Science Advances

Supplementary Materials for

Epidermal mutation accumulation in photodamaged skin is associated with skin cancer burden and can be targeted through ablative therapy

Ho Yi Wong et al.

Corresponding author: Kiarash Khosrotehrani, k.khosrotehrani@uq.edu.au

Sci. Adv. **9**, eadf2384 (2023) DOI: 10.1126/sciadv.adf2384

This PDF file includes:

Figs. S1 to S14 Tables S1 to S3

(A) Sequencing coverage for each sample. Red line indicates average coverage of all samples.

(B) Average coverage of each panel gene. Red line indicates average coverage of all panel genes.(C) Distribution of variant types (left) and classifications (right) in each sample. (D)

Downsampling analysis of murine samples. SNP: single nucleotide polymorphism. DNP: double nucleotide polymorphism. INS: insertion. DEL: deletion. UTR: untranslated region.

SFigure 2. Sequencing depth and summary of patient cohort.

(A)Sequencing coverage of saliva (left) and skin (right) samples. Red line indicates average coverage of all samples. (B) Average coverage of each gene in the saliva (top) and skin (bottom) samples. Red line indicates average coverage of all panel genes. (C) Distribution of variant types (left) and classifications (right) of each sample. (D) Downsampling analysis and saturation plot of each sample. SNP: single nucleotide polymorphism. DNP: double nucleotide polymorphism. TNP: triple nucleotide polymorphism. INS: insertion. DEL: deletion. UTR: untranslated region.

SFigure 3. Correlation of mutation load and mutation burden per cell of 37 KC patients (Spearman correlation, r=0.6475, *p*<0.0001).

SFigure 4. Mutation burden per cell analysis according to skin type and age. (A) Mutation burden per cell in patients with Fitzpatrick skin phototype I and II (Mann-Whitney test, p=0.93). (B) CC>TT mutation burden per cell in patients with Fitzpatrick skin phototype I and II (Mann-Whitney test, p=0.84). (C) Spearman correlation between mutation burden per cell and age of patients (r=0.175, p=0.299).

SFigure 5. Quantification of clone size distribution in \leq 70 and >70-year-old groups. The number of clones with VAF <0.05,0.05-0.1 and >0.1 were quantified in patients who were 70-year-old or younger and those who were more than 70 years old (Chi2 test, *p*<0.0001).

SFigure 6. Estimation of mutation burden per cell for 30 (age and sex-matched) low and high-risk KC patients.

(A) Mutation burden per cell in low and high-risk KC patients (Mann-Whitney test, p=0.1261). (B) CC>TT mutation burden per cell in low and high-risk KC patients (Mann-Whitney test, p=0.1370). (C) Spearman correlation between mutation burden per cell and the number of KC (r=0.3954, p=0.0306).

SFigure 7. Dermabrasion does not cause damage to hair follicle or fibrosis.

From top to bottom: Representative images of hematoxylin and eosin, K14, K1, Trichrome (Collagen) and Sirius red (Collagen Type III) staining in non-dermabrased and dermabrased skin. Scale bar=50um.

SFigure 8. Estimation of mutation burden per cell upon dermabrasion.

The estimation of mutation burden per cell in the non-dermabrased (ND) and dermabrased (D) murine epidermis (Wilcoxon test, p=0.125). Bar plot represents mean.

SFigure 9. Waterfall plot of KC driver genes with or without dermabrasion.

Waterfall plots showing mutations in KC genes (*Trp53*, *Notch1*, *Ptch1*, *Sufu* and *Kras*) in each sample from the non-dermabrased and dermabrased areas.

SFigure 10. Mean VAF of KC driver genes with or without dermabrasion.

Mean VAF of (A) Trp53, (B) Notch1, (C) Ptch1 and (D) Kras in the epidermis from the nondermabrased and dermabrased areas (Wilcoxon test). Bar plots represent mean.

The estimation of mutation burden per cell in the epidermis from KC patients who were treated with 600µm (right), 400µm (middle) and fractional laser (left) (Wilcoxon test). Bar plots represent mean.

SFigure 12. Waterfall plots of KC driver genes with or without laser ablation

Waterfall plots showing mutations in KC genes (*TP53*, *NOTCH1*, *PTCH1*, *SUFU* and *KRAS*) in each sample from the control areas (top left), 600µm (top right), 400µm (bottom left) and fractionated (bottom right) laser treated areas.

SFigure 13 Mean VAF of KC driver genes with or without laser ablation. Estimation of mean VAF of (A) *TP53*, (B) *NOTCH1*, (C) *PTCH1* and (D) *SUFU* in the epidermis from the control areas, 600µm, 400µm and fractionated laser treated areas (Wilcoxon test). Bar plots represent mean.

SFigure 14. The spectral emission of the UVB lamps (TL 40W/12 RS SLV, Philips).

	Samples	Panel	No.	Panel
			genes	size
Mouse	Chronic UV	Sureselect XT HS custom	152*	0.67Mb
	Dermabrasion	Sureselect XT HS custom	152*	0.67Mb
Human	Risk prediction	Community Design Glasglow Cancer plus	352	3.96Mb
	Laser ablation	ClearSeq Cancer Comprehensive	152*	0.78Mb

STable 1. The size and the number of targeted genes in the sequencing panels.

*Same 152 genes targeted

ABCB1	CYP2D6	IKZF1	NPM1	SLC34A2
ABCC2	DDR1	IL2RA	NRAS	SLC45A3
ABL1	DDR2	IL2RB	PDGFRA	SLCO1B1
ABL2	DDX3X	IL2RG	PDGFRB	SMAD4
AKT1	DNMT3A	INPP4B	PHF6	SMARCA4
AKT2	DPYD	JAKI	PIK3CA	SMARCB1
AKT3	EGFR	JAK2	PIK3R1	SMO
ALK	ERBB2	JAK3	PSMB1	SNCAIP
APC	ERBB3	KDM6A	PSMB2	SOS1
ASXL1	ERBB4	KDR	PSMB5	SPRED1
ATM	ERG	KIT	PSMD1	SRC
ATRX	ESR2	KRAS	PSMD2	STK11
BRAF	ESR1	LAMA2	PTCH1	SUFU
BRCA1	EZH2	LCK	PTEN	TAS2R38
BRCA2	FBXW7	LTK	PTPN11	TET2
CBL	FGFR1	MAP2K1	RAF1	TP53
CDA	FGFR2	MAP2K2	RARA	TRRAP
CDH1	FGFR3	MAP2K4	RARB	ТҮК2
CDKN2A	FGFR4	MAP3K1	RARG	UGT1A1
CDKN2B	FLT1	MAPK1	RB1	VHL
CEBPA	FLT3	MED13	RET	WT1
CHD7	FLT4	MET	ROS1	YES1
CHIC2	FSTL5	MLH1	RPS6KB1	ZMYM3
CREBBP	GNA11	MLL	RUNX1	
CRLF2	GNAQ	MPL	RXRA	
CSF1R	GNAS	MST1R	RXRB	
CTNNB1	GSTP1	MTOR	RXRG	
CYP19A1	H3F3A	МҮС	SHH	
CYP2A6	HNF1A	MYD88	SHOC2	
CYP2B6	HRAS	NELL2	SLC22A1	

STable 2. Targeted genes in Agilent comprehensive cancer panel.

<i>CYP2C19</i>	IDH1	NF1	SLC22A2	
CYP2C9	IDH2	NOTCH1	SLC31A1	

<u> </u>	<u> </u>			
AKT1	HIST2H3C	RUNXI	EPHA2	PSIP1
AKT2	HLA-A	SETBP1	ERCC2	PTK2
АКТ3	HLA-B	SETD2	ERCC3	PTPRD
ALK	HLA-C	SF3B1	ERCC4	QSER1
AMER1	HNF1A	SMAD4	ERCC5	RAD51B
APC	HRAS	SMARCA4	ETV1	RAD51C
APLNR	IDH1	SMARCB1	ETV4	RAD51D
AR	IDH2	SMO	ETV5	RAD52
ARAF	IGF1R	SOCS1	FANCA	RAD54L
ARID1A	JAK1	SPOP	FANCC	RASA1
ARID1B	JAK2	SRC	FANCD2	RBM10
ARID2	JAK3	STAG1	FANCE	RFX5
ASXL1	JUN	STAG2	FANCF	RFXAP
ATM	KDR	STAT3	FANCG	RHEB
ATR	KIT	STAT5B	FANCL	RICTOR
ATRX	KLF4	STK11	FANCM	RIT1
AURKA	KMT2A	SYK	FAT1	RPL22
AXL	KRAS	TERT	FLT1	SERPINB3
B2M	MAP2K1	TGFBR2	FOXA1	SERPINB4
BAP1	MAP2K2	TP53	FOXA2	SLC34A2
BCL2	MAP2K4	TSC1	FOXL2	SMAD2
BLM	MAP3K1	TSC2	FOX01	SMAD3
BRAF	MAPK1	U2AF1	FUBP1	SMC1A
BRCA1	MAX	VHL	GATA6	SMC3
BRCA2	MCL1	WT1	GNA13	SMG1
CBL	MDM2	YAP1	GPS2	SOS1
CCND1	MED12	ABL1	HIF1A	SOX17
CCND2	MEN1	ABL2	HIST1H1C	SOX9
CCND3	MET	ABR	IDO1	SPEN
CCNE1	MLH1	ABRAXASI	IDO2	SRSF2

STable 3. Targeted Genes in Agilent Glasglow Cancer Plus panel.

CD274	MSH2	ACVR1B	IFNGR1	STAT1
CD58	MSH6	ACVR2A	IFNGR2	TAF1
CDK12	MTOR	AJUBA	IL6ST	TAF3
CDK2	МИТҮН	AKAP9	IRF1	TAP1
CDK4	МҮВ	ALOX12B	KDM5C	TAP2
CDK6	МҮС	ALOX15B	KDM6A	TAPBP
CDKN1A	MYCN	ARHGAP35	KEAP1	TBL1XR1
CDKN1B	NBN	ARID5B	KMT2B	ТВХЗ
CDKN2A	NF1	ASXL2	KMT2C	TCF12
CDKN2B	NF2	AURKB	KMT2D	TCF7L2
CHEK2	NFE2L2	AURKC	LZTR1	TET2
CIITA	NOTCH1	AXINI	MDM4	TGFBRN
CREBBP	NOTCH2	AXIN2	МЕСОМ	TMPRSS2
CTCF	NOTCH3	BARD1	MGA	TP53BP1
CTNNB1	NOTCH4	BCOR	MGMT	<i>TP73</i>
DAXX	NPM1	BIRC3	MRE11	TRAF7
DICER1	NRAS	BRIP1	MSH3	UVRAG
DNMT3A	NTRK1	CARD11	MYCL	WRN
EGFR	PALB2	CASP8	МҮН9	XBP1
EP300	PBRM1	CBFB	NAB2	XPO1
EPHA3	PDCD1LG2	<i>CD74</i>	NCOA2	ZFHX3
ERBB2	PDGFRA	CDC73	NCOR1	ZFP36L1
ERBB3	PDGFRB	CDH1	NLRC5	ZMYM2
ERBB4	PHF6	CDK8	NRG1	ZMYM3
ERG	PIK3CA	CDKN1C	NSD1	ZNF703
ESR1	РІКЗСВ	CDKN2C	NSD3	ZNF750
ETV6	PIK3R1	CHD4	NTRK2	
EZH2	PMS2	CHD8	NTRK3	
FAS	POLE	CHEK1	PARP1	
FBXW7	POLQ	CIC	PAX5	
FGF19	PPP2R1A	CKS1B	PCBP1	

FGFR1	PTCH1	CTLA4	PIAS3
FGFR2	PTEN	CUL3	PIAS4
FGFR3	PTPN11	CUXI	PIK3CD
FGFR4	PAC1	CYLD	PIK3R2
GATA3	PAD21	DDR2	PIM1
GNA11	PAD50	DDX3X	PLCG1
GNAQ	PAF1	DDX5	PMS1
GNAS	RB1	DEFB134	POLQ
H3F3A	RET	DHX9	PPM1D
H3F3B	RHOA	DNMT3A	PPP2R2A
HGF	RNF43	EIF4A2	PPP4R2
HIST1H3B	ROS1	ELF3	PPP6C
HIST1H3C	RPL5	ELOC	PRKARIA