specific data (see Fig. C).
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Fig C. Yearly passive detection rates in Kwamouth health zone. The values of passive
detection rates shown in this figure are calculated based on Equation (2) using the median values of each
parameter from its posterior. Blue and red circles denote the passive detection rates of stage 1 and 2
respectively. Note that stage 2 detection rate here is (1 — u)yy (YY), where u is the proportion of stage 2
passive cased reported and vy (Y) is a combined rate of exiting stage 2 including detection and
unreported deaths.

S1.2.3 Formulation of additional tsetse mortality under vector control measures

The tsetse dynamics without gHAT infections can be described by

dP

TtV = ByNu — (§v + 5¥)Py,

dSy . 3
G - &y P(survive pupal stage) Py — aSy — py Sv, (3)
dG

- = all—fr(®)Sy —afr(t)Gy — uyCy.

In our tsetse model, we assumed the efficacy of Tiny Target (fr) reduces rapidly after 4 months due to
the potentials of being washed away by rain or covered by mud. Thus, a sigmoid function, which has a
characteristic S-shaped curve, was used to describe the time dependent probability of both hitting a
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Fig D. Trends of tsetse populations and target efficacy under vector control. Red curves
show Tiny Target efficacy (fr(t) defined in Equation (4)) for bi-annual deployments. Blue curves

present the corresponding tsetse dynamics for 80% (top panel) and 90% (bottom panel) annual tsetse
reduction caused by vector control.

target and dying when bi-annual deployments occur at the beginning and middle of the year. The
efficacy of Tiny Target,

1
fr(t) = fmax (1 1+ exp(—0.068(mod(t, 182.5) — 127.75))> ’ )
where fmax is chosen such that the tsetse population after one year is at the observed/assumed
percentage reduction. For DRC-specific settings, i.e. two deployments each year, we used fmax = 0.0525
for an 80% reduction (for Masi Manimba, Bandundu, Kikongo, Kwamouth, Bokoro, Bolobo, Bulungu,
Mokala, Mushie, and Yumbi), and fmax = 0.0750 for a 90% reduction (for Yasa Bonga). Tsetse
dynamics and Tiny Target efficacy for 80% and 90% reductions are shown in Fig. D.
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S1.2.4 Fits to historical case data
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Fig E. Model fits to the observed trends
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in active and passive case detections over time
for Kwamouth health zone. There are n = 10,000 independent samples, 10 from each of 1,000

independent samples from the joint posterior distributions of the fitted model parameters. Black lines
and box plots indicate data and model fits during the data period (2000-2016). Box plots summarise
parameter and observational uncertainty. The lines in the boxes present the medians of predicted results.

The lower and upper bounds of the boxes indicate 25th and 75th percentiles. The minimum and

maximum values are 2.5th and 97.5th percentiles and therefore whiskers cover 95% prediction intervals.
Time series plots of all analysed health zones are available in the graphical user interface at
https://hatmepp.warwick.ac.uk/fitting/v2/.
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S1.3 Model projections

S1.3.1 Active screening

Screening data is aggregated by year and the exact dates and frequencies of conducting AS are unknown
(see top panel in Fig. E), therefore some assumptions were made as to when AS takes place. Our model
assumed only low-risk humans participate in AS and used the ratio of assumed number of people
screened (N4g) and the number of low-risk humans (k1 Ng) to decide the frequency of AS each year.
When screening numbers were smaller than potential participants (Nas < k1Npg), a single AS event was
assumed to take place at the beginning of those years. On the other hand, multiple AS events were
evenly distributed over the time of the corresponding years, i.e. a second AS event in July when
kiNg < Nyg < 2k1Npg; a second AS event in May and a third AS event in September when

2k1Ng < Npg < 3k1NH; etc.

S1.3.2 Uncertainty

Simulations for each scenario (including the baseline) in each health zone were performed based on 1,000
sets of parameters (or model realisations). Observation uncertainty was considered by drawing 10
random samples from the predicted mean dynamics for each realisation. A beta-binomial distribution in
which an overdispersion parameter p was introduced to the binomial distribution was used to account
for larger variance than the binomial. The probability of obtaining m successes out of n trials with
probability p and overdispersion parameter p is

F'n+1)I'(m+ a)T'(n —m + b)I'(a+b)
Fn—m+1DI'(n+a+b)I(a)L(b) ’

(5)

BetaBin(m;n, p, p) =

where a = p(1/p — 1) and b = a(1 — p)/p.

In other words, main observable outputs (e.g. active and passive cases each year) were predicted by
10,000 samples incorporating both parameter and observation uncertainties, but unobservable outputs
(such as new infections and the year of elimination of transmission) were predicted directly from the
1,000 model realisations without sampling (i.e. parameter uncertainty but no observation uncertainty).
We tried to represent this uncertainty in a variety of ways:

e Time series box plots were used to display statistical summaries of model predictions — the median
(the middle line in each box), the lower and upper quartiles (the edges of each box showing 50%
prediction intervals), and 95% prediction intervals (extended whiskers containing the middle 95%
of outputs).

e The median year of elimination of transmission was used to indicate the estimated elimination
year for a series of model predictions because neither extreme values (outliers) nor truncation of
simulation will affect the estimates.

e The probability of elimination of transmission by years were used to set a certainty (or a
confidence level) of achieving desirable outcome (i.e. EoT in this paper) at specific time point
based on a series of model predictions.

S1.3.3 Tsetse bounce back in interruption scenarios

In the 9-month No AS or VC and reduced PS scenario, it was assumed that there was no VC
deployment in Yasa Bonga, Masi Manimba, Bandundu, Kikongo, and Kwamouth in mid-2020. The
suspension continued until the end of 2021 in the 21-month interruption scenario. During the period of
interruption, we assumed the existing Tiny Targets from the latest deployment in the beginning of 2020
keep working with extremely low efficacy, and therefore, remaining tsetse can repopulate its population.
Fig. F shows the bounce back of tsetse population from the absence of deploying new Tiny Targets for
three periods of interruption starting from April 2020. The level of bounce back not only depends on the
duration of interruption but also the remaining tsetse at the beginning of interruption.
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Fig F. Tsetse bounce back during the suspension of VC Three panels show three length of VC
interruption, 9-month (top), 21-month (middle), and long-term (i.e. never restart, bottom). In each
panel, modelled tsetse dynamics is presented by colour curves associating with different VC starting
years (blue for Yasa Bonga, green for Masi Manimba, and red for Bandundu, Kikongo, and Kwamouth
in which VC started from 2015.5, 2018.5, and 2019.5 respectively). Colour shaded area highlights three
length of interruption periods starting from April 2020.

S1.3.4 Proxy for elimination of transmission

The gHAT model we used here is a deterministic model described by ODEs with transition rates
between compartments. In the deterministic model, variables such as new infections, new cases and
deaths can be non-integer and their values are continuous. The stochastic model, on the other hand, has
dynamics driven by randomly occurring events with associated probabilities and its variables capture the
discrete nature of the population. Despite good agreements on the mean dynamics in both models, even
at very low prevalence, the dynamics at the endgame are different. Because of the continuous nature of
deterministic dynamics, the number of infected people asymptotes to zero rather than reaching it unlike
the stochastic model. In this paper, an artificial elimination of transmission (EoT) threshold i.e. one
new infection per health zone per year was applied to new infections to determine whether EoT has been
achieved or not. Other values of EoT thresholds, such as one new infection per 100,000 or per 1,000,000
people per year, can be found in the literature [19,20]. Large variation in EoT threshold highlights the
difficulty in choosing a proper threshold reflecting the reality. More detailed comparison between
stochastic and deterministic model variants will be needed in the future to ensure robustness of year of
EoT estimates arising from such a proxy threshold.
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S1.4 Study areas
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Fig G. Maps of the DRC indicating our study areas. The province map (left) highlights the
three provinces covered by our study: Mai-Ndombe (in green), Kwilu (in light blue), and Kwango (in
yellow) provinces. The coordination map (middle) shows our study areas mapped onto two
coordinations: Bandundu Nord (in pink) and Bundundu Sud (in red) coordinations. The national
programme PHLTHA-DRC makes annual plans on vertical interventions such as active screening and
vector control at the coordination-level. Areas shaded by light grey in the province and coordination
maps are not considered in this study. The health zone map (right) summaries areas at the geographical
scale in which our analyses carried out. Coloured health zones are those included in this study (pink and
red for the Bandundu Nord and Sud coordinations respectively). Health zone in dark grey are excluded
in this paper due to insufficient data points for model fitting in the previous study [1]. Shapefiles used
to produce these maps were provided by Nicole Hoff and Cyrus Sinai under a CC-BY licence (current
versions can be found at https://data.humdata.org/dataset/drc-health-data).

S1.5 Computational specifications and runtime

Our code, available in Open Science Framework at https://osf.io/gur7c/, has been tested and run
in MATLAB R2018b, R2021b, and R2022b on Windows, Linux and Mac operating systems. Initial runs
of model fitting for a single health zone take 12-22 hours of elapsed time depending on data quality (the
number of data points present and possibly missing active screening numbers) and intervention history
(which dictates the number of fitted parameters, e.g. improved passive detection has four extra
parameters) on our cluster. In a subset of health zones additional running is required to ensure that the
two MCMC chains have converged to the same volume of parameter space and to achieve our target
effective sample size of 1,000. In this situation, the total elapsed time across runs for a health zone can
increase greatly (up to 3 or 4 times the initial run time). Two independent MCMC chains were run in
parallel for each MCMC analysis and we assigned 3 cores (1 per chain, plus a master/controller) with 5
GB RAM per CPU for each fitting job on our cluster. The cluster is running CentOS Linux version 7.8
and has either Intel Xeon Gold 6130 (2.10GHz) or Intel Xeon Gold 5218 (2.30GHz) CPUs depending on
the node used. Future projections of 1,000 realisations with 10 samples each from 2020 to 2050 for seven
strategies (one baseline and six interruption scenarios) take about 20 minutes to complete on a desktop
machine (MacOS, 4.2 GHz Quad-Core, 32 GB 2300 MHz DDRA4).
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