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Supplementary Text 
I. Logistic and Lotka-Volterra competition models predict that increasing temperature

favors the slower grower by decreasing mortality burden

In this paper, we expand upon previous theoretical and experimental results in which we showed 
that increasing temperature generally favored slower-growing species in pairwise competitions 
(40). To explain this result mathematically, we employed the two-species Lotka-Volterra (LV) 
interspecific competition model. The most basic form of the two-species Lotka-Volterra model 
takes the following form: 

𝑁"̇
𝑁$
= 	𝑟$ − 𝑐$$𝑁$ − 𝑐$*𝑁* (1) 

where 𝑟$ is the exponential growth rate of species 𝑖 (minus any intrinsic death rate), 𝑐$$ is the rate 
at which species 𝑖 inhibits itself, and 𝑐$* is the rate at which species 𝑗 inhibits species 𝑖.  Equation 
(1) can be re-parameterized to:

𝑁"̇
𝑁$
= 	 𝑟$ 01 −

𝑁$ − 𝛽$*𝑁*
𝐾$

3 (2) 

where 𝐾$ 	=
56
766

is the carrying capacity and 𝛽$* 	=
768
7$$

 is the competition coefficient. If the two 
species grow separately or do not interact, we set 𝛽$* 	= 0 and the Lotka-Volterra model reduces 
to the logistic growth model: 

𝑁̇
𝑁 = 	𝑟 :1 −

𝑁
𝐾;	

(3) 

We will now compare the effect of temperature on two species growing independently before 
returning to interacting species in the Lotka-Volterra model.  

Many microbial communities experience mortality that is not driven by competition and 
which affects the entire community. Importantly, this is true of all laboratory cultures, where 
cells are removed from the community either continuously (as in a chemostat or turbidostat) or at 
discrete intervals (as in batch culture). It may also result from predation by bacterivores, or, in 
the case of our gut microbiota, from waste passing through. Equation (3) can therefore be made 
more realistic by the introduction of a community-wide mortality rate (𝛿):  

𝑁̇
𝑁 = 	𝑟 :1 −

𝑁
𝐾; − 𝛿	

(4) 

Equation (4) can be reparametrized with modified carrying capacity 𝐾? = 𝐾 @1 − A
5
B and growth 

rate 𝑟̃ = 𝑟 − 𝛿: 

𝑁̇
𝑁 = 𝑟̃ :1 −

𝑁
𝐾?
; (5)



The effective carrying capacity 𝐾? is modified by the mortality burden 𝜹
𝒓
, as mortality decreases

the optimal carrying capacity. To determine how mortality burden affects the balance of two 
species, a slower-growing one 𝑁G and a faster-growing one 𝑁H, we can compute the ratio of their 
effective carrying capacities:  

𝐾?G
𝐾?H

=
𝐾G
𝐾H

@1 − 𝛿
𝑟G
B

:1 − 𝛿
𝑟H
;
	 (6) 

How the ratio of effective carrying capacities changes across a temperature range determines how 
the balance of the two species changes with temperature. Since Equation (6) is a function of 
growth and death rates, the outcome will shift along with these rates.  For example, the faster 
grower is favored by an increasing death rate (61). An increasing temperature, on the other hand, 
will affect growth rather than death.  If we assume that maximal growth rates 𝑟$(𝑇) are the only 
parameters affected by changes in temperature, we can take the derivative of Equation (6) with 
respect to temperature to see which species will benefit from an increase in temperature: 

𝜕
𝜕𝑇

𝐾?G
𝐾?H

=
𝐾G
𝐾H

𝜕
𝜕𝑇L

1 − 𝛿
𝑟G(𝑇)

1 − 𝛿
𝑟H(𝑇)

M	 (7) 

We must choose a model for 𝑟(𝑇) in order to continue.  As discussed in the main text, we use the 
Arrhenius equation: 

𝑟(𝑇) = 𝑎𝑒Q
RS
TUV	 (8) 

where 𝑎 is a pre-factor with dimensions of 1/time, 𝐸Y  is the activation energy (in units of eV), 𝑘[ 
is the Boltzmann constant, and 𝑇 is the temperature (in Kelvin). In the following equations, we 

will specify the fast grower with 𝑟H = 𝑎H𝑒
Q
\]
^U_ and similarly for the slow grower. Plugging this 

form into Equation (7), we find: 

𝜕
𝜕𝑇

𝐾?G
𝐾?H

=
𝐾G
𝐾H

𝐸G
𝑘[
𝛿𝑒

R`
TUV

𝑎G𝑇a b1 −
𝛿

𝑎H𝑒
Q
R]
TUV

c

−

𝐸H
𝑘[
𝛿𝑒

R]
TUV b1 − 𝛿

𝑎G𝑒
Q R`
TU_

c

𝑎H𝑇a b1 −
𝛿

𝑎H𝑒
Q
R]
TUV

c

a 	 (9)



For the slow grower to be favored, the above term should be greater than zero, because this 
would mean that the ratio of the slow grower abundance to the fast grower abundance increases 
with temperature: 

𝐸G
𝑘[
𝛿𝑒

R`
TUV

𝑎G𝑇a b1 −
𝛿

𝑎H𝑒
Q
R]
TUV

c

	> 	

𝐸H
𝑘[
𝛿𝑒

R]
TUV b1 − 𝛿

𝑎G𝑒
Q R`
TU_

c

𝑎H𝑇a b1 −
𝛿

𝑎H𝑒
Q
R]
TUV

c

a 	 (10) 

We can simplify this expression by plugging in 𝑟H and 𝑟G where they appear: 

𝐸G

𝑟G𝑇a :1 −
𝛿
𝑟H
;
	> 	

𝐸H @1 −
𝛿
𝑟G
B

𝑟H𝑇a :1 −
𝛿
𝑟H
;
a 	 (11) 

Ultimately, the expression simplifies to a simple relation showing that the slow grower is 
always favored as temperature increases when the activation energies of the two species are the 
same (i.e. when 𝐸G = 𝐸H): 

𝐸G
𝐸H
	> 	

𝑟G − 𝛿
𝑟H − 𝛿

	 (12) 

In the main text, we assumed equal activation energies of all species, and that differences in 
growth rates arise from differing rRNA copy numbers (which were absorbed into the pre-factor 
𝑎). Thus, the inequality is always true under our assumptions. 

The same result can be generated from the Lotka-Volterra model with two interacting 
species. We first re-parameterize the model by normalizing by carrying capacity: 

𝑁"ḟ
𝑁"f
= 	 𝑟$g1 − 𝑁"f − 𝛼$* 	𝑁f$*i (13) 

where 𝑁"f = j6
k6

and 𝛼$* = 𝛽$*(
k8
k6
).  𝛼$* is a dimensionless competition coefficient quantifying 

the inhibition of species 𝑖 by species 𝑗.  The outcomes of the model are completely determined 
by the competition coefficients: when both 𝛼$* < 1, 𝛼*$ < 1, both species coexist; when 𝛼$* < 1 
but 𝛼*$ > 1, species 𝑖 drives species 𝑗 to extinction (and vice versa); when both 𝛼$* > 1, 𝛼*$ > 1, 
the result is bistability, in which both species can drive each other extinct, and the winner 
depends on the initial relative fraction.  Thus, the model does not depend on the growth rates—a 



strongly competing slow grower can drive a fast grower extinct. Introducing a community-wide 
mortality rate (𝛿), however, changes this:  

𝑁"ḟ
𝑁"f
= 	 𝑟$g1 − 𝑁"f − 𝛼$*	𝑁f$*i − 𝛿	 (14) 

Equation (14) can be re-parameterized back into is original form, such that the outcome is 
determined completely by the re-parameterized competition coefficients 𝛼n$*: 

𝑁?̇$
𝑁?$
= 𝑟̃$g1 − 𝑁?$ − 𝛼n$*𝑁?*i	 (15) 

𝛼n$* = 𝛼$*
:1 − 𝛿

𝑟*
;

@1 − 𝛿
𝑟$
B
	 (16) 

Since 𝛼n$* is a function of growth and death rates, and with the same form as in the logistic 
model (Equation 6), the outcome will shift in the same way, favoring the slower grower as 
temperature increases. 

We can repeat this calculation with another model for the dependence of growth rate on 
temperature. The Ratkowsky model (83) is consistently the best fit for microbial data: 

𝑟(𝑇) = 𝑏a(𝑇 − 𝑇p)a	 (13) 

Where 𝑏 and 𝑇p must be determined by fitting data for a particular species.  Repeating the 
calculation in the same way as above, we find a similar inequality that determines when the slow 
grower is favored by increasing temperature: 

g𝑇 − 𝑇pHi
(𝑇 − 𝑇pG)

	> 	
𝑟G − 𝛿
𝑟H − 𝛿

	 (14) 

When the growth curves do not cross, we can assume that 𝑇pG > 𝑇pH and 𝑟H > 𝑟G.  These 
assumptions make the left side of the inequality greater than one, while the right side is less than 
one.  Thus, the inequality is always true for a competition between a consistent slow grower and 
a consistent fast grower, and the LV model predicts that an increasing temperature will always 
favor a slower grower, provided that the slower grower does not become relatively faster at high 
temperature. 



II. Modern coexistence theory analysis shows effect of temperature can be equalizing
but not stabilizing

Modern coexistence theory defines two parameters that determine whether two species 
will coexist: niche overlap (𝜌) and fitness ratio (𝑓a/𝑓t) (59). Coexistence can be favored by 
decreasing niche overlap or decreasing fitness differences. Mechanisms that decrease overlap are 
stabilizing, while those that decrease fitness differences are equalizing. 

In the two-species Lotka-Volterra competition model, these parameters are defined as 
follows (60): 

𝜌 = 	u
𝛼ta𝛼at
𝛼tt𝛼aa

		 (15) 

𝑓a
𝑓t
= 	u

𝛼tt𝛼ta
𝛼at𝛼aa

	 (16) 

Equations (15)-(16) include intra-species competition coefficients 𝛼tt and 𝛼aa in addition to 
inter-species coefficients 𝛼ta and 𝛼at. As described above in Supplementary Text I, we have 
parameterized the model to absorb the intra-species coefficients into the inter-species 
coefficients, and without loss of generality, we can set both 𝛼tt = 1, 𝛼aa = 1. Therefore 
Equations (15)-(16) become: 

𝜌 = 	v𝛼nta𝛼nat		 (16) 

𝑓a
𝑓t
= 	u

𝛼nta
𝛼nat

	 (17) 

where the modified coefficients 𝛼n are defined by Equation (6). 
In the case of a fast grower and a slow grower, we have shown above that, under our 

assumptions, w
wV
𝛼nHG > 0 and w

wV
𝛼nGH < 0. The ratio of the slow grower’s fitness to the fast 

grower’s fitness thus increases with temperature, leading to (dis)equalizing effects as 
temperature increases. 

On the other hand, the niche overlap does not change with temperature, since the increase 
of 𝛼nHG matches the decrease of 𝛼nGH, leading to no net change as temperature increases. 

In the model, changes in temperature can therefore have (dis)equalizing but not 
(de)stabilizing effects upon species coexistence. 



Fig. S1. 

Two-species Lotka-Volterra competition model predicts that increasing temperature favors 
the slower grower. a. Bacterial maximum growth rates increase with temperature and are 
proportional to 16S ribosomal RNA operon copy number. The plot shows an example of two 
species’ maximum growth rates over a temperature range of 20 °C, where the blue species has a 
single rRNA operon copy, and the pink species has 3 copies. b. The outcome of interspecies 

c
Increasing temperature favors the slower grower, which eventually outcompetes the faster-
grower in the LV competition model
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competition in a two-species competitive Lotka Volterra model depends on the burden that 
mortality relatively imposes on the net growth rate of each species, quantified by 𝛿 𝑟x  , and
therefore it can be modulated by changing the mortality rate or the growth rates of the species. In 
the plot, we show that the mortality burden decreases more for the slower grower than for the 
faster grower as growth rates increase driven by temperature, reducing the inhibition of the 
slower-grower by the faster-grower. c. The two-species competitive Lotka Volterra model 
presented in b., the abundance of the slow-grower increases with temperature. The MCN of the 
two-species community, as such, decreases from 3 at low temperature where the fast-grower 
excludes the slow-grower, to 1 at high temperature, where the slow-grower dominates. The 

analytical solutions are shown for the case in which  𝑟 = 𝑎𝑅𝑒Q
z
_ , where 𝐺 = 3864 and 𝑎 =

1.7𝑒5 for both species, and 𝑅 = 1 for the blue species and 𝑅 = 3 for the pink species. 



Fig. S2. 

Two-species Lotka-Volterra solution is independent of mean interaction coefficient, as seen 
in the left plot. (Noise on the right end of the plot reflects extreme differences in copy number 
between the two species leading to fewer instances of coexistence and shallower MCN-
temperature slopes.) The two-species solution is sensitive to death rate, with increasing death 
rate leading to steeper MCN-temperature slopes. 



Fig. S3. 

The mean and standard deviation of MCN-temperature slopes resulting from constant 
parameter simulations are similar to the mean and standard deviation of simulations 
performed by randomly sampling parameters. Red points represent randomly chosen 
parameters that remained fixed over 500 simulations (interaction coefficient matrices 𝛼$* are 
unique for each simulation, even if mean interaction is fixed). The blue point on the right 
represents 500 simulations in which parameters were randomly sampled at each simulation (the 
mean of the normal distribution of 𝛼$* was randomly drawn from a uniform distribution [0.1, 1] 
and the standard deviation was set to half the mean; the geometric distribution parameter 𝑝 of the 
rRNA copy numbers was drawn from a uniform distribution [0.6, 0.9]; the mortality rate δ was 
drawn from a uniform distribution [0.03, 0.2]; the activation energy 𝐸 was drawn from a uniform 
distribution [0.1 eV, 0.6 eV]). 



Fig. S4. 

Consumer resource model predicts that warmer temperatures favor slower growers. As in 
the Lotka-Volterra model, increasing mortality and decreasing temperature favor fast growers 
with higher maximum growth rates, while slow growers benefit from decreasing mortality and 
increasing temperature. Panel a shows the weighted mean growth rate (MGR) of a community of 
fifteen species and ten resources, averaged over 250 simulations for 1000 hours in each 
temperature/nutrient supply combination. MGR is the average maximum growth rate of a 
community at a stable point weighted by the abundances of its members, where maximum 
growth rate is defined at a fixed temperature. Panel b plots all slopes of MGR over temperature, 
not just the average, to show that the majority of cases are negative. See Materials and Methods 
for details of model. Note that in this model, where growth rate increases linearly with resource 
concentration and no trade-offs are implemented, slower growers are also favored by an increase 
in nutrient supply. Including a trade-off between growth and affinity or adding other 
complications to the model might change this result.  

a b



Fig. S5. 

The final abundance distribution of copy numbers obtained from fitting the GLV model to 
data resembles the observed one in the three main datasets. Upper panels: abundance 
distribution of copy numbers the initialized communities in the model. Lower panels: abundance 
distribution of the equilibrated communities (grey) compared to the observed distribution of copy 
numbers in the three main datasets (green, LMO; yellow, ANT; purple, TARA). 



Fig. S6. 

A continuous-time simulation with sinusoidally oscillating temperature shows that mean 
copy number (MCN) oscillations lag behind temperature oscillations, resulting in a 
frequency equal to that of temperature but with a phase shift of about one week (7.26 days) 
when the MCN was fit to a sinusoidal curve. The average of 50 Lotka-Volterra simulations is 
plotted, each with 100 species and mean interaction 𝛼 = 	0.5	(𝜎	 = 	0.25), mortality rate 𝛿 =
0.07/ℎ𝑟, with copy numbers drawn from a geometric distribution, 𝑝(1 − 𝑝)�Qt, where copy 
numbers 𝑅 range from 1 to 10 and 𝑝 = 0.75. Maximum growth rates are equal to 𝑎𝑅𝑒Q

z
_, where 

𝑅 is the copy number, 𝑎 is a prefactor equal to 170,000, the activation energy 𝐺	 = 3864, and 
temperature ranges from 3 to 27∘𝐶. The simulations began with all species at equal relative 
abundance, and every four days, an abundance of 10Q�	of all species (in units of fraction of 
single-species carrying capacities in the model) was added to the pool to represent migration and 
to prevent extinction. 

All taxa with copy 
number = 1

Copy number = 2

Copy number = 3

Copy number = 4

Copy number = 5 Copy number = 6



Fig. S7. 

Many environmental variables show seasonality at the LMO station. Boxplots showing 
monthly variation in the environmental variables collected at the LMO station in 8 years (2011-
2018). 



Fig. S8. 

Temperature profiles at different depths show similar latitudinal trends at ANT sampling 
stations. Temperature variations across latitudes in the ANT dataset (dots, observed values, dashed 
lines: smoothing splines). Colors represent the depth range at which the sample was taken (five 
within the surface and the 200m).  



Fig. S9. 

Temperature and oxygen decrease at high latitudes and with depth, while inorganic 
nutrients show the opposite pattern. Observed Temperatures, Oxygen, Phosphate and Nitrate + 
Nitrite (NOx) concentrations across latitudes and depths sampled in the TARA Ocean project. 



Fig. S10. 

Considering the effect of primary productivity does not affect the negative effect of 
temperature on the distribution of fast and slow growing heterotrophs. Chlorophyll a 
concentration is a proxy for primary productivity and a known driver of several bacterial species 
(6, 75). Since phototrophic bacteria contain chlorophyll a, they must be excluded from the 
calculation of the MCN to show that the temperature effect is robust to the inclusion of chlorophyll 
a concentration in the multiparametric analyses, which we do for the LMO and SPOT datasets 
(table S1, but see the results for SOLA time series in table S1). This analysis reveals that primary 
productivity is an important driver of the distribution of fast and slow-growing heterotrophic free-
living bacteria in the SOLA and SPOT time series, promoting statistically significant increases in 
community MCN. In the case of LMO, instead, primary productivity did not exert a statistically 
significant effect on MCN. The temperature coefficient, however, remained negative and 
statistically significant in both SPOT and LMO, suggesting that the effect of temperature on 
bacterial community structure is independent of the effect of nutrient input rates. In the case of 
SOLA time series, the temperature effect was the weakest observed and it weakened further when 
primary productivity was considered, possibly due to the small seasonal thermal excursion in the 
Bay of Banyuls compared to the other time series and transects. Results for non-fractionated 
samples are more idiosyncratic. The figure shows a summary of the results of the multi-parametric 
regression on MCN of heterotrophic communities of all the datasets included in the study (free-
living and non-fractionated samples). Tile colors represent the magnitude and sign of the 
parametric coefficient estimated for each available environmental variable multiplied by its 
standard deviation. Statistical significance of the parametric coefficients estimated through the 
models is indicated by symbols: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  



Fig. S11. 

The relative abundance of free-living slow-growers increases with temperature, regardless 
of whether oligotrophs are included in the estimation of the weighted mean copy number 
(MCN) or excluded from it. Left panel: MCN calculated on all taxa; right panel: MCN calculated 
excluding taxa with copy number equal to one. Colored dashed lines represent linear regressions 
between temperature and MCN for each dataset. The relationship between MCN and temperature 
is negative and statistically significantly for LMO (temperature sensitivity = -0.003 ±	0.001 
∆MCN/°C, p = 0.0005***), ANT (temperature sensitivity = -0.023 ± 0.002 ∆MCN/°C, p = 6.83e-
15), and TARA (temperature sensitivity = -0.021 ± 0.002 ∆MCN/°C, p = 1.08e-12***), SPOT 
(temperature sensitivity = -0.056 ±	0.003 ∆MCN/°C, p < 2e-16***), while it is not significant in 
SOLA (temperature sensitivity = -0.007 ± 0.006 ∆MCN/°C, p = 0.273 n.s.). The relationship 
between MCN calculated excluding taxa with copy number = 1 and temperature is negative and 
statistically significantly for all datasets: LMO temperature sensitivity = -0.02 ±		0.003 ∆MCN/°C, 
p = 6.77e-12***, ANT temperature sensitivity = -0.016 ±	0.002 ∆MCN/°C, p = 1.1e-13***, 
TARA temperature sensitivity = -0.028 ± 0.003 ∆MCN/°C, p < 2e-16***, SOLA temperature 
sensitivity = -0.024 ± 0.001 ∆MCN/°C, p = 1.82e-09***, SPOT temperature sensitivity = -0.03 ± 
0.003 ∆MCN/°C, p < 2e-16***. 



Fig. S12. 

We considered a total of 7 datasets reporting the composition of marine bacterial 
communities. Map of the additional datasets included in the study. 



Fig. S13. 

The effects of temperature on the distribution of fast and slow growers attached to particles 
are idiosyncratic. Summary of the results of the multi-parametric regression on MCN of particle-
attached (available for LMO timeseries and ANT transect) and non-fractionated (available for 
PICO time series and P15 GO-SHIP transect) communities. Tile colors represent the magnitude 
and sign of the parametric coefficient estimated for each available environmental variable 
multiplied by its standard deviation. Statistical significance of the parametric coefficients 
estimated through the models is indicated by symbols: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 



Fig. S14. 

Figure S14. Estimating the distribution of fast and slow growing taxa with an alternative 
method yields a negative relationship with temperature. To test whether our conclusions 
depend on the method for estimating growth rates with rRNA copy number, we used another 
method based on codon usage bias (48) (this method is optimized for metagenomic datasets, 
although a 16S reference is available). The relationship between MGR (weighted mean growth 
rate, obtained from codon usage bias estimations) and temperature is negative and statistically 
significantly for LMO (temperature sensitivity = - 0.003±0.001 ∆MCN/°C, p = 0.0005***), 
PICO (temperature sensitivity = -0.005±0.001 ∆MCN/°C, p = 2.56e-07***), and P15 GO-SHIP 
(temperature sensitivity = -0.004 ± 0.0002 ∆MCN/°C, p < 2e-16 ***), while it is not significant 
in SOLA (temperature sensitivity = -0.00003 ± 0.0004 ∆MCN/°C, p = 0.947 n.s.). The 
relationship between MGR calculated excluding taxa with generation time longer than 5 hours 
(48) and temperature is negative and statistically significantly for all datasets: LMO temperature
sensitivity = - 0.004 ±	0.001 ∆MCN/°C, p = 0.0005***, PICO temperature sensitivity = -
0.017±0.001 ∆MCN/°C, p < 2e-16***, P15 GO-SHIP temperature sensitivity = -0.006 ± 0.0003
∆MCN/°C, p < 2e-16***, SOLA temperature sensitivity = -0.006 ± 0.001 ∆MCN/°C, p = 1.82e-
09***.



Table S1. 
Effects of environmental variables on MCN of entire, copiotroph and heterotroph communities of 
all datasets included in the study. LMO, ANT, TARA, SOLA and SPOT comprise free-living 
communities, while PICO and P15 GO-SHIP include only non-fractionated samples. For LMO 
and ANT particle-attached communities are also available. Organic carbon is the dissolved 
fraction (DOC) in LMO and the particulate fraction (POC) in SPOT. Light measurements also 
differ between datasets: in SOLA it is measured as Day length (in hours); in PICO as insolation 
(kWh m−2d−1). Effects of environmental variables on MCN have been assessed using generalized 
additive (gam) or generalized additive mixed models (gamm). The latter were used when multiple 
sampling depths or stations were available the dataset, which were included in the random part of 
the model (ANT, SPOT, P15 GO-SHIP, and TARA). The intercept of the model and parametric 
coefficients (𝛾) for environmental variables are reported as Estimate (St. Error) Pr(>|t|). 
Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Statistically significant parametric 
coefficients are highlighted in different shades of grey. Adjusted R2 are included. Smooth terms 
and random terms are omitted. 
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