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This Supplementary Material is divided in two sections: “Cancer-related application,” and “Species-
related application.” The first section starts with a subsection titled “Supplementary Materials,” which
has subsections “Summarizing functional annotations into functional clusters,” and “Multiplicative update
rules.” It continues with subsections titled “Supplementary Results,” which contains subsections “Impact of
the PPI network matrix representation to the functional organization of the embedding space,” “Our FMM-
based methodology captures more biological information from the embedding space compared to the actual
gene-centric approaches,” “The FMMs reveal the higher-order functional organizations of the GO BP terms
in the network embedding spaces,” “FMM discriminates between functionally and not functionally organized
embedding spaces,” “FMMs identify novel cancer-related functions,” and “Towards pan-cancer functions.”
Finally, the first section ends with subsections containing Supplementary Figures and Supplementary Ta-
bles. The second section starts with a subsection titled “Supplementary Materials,” which has subsection
“Species-specific PPI networks.” It continues with subsections titled “Supplementary Results,” which con-
tains subsections “FMM captures the functional organization of different species-specific embedding spaces,”
and “The similarity between the FMMs of different dimensional spaces reveal the optimal dimensionality of
the embedding space.” Finally, the second section ends with subsections containing Supplementary Figures
and Supplementary Tables.
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1 Cancer-related application

1.1 Supplementary Materials and Methods

1.1.1 Summarizing functional annotations into functional clusters

The analysis of a large set of functional annotations is not straightforward. These large sets typically

contain redundant and dependent annotations that can be summarized to improve the biological

interpretation of the sets. To summarize them, different tools, e.g., REVIGO (Supek et al., 2011)

or DAVID (Dennis et al., 2003), have been proposed. These methods group similar functional

annotations by computing their Lin’s semantic similarity. Thus, large groups of annotations are

summarized into functional clusters according to different semantic similarity metrics, e.g., the

simRel score (Schlicker et al., 2006) or the Lin’s semantic similarity (Lin et al., 1998). In this

paper, we propose to use the REVIGO tool to summarize a large list of annotations. As a first

step, we use REVIGO (with the default parameters) to cluster the functional annotations based

on their Lin’s semantic similarity. Then, we consider as the most representative function of each

cluster, the annotation terms having the highest average Lin’s semantic similarity with the other

terms in the cluster. In this manuscript, we use this method to summarize the functions altered by

cancer.

1.1.2 Multiplicative update rules

As presented in section 2.3 of the main paper, the Non-negative Matrix Tri-Factorization, NMTF,

can be formulated as the following minimization problem:

min
P,S,G≥0

f(P, S,G) = minP,S,G≥0∥X − PSGT ∥2F , GTG = I,

where F denotes the Frobenius norm, X is the PPMI matrix representation of a molecular network

(whose nodes are genes), rows in matrix P ·S are the embedding vectors of the genes and columns

in GT are the axis of the basis describing the space in which the genes are embedded.

Following the semi-NMTF simplification Ding et al. (2008) for a more computationally tractable
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solution, we remove the non-negativity constraint on S ≥ 0. To solve the optimization problem,

we derive the Karush-Kuhn-Tucker (KKT) conditions for our NMTF as follows:

∂f

∂G
= −XTPS +GSTP TPS − η1 = 0,

∂f

∂S
= −P TXG+ P TPSGTG = 0,

∂f

∂P
= −XGST + PSGTGST − η2,

η1, G ≥ 0,

η1 ⊙G = 0,

η2, P ≥ 0,

η2 ⊙ P = 0,

where ⊙ is the Hadamard (element wise) product and matrices η1 and η2 are the dual variables for

the primal constraint G,P ≥ 0. For S, we have the following closed formula:

S = (P TP )−1(P TMG)(GTG)−1 (1)

As explained in (Pržulj, 2019), we derive the following multiplicative update rule to solve the

KKT conditions above:

Gij ← Gij

√√√√(XTPS)+ij +G(STP TPS)−ij

(XTPS)−ij +G(STP TPS)+ij

Pij ← Pij

√√√√(XGST )+ij + P (SGTGST )−ij

(XGST )−ij + P (SGTGST )+ij
.

(2)

We start from initial solutions, Ginit, Pinit, Sinit, and iteratively use Equations (1) and (2) to

compute new matrix factors G, P and S until convergence. To generate initial Ginit, Pinit and

Sinit, we use the Singular Value Decomposition based strategy (Qiao, 2015). However, SVD matrix

factors can contain negative entries; thus, we use only their positive entries and replace the negative

entries with 0, to account for the non-negativity constraint of the NMTF. This strategy makes
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the solver deterministic and also reduces the number of iterations that are needed to achieve

convergence (Qiao, 2015).

We measure the quality of the factorization by sum of the relative square errors (RSE) between

the decomposed matrices and the corresponding decompositions:

RSE =
||X − PSGT ||2F

||X||2F
.

In our implementation, the iterative solver stops after 1000 iterations, the value for which the RSE

of the decomposition is not decreasing anymore.

1.2 Supplementary Results

1.2.1 Impact of the PPI network matrix representation to the functional organization

of the embedding space

In this section, we compare the ability of the adjacency and PPMI matrix representations of the

tissues-specific PPI networks (detailed in sections 2.1 of the main text) to produce functionally

coherent network embedding spaces. To this aim, we embed each tissue-specific PPI network by

applying our NMTF-based methodology (see section 2.3 of the main text) on either its adjacency

matrix representation or on its PPMI matrix representation. We generate these embedding spaces

with 200 dimensions since this dimensionality corresponds to the optimal dimensionality of such

spaces (as detailed in section 2.5 of the main text).

In a first step, as standardly done in the literature, we compare the ability of the adjacency and

PPMI matrix representations to produce functionally coherent embedding spaces from the gene-

centric point of view. For each embedding space, we cluster together genes that are embedded close

in space by applying the k-medoid algorithm (Park and Jun, 2009) on the genes’ embedding vectors.

For the number of clusters, we use the heuristic rule of thumb (k =
√

n
2 , where n is the number of

nodes in the tissue-specific network) (Kodinariya and Makwana, 2013). We end up with 65, 45, 44,

44, 42, 38, 47, and 47 clusters for breast cancer, breast glandular cells, prostate cancer, prostate

glandular cells, lung cancer, lung pneumocytes, colorectal cancer, and colorectal glandular cells,
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respectively. After clustering, we measure the enrichment of those clusters in GO BP annotations

by using the sampling without replacement strategy (hypergeometric test) and we consider a GO

BP term to be significantly enriched in a gene cluster if the corresponding enrichment p-value, after

Benjamini Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995),

is smaller than or equal to 5%. For each embedding space, we report the percentage of enriched

clusters (clusters with at least one enriched GO BP term), the percentage of enriched genes (genes

that are annotated with at least one GO BP term that is enriched in their clusters), and the

percentage of enriched GO BP terms. As detailed in Supplementary Table 3, we find that the

embedding spaces obtained from the PPMI matrix representations are functionally more coherent,

with 74.80% of enriched clusters, 22.87% of enriched genes and 51.10% of enriched GO BP terms

(on average over the eight tissues-specific PPI networks), compared to the embedding spaces that

are obtained from the adjacency matrix representations (with 71.33% of enriched clusters, 16.23%

of enriched genes and 37.56% of enriched GO BP terms on average).

In a second step, we compare the ability of the adjacency and PPMI matrix representations to

produce functionally coherent network embedding spaces from our new function-centric point of

view. To this aim, we use our FMM-based method to embed and capture the relative positions of the

GO BP terms in the eight tissues-specific PPI network embedding spaces described above (detailed

in section 2.4 of the main text). We evaluate the functional organization of these embedding spaces

by assessing if functionally similar GO BP terms (with high Lin’s semantic similarity) are located

close in the embedding space, and thus have low values in the corresponding FMM. To this aim,

we first compute the pairwise Lin’s semantic similarity (Lin et al., 1998) between any two GO BP

terms. Then, we cluster GO BP terms based on their proximity in the embedding space (detailed

in section 2.6 of the main text) and report both the average semantic similarity of the pairs of GO

BP terms that are in the same cluster (“intra-SS”) and the average semantic similarity of the pairs

of GO BP terms that are not clustered together (“inter-SS”). Intuitively, the higher the intra-SS

and the lower the inter-SS, the better functionally organized the embedding space is. As detailed

in Table 1 and Supplementary Table 4, we find that the embedding spaces obtained from the PPMI

matrix representations are more functionally coherent, with an intra-SS of 0.21 and an inter-SS of
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0.161 (on average over the eight tissues-specific PPI networks), compared to the embedding spaces

obtained from the adjacency matrix representations (with an intra-SS of 0.18 and an inter-SS of

0.165, on average).

Furthermore, for each tissues-specific PPI network, the pairs of GO BP terms that are clustered

together in the PPMI-based network embedding spaces have statistically significantly higher Lin’s

semantic similarity than the pairs of GO BP terms that are clustered together in the adjacency-

based network embedding spaces (with all one-sided Mann-Whitney U test p-values being smaller

than or equal to 4 ×10−3, as detailed in Supplementary Table 4).

To conclude, both the gene-centric and our FMM approach show that the embedding spaces

obtained from the PPMI matrix representations of our tissues-specific PPI networks better capture

the cell’s functional organization than the embedding spaces obtained from the adjacency matrix

representations of these networks. These results further demonstrate that the PPMI matrix is

not only a richer representation compared to the adjacency matrix (Xenos et al., 2021), but also

that the extra information that it contains is useful for producing a more functionally organized

embedding space.

1.2.2 Our FMM-based methodology captures more biological information from the

embedding space compared to the actual gene-centric approaches

In this section, we compare the ability of our FMM-based method to uncover functional inter-

actions between GO BP terms from the PPI network embedding spaces to that of the standard

gene-centric approach. To this aim, we consider the eight cancer and control tissues-specific PPI

networks described in section 2.1 of the main text, which we embed by applying our NMTF-based

methodology on their PPMI matrix representations (see section 2.3 of the main text). We generate

these embedding spaces with 200 dimensions since this dimensionality corresponds to the optimal

dimensionality of such spaces (as detailed in section 2.5 of the main text).

For a given tissues-specific PPI network embedding space, our FMM directly quantifies all the

functional interactions between any two GO BP terms that annotate genes in the PPI network by

measuring the cosine distance between the GO BP terms’ embedding vectors (see section 2.4 of the
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main text). On the other hand, the gene-centric approach does not directly uncover such functional

interactions between GO BP terms. Instead, we indirectly uncover them by performing the following

gene clustering and enrichment analysis. For each embedding space, we cluster together genes that

are embedded close in space by applying the k-medoid algorithm (Park and Jun, 2009) on the genes’

embedding vectors. For the number of clusters, we use the heuristic rule of thumb (k =
√

n
2 , where

n is the number of nodes in the tissue-specific network) (Kodinariya and Makwana, 2013). We end

up with 65, 45, 44, 44, 42, 38, 47, and 47 clusters for breast cancer, breast glandular cells, prostate

cancer, prostate glandular cells, lung cancer, lung pneumocytes, colorectal cancer and colorectal

glandular cells, respectively. Then, we measure the enrichment of the resulting gene clusters in

GO BP terms by using the sampling without replacement strategy (hypergeometric test) and we

consider a GO BP term to be significantly enriched in a gene cluster if the corresponding enrichment

p-value, after Benjamini and Hochberg correction for multiple hypothesis testing (Benjamini and

Hochberg, 1995), is smaller than or equal to 5%. Then, we consider that two GO BP terms

functionally interact if they are both significantly enriched in the same gene cluster. Finally, for

the GO BP terms that are significantly enriched in at least one gene cluster, we measure the

agreement between the functional interactions uncovered by the gene-centric approach and the

functional interactions that are captured by our FMM methodology by using the following receiver

operating characteristic (ROC) curve analysis. In particular, for each GO BP pair, we consider the

result of the gene-centric approach as the ground truth, i.e., a pair of GO BP terms is considered

as “true” if the two terms are enriched in the same cluster, or as “false” otherwise. Also, for

each GO BP pair, we consider as the prediction score their cosine similarity in the embedding

space (1 minus their associated value in the FMM). Then, we compute the area under the ROC

curve (AUROC) (Bradley, 1997) between the ground truth and the prediction score over all the

considered GO BP pairs. Note that an AUROC score of 0.5 corresponds to a random classification

and a score of 1 to a perfect one. Hence, the closer to one the AUROC score is, the higher the

agreement between our FMM-based method and the gene-centric approach.

On average over our eight tissues-specific PPI networks, we find that only 51.1% of the GO BP

terms that annotate genes in a network are found to be significantly enriched in at least one gene
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cluster, leaving about one-half of the functional space unexplored (see Supplementary Table 3). For

the significantly enriched GO BP terms, the functional interactions uncovered by the gene-centric

and the FMM approaches are in significant agreement, with an average AUROC of 88% and all

p-values ≤ 1× 10−323 (see Supplementary Figures 13 and 14). These results confirm that the GO

BP terms that are enriched in the same gene cluster tend to be located close in the embedding

space and thus, tend to have small association values in the FMM.

In conclusion, our FMM-based method is not only able to uncover the functional organization

of biological functions that are identified by the gene-centric approach, but it goes beyond and

characterizes the functional organization of all available GO BP terms.

1.2.3 The FMMs reveal the higher-order functional organizations of the GO BP

terms in the network embedding spaces

In the previous section, we showed that our FMM better capture the pairwise functional interactions

between GO BP terms than the traditional gene-centric approach. Here, we ask if the FMM can

uncover the higher-order functional organization of the GO BP terms in a network embedding space.

To this aim, we embed all tissue-specific PPI networks by applying our NMTF-based methodology

on the PPMI matrix representations of the networks (detailed in sections 2.1 and 2.3 of the main

manuscript). We generate these embedding spaces with 200 dimensions since this dimensionality

corresponds to the optimal dimensionality of such spaces (as detailed in section 2.5 of the main

text). Then, we apply our FMM-based method to embed and capture the relative positions of

the GO BP terms in the resulting network embedding spaces (detailed in section 2.4 of the main

text). To reveal the higher-order functional organization of the GO BP terms in the network

embedding spaces, we apply the hierarchical clustering method Pvclust (Suzuki and Shimodaira,

2006) to the rows and columns (representing GO BP terms) of the FMMs. Pvclust evaluates the

statistical significance of each cluster in the hierarchy by computing its Approximately Unbiased

p-value (AU) (Suzuki and Shimodaira, 2006). Clusters with an AU value greater than or equal to

95% are considered to be strongly supported by the data, i.e., they are not expected by random.

On average over our eight tissues-specific PPI network embedding spaces, we find that about
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53.62% of the clusters in the hierarchies are statistically significant with AUs greater than or equal

to 95%. In detail, we find that 54%, 54%, 55%, 52%, 53%, 54%, 53%, and 54% of the clusters in

the hierarchy are statistically significant with AUs greater than or equal to 95% for breast cancer,

breast glandular cells, prostate cancer, prostate glandular cells, lung cancer, lung pneumocytes,

colorectal cancer and colorectal glandular cells tissue-specific PPI embedding space, respectively.

Importantly, these significant clusters cover all the GO BP terms that annotate the tissues-specific

PPI networks. Furthermore, by reordering the rows and columns of the FMMs according to their

corresponding hierarchical clusterings, we observe evident hierarchical organizations of the GO

BP embedding vectors in the different network embedding spaces (see Supplementary Figures 15

and 16)

In conclusion, these results demonstrate that our FMM methodology captures the higher-order

organization of the GO BP terms in the network embedding space. While these results motivate us

to compare FMMs across different conditions to uncover condition-related changes in the functional

organization of GO BP terms in the network embedding spaces, the extraction of novel knowledge

from the hierarchical organization of the GO BP terms is a subject of future study.

1.2.4 FMM discriminates between functionally and not functionally organized em-

bedding spaces

In section 3.1 of the main manuscript, we use our novel FMM-based method to confirm that

the embedding spaces of both, cancer and control, are functionally organized. Here, we compare

these results against a randomized experiment, i.e., when rewiring the previous PPI networks. In

particular, for each tissue-specific PPI network, we randomly rewire the corresponding adjacency

matrix and compute its corresponding PPMI matrix (detailed in section 2.1, of the paper). We

follow the same protocol as used for the real tissue-specific networks to generate the corresponding

“random” embedding space (detailed in section 2.3, of the paper). Next, we apply our FMM-

methodology to obtain the embedding vectors of each of the GO BP annotations and the mutual

positions of these vectors, which we call “distances”, in the “random” embedding spaces (detailed in

section 2.4, of the paper). We evaluate the functional organization of these “random” embedding
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spaces by using the same clustering method as we use with the real PPI networks (detailed in

section 2.6, of the paper). For each tissue-specific PPI network, we repeat this procedure 100

times. In each repetition, we statistically test if those annotations whose embedding vectors cluster

together based on their mutual positions in the space have a statistically significant higher Lin’s

semantic similarity than those annotations whose embedding vectors do not cluster. For this test,

we use the Mann-Whitney U test (keeping the corresponding p-value in each repetition). After

all the repetitions are finished, we correct the p-values for multiple tests by using the Bonferroni

correction (Brown, 2008). As expected, we do not find a statistically significant difference in

the Lin’s semantic similarity between the annotation whose embedding vectors cluster and the

annotations whose embedding vectors do not cluster in the space. Hence, we conclude that the

“random” embedding spaces are not functionally organized (see Supplementary Table 6). These

results demonstrate that our methodology correctly discriminates between functionally and not

functionally organized embedding spaces.

1.2.5 FMMs identify novel cancer-related functions

In section 3.2, of the main paper, we use our novel FMM-based methodology to predict new cancer-

related functions and we verify the importance of one of our cancer-related predictions (the first

annotation in our top 10 annotations predicted to be cancer-related, that we could not validate

in the currently available literature). In this section, we extend this discussion for the remaining

top 10 predicted cancer-related annotations. Starting with breast cancer, first we discuss the viral

translational termination reinitiation. This function could be connected with the alternative tran-

scriptional regulation pathways described in cancer (Vaklavas et al., 2017). In the same cancer, we

also find as predicted to be cancer-related the RNA phosphodiester bond hydrolysis, endonucle-

olytic. This function could be connected with the regulatory roles of RNA modifications reported

in this cancer type (Kumari et al., 2021). Following with prostate cancer, we find the positive

regulation of endoplasmic reticulum unfolded protein response. The accumulation of unfolded pro-

tein in the ER induces this unfolded protein response as our predicted cancer-related function. It

has been shown that the upregulation of this response could provide a growth advantage to tumor
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cells (So et al., 2009). Regarding lung cancer, we find the viral translational termination reiniti-

ation as predicted cancer-related function. As discussed for breast cancer (see section 3.2 of the

main paper), this process could also be connected with the alternative transcriptional regulation

pathways described in cancer (Vaklavas et al., 2017). In lung cancer, we also find the positive reg-

ulation of transcription regulatory region DNA binding as predicted cancer-related function. This

processes could be connected with the well-known deregulation of the gene expression observed in

different cancers (Malik and Brown, 2000). In conclusion, we demonstrate that our as predicted

cancer-related function are indeed cancer-related. Thus, our novel FMM-based methodology can

be used to identify new cancer-related functions.

1.2.6 Towards pan-cancer functions

In section 3.2 of the main paper, we use the total change of the distances of the annotation em-

bedding vectors (“movement”) between cancer and control embedding spaces, to identify the set

of shifted annotations. We demonstrate that these shifted annotations are cancer-related and that

they can be used to predict new cancer-related functions for each cancer type. In this section, we

explore if there are common biological functions that are shifted in all four studied cancers. We

hypothesize that common shifted annotations may represent those functions that are commonly

altered in all cancers. To this end, we analyze the overlap between the shifted annotations of the

four cancer types. We find a statistically significant intersection of eight annotations between the

shifted functions in each cancer type (permutation test with p-value < 0.05). In particular, we

randomly sample, 100 times, the equivalent number of the top-shifted functions for each cancer

type, and we compute the times, n, the overlap in the randomized experiments is equal or higher

than the observed (eight). Then, we derive the p-value by dividing the n times by the number of

permutations (100).

To explore the meaning of these eight common annotations, we summarize them into func-

tional domains (Supplementary section 1.1.1). We find five functional clusters: cellular response

to chemokine (GO:1990869 and GO:0008543), histone phosphorylation (GO:0016572), positive reg-

ulation of the RNA export from nucleus (GO:0046833), response to radiation (GO:0009314 and
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GO:0006970), and stress-activated MAPK cascade (GO:0051403 and GO:0007254). To confirm the

link between these five clusters and cancer, we explore the literature that studies these domains.

As expected, we find that their link to cancer is coherent. For instance, dysregulation of the MAPK

signaling cascades is known to be involved in the progression of various human cancers (Rezatabar

et al., 2019). Regarding the response to radiation, healthy cells are known to react to radiation

in three ways: arrest cell cycle progression, repair DNA lesions, or apoptosis (Li et al., 2001). In

cancer cells, these three reactions are known to be deregulated (Sharma et al., 2019). In the case of

the histone phosphorylation and RNA export from the nucleus, it could be related to the epigenetic

alterations, and the dysregulation of nuclear trafficking observed in cancer (Rezatabar et al., 2019;

Borden, 2020). Finally, the response to chemokines has been identified to play an important role

in the tumor microenvironment (Vilgelm and Richmond, 2019). Altogether, these results suggest

that the functions that are shifted in all cancers may define generic cancer-related functions that

are normally deregulated in all tumors.

To further evaluate if these eight annotations represent general mechanisms of cancer, we inves-

tigate their link with the cancer hallmarks (Hanahan and Weinberg, 2011). First, we calculate the

Lin’s semantic similarity (Lin et al., 1998) of our eight common shifted annotations with the set of

GO BP terms that are defined as the hallmarks of cancer by Chen et al. (2021). We consider an

annotation to be related to one of the cancer hallmarks if it has at least a Lin’s semantic similarity

of 0.7 with one of the annotations that are included in the identified set of GO BP terms related

to the cancer hallmarks by Chen et al., 2021. We choose a semantic similarity of 0.7 since it is the

threshold that other tools apply to cluster functional annotations based on their semantic similarity,

e.g., REVIGO (Supek et al., 2011). Interestingly, we find that our eight common shifted annota-

tions are semantically similar to the following hallmarks: inducing angiogenesis, deregulation of

cellular energetic, and sustaining proliferative signal (see Supplementary Figure 12). In particular,

we find that the stress-activated MAPK cascade is involved in sustaining the proliferative signal.

Interestingly, this classification is coherent since these signaling cascades are known to participate in

cell growth and cancer proliferation (Rezatabar et al., 2019; Feitelson et al., 2015). Also we see that

response to chemokines is semantically similar to the inducing angiogenesis hallmark. Again, this
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makes sense, since chemokines are known to play an important role in the tumor microenvironment,

in which they can contribute to tumor progression by inducing angiogenesis (Fousek et al., 2021).

Finally, we observe that response to radiation and histone phosphorylation are both semantically

similar to the deregulation of cellular energetic hallmark. Alteration of the cellular epigenetic pat-

terns has been connected with the cellular metabolism, while the response to radiation has recently

been linked to the carbon metabolism of the cell (Korimerla and Wahl, 2022).

In conclusion, these results suggest that our analysis could be extended to more cancers to

uncover pan-cancer functions.
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1.3 Supplementary Figures

Supplementary Figure 1: Lin’s semantic similarity between our set of cancer-related GO BP terms
(104 annotations) and the set of GO BP terms classified as the set of GO BP cancer hallmark
defined by Chen et al. (2021) (135 annotations). For each GO BP term in our set, we show its
maximum Lin’s semantic similarity to one annotation in the cancer hallmarks set.
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Supplementary Figure 2: For each cancer type (breast cancer, prostate cancer, lung cancer, and
colorectal cancer) and its corresponding control. Each panel shows the Relative Square Error (RSE)
of FMMs corresponding to the cancer and control tissues-specific embedding spaces of increasing
dimensions (dimension increasing by 50 starting from 50 and ending with 300).
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Supplementary Figure 3: Change in the pairwise distances (cosine distances), that we call “move-
ment”, of the functional annotation embedding vectors between breast, cancer, and control em-
bedding spaces. For a pair of annotation embedding vectors, its “movement” is the difference
between the cosine distance between the two embedding vectors in one embedding space (control)
and the corresponding cosine distance in the other space (cancer) (defined in section 2.7, of the
paper). Thus, positive “movement” means that the two annotation embedding vectors got closer in
the cancer embedding space, and negative “movement” means that the two annotation embedding
vectors got further apart in the cancer embedding space. The red lines represent the 95th and 5th

percentiles of the distributions. We use these thresholds to define when two annotation embedding
vectors are “moving significantly apart” in the embedding space of cancer (95th percentile) or are
“moving significantly closer” in the embedding space of cancer (5th percentile). The panels are for
breast, lung, colon, and prostate cancers versus controls.
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Supplementary Figure 4: “Total movement distribution” of the functional annotation embedding
vectors. For each annotation embedding vector, we compute its “total movement” (defined in
section 2.7, of the paper). Thus, those annotation embedding vectors that change their mutual
positions, “movement”, the most between control embedding space and cancer embedding space
have higher “total movement” than those annotation embedding vectors that do not change their
“movement”. The red lines represent two standard deviations above and below the mean of the
distribution. We use these thresholds to define as shifted biological functions those functional
annotations whose embedding vectors’ “total movement” is two standard deviations above the
mean of the “total movement distribution.” In contrast, we define as stable biological functions
those functional annotations whose embedding vectors’ “total movement” is two standard deviations
below the mean of the “total movement” distribution. The distributions are for breast, lung, colon,
and prostate cancers.
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Supplementary Figure 5: The t-Distributed Stochastic Neighbor Embedding (t-SNE) of embedding
vectors of the functional annotations in four cancer tissue-specific PPI embedding spaces (breast,
lung, colon, and prostate) and their corresponding control tissue-specific PPI embedding spaces.
For each tissue-specific PPI embedding space, we generate the embedding vectors of the functional
annotations in the corresponding embedding space (detailed in section 2.4, of the paper). We use
the t-SNE technique (Van der Maaten and Hinton, 2008) to visualize these embedding vectors in the
tissue-specific PPI embedding space. Each dot in the plot corresponds to the embedding vector of
a specific GO BP annotation. The colors of the dots correspond to the clustering of the embedding
vectors of the functional annotations based on their cosine distances (detailed in section 2.6, of the
paper).
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Supplementary Figure 6: The Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP) of embedding vectors of the functional annotations in four cancer tissue-specific
PPI embedding spaces (breast, lung, colon, and prostate) and their corresponding control tissue-
specific PPI embedding spaces. For each tissue-specific PPI embedding space, we generate the
embedding vectors of the functional annotations in the corresponding embedding space (detailed
in section 2.4, of the paper). We use the UMAP technique (McInnes et al., 2018) to visualize these
embedding vectors in the tissue-specific PPI embedding space. Each dot in the plot corresponds
to the embedding vector of a specific GO BP annotation. The colors of the dots correspond to the
clustering of the embedding vectors of the functional annotations based on their cosine distances
(detailed in section 2.6, of the paper).
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Supplementary Figure 7: The Multidimensional Scaling (MDS) of embedding vectors of the func-
tional annotations in four cancer tissue-specific PPI embedding spaces (breast, lung, colon, and
prostate) and their corresponding control tissue-specific PPI embedding spaces. For each tissue-
specific PPI embedding space, we generate the embedding vectors of the functional annotations
in the corresponding embedding space (detailed in section 2.4, of the paper). We use the MDS
technique (Carroll and Arabie, 1998) to visualize these embedding vectors in the tissue-specific PPI
embedding space. Each dot in the plot corresponds to the embedding vector of a specific GO BP
annotation. The colors of the dots correspond to the clustering of the embedding vectors of the
functional annotations based on their cosine distances (detailed in section 2.6, of the paper).
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Supplementary Figure 8: The embedding vectors of GO BP terms change their mutual positions
in the cancer embedding space with respect to the control embedding space, for each cancer type
(breast cancer, prostate cancer, lung cancer, and colorectal cancer) and its corresponding control.
Heatmaps in the first and second columns show the cosine distances (mutual positions) between the
embedding vectors of the GO BP annotations in control embedding space (FMMControl) and cancer
embedding space (FMMCancer), respectively. Heatmaps in the third column show changes in the
mutual positions of the embedding vectors of the functional annotations between cancer embedding
space with respect to the control embedding space (computed as: FMMControl - FMMCancer).
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Supplementary Figure 9: Gene maximum “movement” distribution. For each gene, we have a
vector with n positions, where n corresponds to the number of the “shifted” GO terms. Each
entry of this n-dimensional vector corresponds to the “movement” (change of mutual positional)
of the gene and the GO term. This “movement” can either be positive (a gene is going closer
to the GO term in the cancer space), or negative (a gene is going further from the GO term in
the cancer space). Since this “movement” is bi-directional (getting closer or further), we use the
absolute value of the “movement” at each coordinate of this vector, to keep only the magnitude
of this movement independently of the direction of the “movement”. Then, since all the values in
the n-dimensional vector are now positive, for each gene we assign as its cancer-related score the
maximum value (maximum magnitude of movement) in its corresponding vector. The red lines
represent the 95th and 5th percentiles of the distributions. Based on these thresholds, we consider
cancer-related gene predictions whose genes that are above the 95th percentile of the maximum
“movement” distribution. The distributions are for breast, lung, colon, and prostate cancers.
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Supplementary Figure 10: For the human embedding spaces. The plot illustrates the Lin’s semantic
similarity between the top 500 closest functional annotation embedding vectors in the tissues-
specific embedding spaces and the Lin’s semantic similarity between the top 500 farthest functional
annotation embedding vectors in the tissues-specific embedding spaces. The plot shows this measure
for human embedding spaces generated by applying the NMTF algorithm on the corresponding
tissue-specific PPI network with a different number of dimensions (48, 96, 144, 192, 240, 288, 300,
400, 500, 600, 700, 800, 900, 1000). In all the cases, we find that the Lin’s semantic similarity of
the 500 closest pairs of annotation embedding vectors in the embedding space is statistically higher
than the average Lin’s semantic similarity of the 500 farthest pairs (one-sided Mann Whitney U
test p-value < 0.05).

Supplementary Figure 11: For the human species-specific embedding space. Each panel shows the
Relative Square Error (RSE) of FMMs corresponding to the cancer and control tissues-specific
embedding spaces of increasing dimensions (from 48 to 288 with a step of 48 dimensions and from
400 to 1000 with a step of 100 dimensions).
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Supplementary Figure 12: We summarize the meaning of the 8 Pan-cancer annotations into func-
tional domains (see Supplementary section 1.1.1). The panel represents the functional domains
that cluster these annotations (the inner circle), and the outer represents the classification of the
domains into the hallmarks of cancer.
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Supplementary Figure 13: Our FMM-based method uncovers the functional interactions between
GO BP terms that are identified by the standard gene-centric approach (based on clustering and
functional enrichment analyses) in four cancer tissue-specific PPI embedding spaces (breast, lung,
colon, and prostate). For each cancer tissue-specific PPI embedding space, we take the subset
of GO BP terms that are statistically enriched based on the gene-centric approach (detailed in
Supplementary section 1.2.2). Then, for a pair of GO BP terms, we set the ground truth as
one if they are enriched in the same cluster (zero otherwise). For the same pair, we set the
prediction score as the value of their embedding vectors’ cosine distance in the embedding space,
as captured by the FMM. Finally, we compute the area under the receiver operating characteristic
curve (AUROC) (Bradley, 1997) between the ground truth and the prediction score. Each panel
shows the corresponding ROC curves with its AUROC.
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Supplementary Figure 14: Our FMM-based method uncovers the functional interactions between
GO BP terms that are identified by the standard gene-centric approach (based on clustering and
functional enrichment analyses) in the control tissue-specific PPI embedding spaces of four cancer
types (breast, lung, colon, and prostate). For each control tissue-specific PPI embedding space, we
take the subset of GO BP terms that are statistically enriched based on the gene-centric approach
(detailed in Supplementary section 1.2.2). Then, for a pair of GO BP terms, we set the ground
truth as one if they are enriched in the same cluster (zero otherwise). For the same pair, we set the
prediction score as the value of their embedding vectors’ cosine distance in the embedding space,
as captured by the FMM. Finally, we compute the area under the receiver operating characteristic
curve (AUROC) (Bradley, 1997) between the ground truth and the prediction score. Each panel
shows the corresponding ROC curves with its AUROC.
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Supplementary Figure 15: Heatmaps of the FMMs of breast, lung, colon and prostate cancer
tissues-specific PPI embedding spaces. For each FMM, we reorder it based on the hierarchical
clustering obtained by Pvclust (see detailed in Supplementary 1.2.3). For completeness, we plot on
the left and the top of each FMM heatmap the dendrogram tree of the corresponding hierarchical
clustering.
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Supplementary Figure 16: Heatmaps of the FMMs of the control tissue-specific PPI embedding
spaces of four cancer types (breast, lung, colon, and prostate). For each FMM, we reorder it
based on the hierarchical clustering obtained by Pvclust (see detailed in Supplementary 1.2.3). For
completeness, we plot on the left and the top of each FMM heatmap the dendrogram tree of the
corresponding hierarchical clustering.
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1.4 Supplementary Tables

Cancer TCGA Project # of patient samples Disease Type

Breast BRCA 1,098
1,095 neoplasms
3 adenocarcinomas

Prostate PRAD 467
459 adenocarcinomas
8 neoplasms

Lung LUAD, LUSC 1,062
533 neoplasms
529 adenocarcinomas

Colorectal COAD, READ 456
389 adenocarcinomas
63 neoplasms

Supplementary Table 1: The statistics for the tissue-specific PPI networks in this study. Column
one, “Cancer,” specifies the type of cancer that we analyzed; column two, “TCGA Project,” gives
the name of the project from TCGA that produced the data that we used; column three, “# of
patient samples” specifies the number of patient samples in the project from column two; column
four, “Disease Type,” specifies the numbers of patient samples from the corresponding project with
a specific cancer type.

Network #Nodes #Edges #Density

Breast cancer 8,498 163,893 0.45
Breast control 7,999 160,520 0.50
Prostate cancer 7,885 137,701 0.44
Prostate control 7,837 148,797 0.48
Lung cancer 7,031 126,744 0.51
Lung control 5,912 95,774 0.54
Colorectal cancer 8,941 175,081 0.43
Colorectal control 8,974 185,342 0.46

Supplementary Table 2: The statistics for the tissue-specific PPI networks in this study. Column
“Network” presents the tissue-specific PPI network that we analyzed column; column, “# Nodes,”
presents the number of nodes in the PPI network; column, “# Edges,” presents the number of
edges between the nodes; column, “#Density,” presents the edge density of the corresponding PPI
network.
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Matrix Data set %Clusters %Genes %GO

PPMI breast cancer 81.00 23.12 52.44
PPMI breast control 68.25 22.69 51.73
PPMI prostate cancer 76.19 23.28 49.36
PPMI prostate control 80.95 25.37 52.28
PPMI lung cancer 73.13 25.28 53.01
PPMI lung control 79.10 24.33 55.97
PPMI colorectal cancer 77.97 22.05 49.2
PPMI colorectal control 62.96 16.89 44.86
Adj breast cancer 70.77 17.87 36.24
Adj breast control 76.19 18.07 41.84
Adj prostate cancer 77.78 14.25 40.83
Adj prostate control 77.19 16.96 38.33
Adj lung cancer 74.62 20.89 38.76
Adj lung control 79.10 17.89 41.70
Adj colorectal cancer 57.63 13.08 30.96
Adj colorectal control 57.41 10.88 31.87

Supplementary Table 3: The embedding spaces of the most prevalent cancers (breast, prostate,
lung, and colorectal cancer) and their control tissues (breast glandular cells, prostate glandular
cells, lung pneumocytes, and colorectal glandular cells) are functionally organized according to the
mutual positions (cosine distances) of the gene embedding vectors in the embedding space (gene
perspective). For each tissue-specific PPI embedding space, we cluster genes whose embedding vec-
tors are close in the space based on their cosine distance, and then we measure the enrichment of
those clusters in GO BP annotations. The first column, “Matrix,” indicates the matrix representa-
tion of the tissue-specific PPI network. The second column, “Data set,” specifies the tissue-specific
PPI network. The third column, “%Clusters,” shows the percentage of clusters with at least one
GO BP term enriched. The fourth column, “%Genes,” presents the percentage of enriched genes
in the clusters (out of the total number of genes in the corresponding tissue-specific PPI network).
The sixth column, “%GO,” shows the percentage of GO BP terms enriched in the clusters (out of
the total GO BP terms that annotate the genes of the corresponding tissue-specific PPI network).
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Embedding Intra-SS Inter-SS Fold p-value Fold p-value (PPMI)

Control breast 0.18 0.16 1.10 0.0001 0.004
Cancer breast 0.18 0.16 1.10 0.0004 1.31× 10−8

Control prostate 0.18 0.17 1.08 0.0074 0.0004
Cancer prostate 0.18 0.17 1.08 0.0002 8.05× 10−38

Control colon 0.18 0.16 1.11 0.0004 0.0008
Cancer colon 0.18 0.16 1.10 0.0004 5.00× 10−42

Control lung 0.18 0.17 1.06 0.0020 2.53× 10−71

Cancer lung 0.18 0.17 1.09 0.0020 9.73× 10−57

Supplementary Table 4: The adjacency embedding spaces of the most prevalent cancers (breast,
prostate, lung, and colorectal cancer) and their control tissues (breast glandular cells, prostate glan-
dular cells, lung pneumocytes, and colorectal glandular cells) are functionally organized. The first
column, “Embedding,” lists the tissues. The second column, “Intra-SS,” shows the average Lin’s
semantic similarity of those annotations whose embedding vectors cluster together based on their
cosine distances in the embedding space. The third column, “Inter-SS,” shows the average Lin’s
semantic similarity of those annotations whose embedding vectors do not cluster together based
on their cosine distances in the embedding space. The fourth column, “Fold,” displays how many
times the average Lin’s semantic similarity of those annotations whose embedding vectors cluster
together based on their cosine distances in the embedding space is higher than of those annota-
tions whose embedding vectors do not cluster together. The fifth column, “p-value Fold,” shows
the p-value from a one-sided Mann-Whitney U test comparing Lin’s semantic similarity between
annotations whose embedding vectors cluster together and those with non-clustered embedding
vectors. The sixth column, “p-value (PPMI),” shows the p-value from a one-sided Mann-Whitney
U test comparing Lin’s semantic similarity between annotations that cluster together based on
their proximity in the PPMI embedding space and those annotations that cluster together based
on their proximity in the corresponding adjacency embedding space.

33



Network #Optimal Dimensions

Breast cancer 200
Breast control 200
Prostate cancer 200
Prostate control 200
Lung cancer 200
Lung control 200
Colorectal cancer 200
Colorectal control 200
Human 240
Mouse 100
Baker’s yeast 80
Fission yeast 80
Rat 100
Fruit fly 100

Supplementary Table 5: Optimal number of dimensions for each tissue-specific and species-specific
PPI embedding spaces. Column “Network,” specifies the tissue, or species-specific PPI network.
Column, “# Optimal Dimensions,” contains the optimal number of dimensions that we found
experimentally as explained in section 2.5 of the paper, that we then used for generating the
corresponding embedding space by our NMTF-based procedure explained in the paper.
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Embedding Intra Inter Fold p-value

Random control breast 0.17 0.17 1.00 0.14
Random cancer breast 0.17 0.17 1.00 0.09
Random control prostate 0.17 0.17 1.00 0.06
Random cancer prostate 0.18 0.17 1.05 0.07
Random control colon 0.16 0.16 1.00 0.10
Random cancer colon 0.17 0.16 1.05 0.08
Random control lung 0.16 0.17 0.94 0.09
Random cancer lung 0.15 0.15 1.00 0.07

Supplementary Table 6: Our FMM-based method discriminates between functionally organized
embedding spaces and those that are not. For each tissue-specific PPI network, we randomly
rewire the networks (detailed in Supplementary section 1.2.4) and generate the embedding space by
using the NMTF algorithm. Then, we use our new FMM-based method to evaluate the functional
organization of these random PPI embedding spaces (detailed in section 2.6 of the main manuscript).
The first column, “Embedding,” lists the randomized tissue-specific PPI embedding spaces. The
second column, “Intra,” shows the average Lin’s semantic similarity of those annotations whose
embedding vectors cluster together based on their cosine distances in the randomized tissue-specific
embedding space. The third column, “Inter,” shows the average Lin’s semantic similarity of those
annotations whose embedding vectors do not cluster together based on their cosine distances in the
randomized tissue-specific embedding space. The fourth column, “Fold,” displays how many times
the average “Intra” semantic similarity is higher than the “Inter” semantic similarity. The fifth
column, “p-value,” shows the one-sided Mann-Whitney U test p-value between the distributions of
“Intra” and “Inter”.

Shifted Stable

Breast 58 29
Prostate 49 26
Lung 53 15
Colorectal 68 13

Supplementary Table 7: Numbers of GO BP annotations in the shifted and stable sets in each cancer
type. For the four cancer types: breast cancer (denoted by “Breast”), prostate cancer (denoted by
“Prostate”), lung cancer (denoted by “Lung”), and colorectal cancer (denoted by “Colorectal”).
Column, “shifted,” presents the number of annotations in the set of shifted functions; column,
“Stable”, presents the number of annotations in the set of stable functions. The details about the
definitions of shifted and stable sets can be found in section 2.7.
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Annotation #Norm #Cancer related #Bibliography

positive regulation of mrna binding 6.349 False 6
positive regulation of activated t cell proliferation 6.259 False 0
viral translational termination reinitiation 6.112 False 0
dna topological change 5.938 False 1
response to radiation 5.897 False 90
positive regulation of phagocytosis 5.692 False 2
establishment of mitotic spindle localization 5.679 False 139
regulation of lipid kinase activity 5.637 False 4
rna phosphodiester bond hydrolysis, endonucleolytic 5.579 False 0
positive regulation of mda 5 signaling pathway 5.576 False 1
positive regulation of receptor mediated endocytosis 5.558 False 121
protein localization to nucleolus 5.530 False 56
male gonad development 5.410 False 0
histone h3 s10 phosphorylation 5.396 False 0
stress activated mapk cascade 5.392 False 0
ATP generation from poly adp d ribose 5.366 False 0
negative regulation of oxidative stress induced neuron death 5.359 False 0
positive regulation of dna binding 5.292 False 0
mrna transcription 5.267 False 54
alternative mrna splicing, via spliceosome 5.256 False 1
histone phosphorylation 5.242 False 4
single strand break repair 5.223 False 12
leukocyte migration 5.188 False 34
rna secondary structure unwinding 5.171 True 0
negative regulation of nitric oxide biosynthetic process 5.166 False 0
positive regulation of rna export from nucleus 5.144 False 0
jnk cascade 5.137 False 2
response to x ray 5.134 False 0
nuclear pore complex assembly 5.117 False 0
negative regulation of trophoblast cell migration 5.116 False 0
dna ligation involved in dna repair 5.084 False 5
focal adhesion assembly 5.073 False 5
arachidonic acid metabolic process 5.069 False 0
positive regulation of production of miRNA involved in gene silencing 5.065 False 33
trail activated apoptotic signaling pathway 5.041 False 0
positive regulation of cell death 5.034 False 32
nucleotide excision repair, dna gap filling 4.987 False 0
negative regulation of kinase activity 4.975 False 84
negative regulation of lipopolysaccharide mediated signaling pathway 4.973 False 0
positive regulation of nitric oxide biosynthetic process 4.954 False 0
regulation of cohesin loading 4.954 False 1
maintenance of protein location in mitochondrion 4.934 False 0
establishment of protein localization to mitochondrion 4.934 False 0
cellular response to sodium arsenite 4.932 False 5
negative regulation of interleukin 1 beta production 4.926 False 0
protein poly adp ribosylation 4.905 False 1
dna synthesis involved in dna repair 4.881 True 95
cellular response to amyloid beta 4.877 False 3
positive regulation of rig i signaling pathway 4.874 False 0
activation of innate immune response 4.868 False 21
regulation of protein kinase activity 4.848 False 0
amyloid fibril formation 4.834 False 1
positive regulation of neutrophil chemotaxis 4.830 False 0
negative regulation of production of mirnas involved in gene silencing by mirna 4.825 False 3
glycolytic process 4.818 False 2
regulation of mitotic cell cycle phase transition 4.799 False 126
positive regulation of substrate adhesion dependent cell spreading 4.791 False 1
response to osmotic stress 4.785 False 1

Supplementary Table 8: Shifted GO BP terms in breast cancer (58 GO BP terms). Column one,
“Annotations,” presents the shifted annotations in breast cancer; column two, “# Norm,” presents
the “total movement” of the annotations (detailed in section 2.7, of the paper); column three, “#
Cancer related,” presents whether the annotations is part of our cancer-related set (True) or not
(False); column four, “# Bibliography,” presents the number of publications in Pubmed that relate
the function to breast cancer.
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Annotation #Norm #Cancer related #Bibliography

notch signaling pathway 6.419 False 20
negative regulation of stem cell differentiation 6.074 False 20
nucleotide binding oligomerization domain containing 2 signaling pathway 6.039 False 2
positive regulation of response to dna damage stimulus 5.795 False 218
cleavage furrow formation 5.739 False 0
positive regulation of endoplasmic reticulum unfolded protein response 5.664 False 0
interleukin 6 mediated signaling pathway 5.658 False 1
negative regulation of interleukin 1 beta production 5.642 False 13
JNK cascade 5.636 False 3
positive regulation of t cell cytokine production 5.578 False 1
histone H3k4 methylation 5.558 False 5
positive regulation of macrophage chemotaxis 5.528 False 3
smad protein complex assembly 5.490 False 4
sprouting angiogenesis 5.378 False 2
regulation of protein containing complex assembly 5.325 False 0
positive regulation of RAS protein signal transduction 5.295 False 2
amyloid fibril formation 5.275 True 0
histone H3k4 monomethylation 5.253 True 1
histone H3k4 dimethylation 5.253 True 1
positive regulation of transcription from RNA polymerase II promoter in response to stress 5.249 False 0
stress activated MAPK cascade 5.248 True 12
response to estradiol 5.228 False 921
apoptotic signaling pathway 5.219 False 194
histone succinylation 5.215 False 0
JNK cascade 5.184 False 3
cellular response to laminar fluid shear stress 5.152 True 0
fibroblast growth factor receptor signaling pathway 5.133 False 464
positive regulation of apoptotic signaling pathway 5.095 False 194
response to radiation 5.087 False 60
histone phosphorylation 5.074 False 3
positive regulation of mitotic cell cycle spindle assembly checkpoint 5.053 False 0
release of sequestered calcium ion into cytosol 5.039 False 0
regulation of cell adhesion mediated by integrin 5.035 False 0
positive regulation of receptor endocytosis 5.027 False 4
phosphatidylinositol 3 kinase activity 5.024 False 1
positive regulation of jun kinase activity 5.001 False 0
positive regulation of cell death 4.982 False 4
regulation of stress fiber assembly 4.973 False 1
response to bacterium 4.957 False 0
positive regulation of cell substrate adhesion 4.955 False 0
type i interferon signaling pathway 4.955 False 0
nuclear transcribed mrna catabolic process 4.954 False 1
positive regulation of smooth muscle cell proliferation 4.948 False 1
bmp signaling pathway 4.946 False 3
negative regulation of cell cell adhesion mediated by cadherin 4.937 False 1
positive regulation of stress fiber assembly 4.933 False 0
cellular response to nicotine 4.929 False 0
negative regulation of myosin light chain phosphatase activity 4.925 False 0
insulin like growth factor receptor signaling pathway 4.898 False 0

Supplementary Table 9: Shifted GO BP terms in prostate cancer (58 GO BP terms). Column
one, “Annotations,” presents the shifted annotations in prostate cancer; column two, “# Norm,”
presents the “total movement” of the annotations (detailed in section 2.7, of the paper); column
three, “# Cancer related,” presents whether the annotations is part of our cancer-related set (True)
or not (False); column four, “# Bibliography,” presents the number of publications in Pubmed that
relate the function to prostate cancer.
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Annotation #Norm #Cancer related #Bibliography

response to uv 5.721 False 3
transcription coupled nucleotide excision repair 5.719 False 4
positive regulation of endodeoxyribonuclease activity 5.527 False 0
cellular response to cytokine stimulus 5.493 False 1
nucleotide excision repair, dna incision 5.481 True 1,203
response to epidermal growth factor 5.407 False 3,712
viral translational termination reinitiation 5.397 False 0
positive regulation of transcription regulatory region dna binding 5.321 False 0
jnk cascade 5.315 False 1
stress activated mapk cascade 5.301 True 0
nucleotide excision repair 5.260 False 223
positive regulation of interleukin 12 production 5.183 False 0
positive regulation of rna export from nucleus 5.169 False 0
cellular response to virus 5.158 False 1
negative regulation of myeloid cell differentiation 5.129 False 1
dna replication 5.120 False 313
positive regulation of dna directed dna polymerase activity 5.115 False 0
positive regulation of activated t cell proliferation 5.102 False 0
base excision repair 5.079 False 155
cellular response to lipopolysaccharide 5.078 True 58
mismatch repair 5.061 False 176
nuclear pore complex assembly 5.0302 False 0
negative regulation of vascular associated smooth muscle cell proliferation 4.9665 False 0
DNA ADP ribosylation 4.939 False 1
protein poly ADP ribosylation 4.928 False 1
protein ADP ribosylation 4.922 False 1
positive regulation of histone phosphorylation 4.906 False 0
positive regulation of ERAD pathway 4.897 False 0
positive regulation of telomere maintenance 4.874 False 31
activation of protein kinase activity 4.870 False 6
telomere maintenance 4.864 False 31
vascular endothelial growth factor receptor signaling pathway 4.829 False 1
positive regulation of histone acetylation 4.822 False 0
apoptotic signaling pathway 4.818 False 19
cellular response to chemokine 4.816 False 0
H3k4 methylation 4.803 False 9
telomeric d loop disassembly 4.779 False 0
proteolysis involved in cellular protein catabolic process 4.777 False 0
negative regulation of cell cycle 4.771 True 1
membrane to membrane docking 4.769 False 0
positive regulation of erythrocyte differentiation 4.766 False 0
IRES dependent viral translational initiation 4.762 False 0
cellular response to exogenous dsRNA 4.761 False 0
positive regulation of interferon gamma production 4.757 False 3
positive regulation of kinase activity 4.754 True 7
DNA damage checkpoint signaling 4.749 False 4
necroptotic process 4.744 False 9
response to osmotic stress 4.734 False 0
mrna polyadenylation 4.729 False 2
torc1 signaling 4.727 False 0
negative regulation of cysteine type endopeptidase activity involved in apoptotic signaling pathway 4.725 False 0
positive regulation of translational initiation 4.719 False 0
translesion synthesis 4.718 False 17

Supplementary Table 10: Shifted GO BP terms in lung cancer (58 GO BP terms). Column one,
“Annotations,” presents the shifted annotations in lung cancer; column two, “# Norm,” presents
the “total movement” of the annotations (detailed in section 2.7, of the paper); column three, “#
Cancer related,” presents whether the annotations is part of our cancer-related set (True) or not
(False); column four, “# Bibliography,” presents the number of publications in Pubmed that relate
the function to lung cancer.
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Annotation #Norm #Cancer related #Bibliography

DNA topological change 7.199 False 0
positive regulation of creb transcription factor activity 6.780 False 84
multicellular development 6.638 False 1
mitotic spindle midzone assembly 6.496 False 0
negative regulation of stem cell differentiation 6.276 False 14
dna adp ribosylation 6.241 False 9
response to radiation 6.186 False 30
positive regulation of dna directed dna polymerase activity 6.074 False 4
positive regulation of phosphatidylinositol 3 kinase activity 6.062 False 1
notch signaling pathway 5.995 False 43
negative regulation of interleukin 1 beta production 5.954 False 0
negative regulation of mrna splicing, via spliceosome 5.922 False 0
crd mediated mrna stabilization 5.861 False 0
protein poly adp ribosylation 5.804 False 0
cleavage furrow formation 5.754 False 0
heterotypic cell cell adhesion 5.726 False 1
positive regulation of extracellular matrix disassembly 5.719 False 0
base excision repair 5.711 False 67
positive regulation of signal transduction by p53 class mediator 5.705 False 0
viral translational termination reinitiation 5.656 False 0
positive regulation of cytokinesis 5.642 False 0
negative regulation of oxidative stress induced neuron death 5.638 False 0
establishment of mitotic spindle localization 5.628 False 0
positive regulation of snrna transcription by rna polymerase ii 5.627 False 0
cellular response to nerve growth factor stimulus 5.619 False 0
negative regulation of myosin light chain phosphatase activity 5.604 False 0
chromatin remodeling 5.599 False 46
dna damage checkpoint signaling 5.582 False 1
negative regulation of transposition 5.543 False 0
negative regulation of DNA recombination 5.535 True 0
mismatch repair 5.493 True 1,054
positive regulation of telomere maintenance 5.456 False 0
regulation of transforming growth factor beta receptor signaling pathway 5.428 True 1
desmosome assembly 5.411 False 1
regulation of phosphorylation 5.409 False 2
alternative mrna splicing, via spliceosome 5.394 False 1
positive regulation of gene expression, epigenetic 5.388 False 28
branching morphogenesis of an epithelial tube 5.381 False 0
regulation of alternative mRNA splicing, via spliceosome 5.352 False 1
positive regulation of intracellular estrogen receptor signaling pathway 5.326 False 0
IRES dependent viral translational initiation 5.320 False 3
SAMD protein complex assembly 5.315 False 0
progesterone receptor signaling pathway 5.313 False 7
mrna processing 5.304 False 11
dna replication 5.299 False 227
fibroblast growth factor receptor 5.286 True 131
translesion synthesis 5.270 False 3
prostaglandin biosynthetic process 5.261 False 0
nodal signaling pathway 5.248 False 1
positive regulation of erad pathway 5.242 False 0
ribosomal small subunit biogenesis 5.241 False 0
regulation of dna repair 5.237 False 0
positive regulation of epithelial to mesenchymal transition 5.215 True 6
positive regulation of helicase activity 5.208 False 0
stress induced premature senescence 5.198 False 3
negative regulation of ubiquitin protein ligase activity 5.191 False 0
dosage compensation by inactivation of x chromosome 5.190 False 0
endosomal vesicle fusion 5.179 False 0
response estrogen 5.178 True 62
neuropilin signaling pathway 5.158 False 1
positive regulation of mrna binding 5.157 False 0
negative regulation of glial cell apoptotic process 5.152 False 0
regulation of cell substrate adhesion 5.147 False 3
maintenance of DNA 5.136 True 1
activation of innate immune response 5.113 False 7
ERAD pathway 5.111 False 1
DNA damage checkpoint signaling 5.111 False 11
epithelial to mesenchymal transition 5.105 False 234

Supplementary Table 11: Shifted GO BP terms in colorectal cancer (58 GO BP terms). Column
one, “Annotations,” presents the shifted annotations in colorectal cancer; column two, “# Norm,”
presents the “total movement” of the annotations (detailed in section 2.7, of the paper); column
three, “# Cancer related,” presents whether the annotations is part of our cancer-related set (True)
or not (False); column four, “# Bibliography,” presents the number of publications in Pubmed that
relate the function to colorectal cancer.
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Sample Avg Distance Annotate Avg Distance Not-Annotate

Breast cancer 0.571 0.920
Breast control 0.575 0.921
Prostate cancer 0.598 0.912
Prostate control 0.576 0.926
Colorectal cancer 0.520 0.922
Colorectal control 0.514 0.908
Lung cancer 0.578 0.920
Lung control 0.593 0.922

Supplementary Table 12: The embedding vectors of the biological functions (GO BP terms) are
significantly closer in space to the embedding vectors in the same space of the genes that they
annotate than to the embedding vectors of other genes. Column, “ Sample,” presents the tissues-
specific PPI networks. Column, “Avg Distance Annotate,” presents the average cosine distance
in the embedding space between the embedding vectors of genes and embedding vectors of those
functional annotations that annotate them; column, “Avg Distance Not-Annotate,” presents the
average cosine distance in the embedding space between the embedding vectors of genes and embed-
ding vectors of those embedded functional annotations that do not annotate them. In all samples,
the difference between these distances is statistically significant (p-value of the Mann-Whitney U
test < 0.05).

Gene name PubMed Counts Prognostic Marker Pan-Cancer Marker

LDHA 87 - cervical cancer (unfavorable), liver cancer (unfavorable), lung cancer (unfavorable)
COPG1 1 - liver cancer (unfavorable)
RPL11 10 yes breast cancer (favorable), renal cancer (unfavorable)
STK36 0 - liver cancer (unfavorable)
CD86 94 - renal cancer (unfavorable)
SMURF1 15 - -
VRK3 0 - renal cancer (favorable), urothelial cancer (favorable)
MAPK8IP1 2 - renal cancer (favorable)
RPL17 1 - liver cancer (unfavorable)
PIAS4 10 - endometrial cancer (favorable), pancreatic cancer (favorable)

Supplementary Table 13: Top 10 shifted genes (the most shifted ones) in breast cancer. The first
column, “Gene name,” presents the gene names of the top 10 shifted genes. The second column,
“PubMed Counts,” presents the number of publications in Pubmed that relate the gene to breast
cancer. The third column, “Prognostic Marker,” indicates if the gene is a prognostic marker (“yes”
if it is a marker, “-” otherwise) in breast cancer (based on survival curves collected from the Human
Protein Atlas (Pontén et al., 2008)); the fourth column, “Pan-Cancer Marker,” presents whether
the gene is a prognostic marker for other cancer types.
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Gene name PubMed Counts Prognostic Marker Pan-Cancer Marker

CPSF6 0 - liver cancer (unfavorable), renal cancer (unfavorable)
PRDM11 0 - -
SDHB 0 - renal cancer (favorable)
GLRX2 1 - renal cancer (unfavorable)
IFITM2 0 - renal cancer (unfavorable)
C1orf116 0 - renal cancer (favorable)
H2BC4 0 - pancreatic cancer (unfavorable), renal cancer (unfavorable)
FUS 13 - liver cancer (unfavorable)
DDX39B 0 - renal cancer (unfavorable), urothelial cancer (favorable)
UMAD1 0 - renal cancer (favorable)

Supplementary Table 14: Top 10 shifted genes in lung cancer. The first column, “Gene name,”
presents the gene names of the top 10 shifted genes. The second column, “PubMed Counts,”
presents the number of publications in Pubmed that relate the gene to lung cancer. The third
column, “Prognostic Marker,” presents if the gene is a prognostic marker (“yes” if it is a marker, “-”
otherwise) in lung cancer (based on survival curves collected from the Human Protein Atlas (Pontén
et al., 2008)). The fourth column, “Pan-Cancer Marker,” presents whether the gene is a prognostic
marker for other cancer types.

Gene name PubMed Counts Prognostic Marker Pan-Cancer Marker

H4C6 0 - -
RPL11 1 - breast cancer (favorable), renal cancer (unfavorable)
VRK3 0 - renal cancer (favorable), urothelial cancer (favorable)
RPL17 0 - liver cancer (unfavorable)
GGA3 0 - endometrial cancer (unfavorable), liver cancer (unfavorable), renal cancer (unfavorable)
RPS4X 0 - renal cancer (unfavorable), thyroid cancer (favorable)
C1orf116 0 - renal cancer (favorable)
NAXE 1 - endometrial cancer (unfavorable)
RARG 0 - endometrial cancer (unfavorable), renal cancer (unfavorable)
FUS 1 - liver cancer (unfavorable)

Supplementary Table 15: Top 10 shifted genes (the most shifted ones) in colorectal cancer. The first
column, “Gene name,” presents the gene names of the top 10 shifted genes. The second column,
“PubMed Counts,” presents the number of publications in Pubmed that relate the gene to colorectal
cancer. The third column, “Prognostic Marker,” presents if the gene is a prognostic marker (“yes”
if it is a marker, “-” otherwise) in colorectal cancer (based on survival curves collected from the
Human Protein Atlas (Pontén et al., 2008)). The fourth column, “Pan-Cancer Marker,” presents
whether the gene is a prognostic marker for other cancer types.
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2 Species-related application

2.1 Supplementary Materials and Methods

2.1.1 Species-specific PPI networks

Species-Specific Networks. In Supplementary section 2.2.1, we use species-specific PPI net-

works to validate our new FMM-based methodology. To this end, we collect the experimentally

validated protein-protein interactions (PPIs) of Homo sapiens sapiens (human), Saccharomyces

cerevisiae (baker’s yeast), Schizosaccharomyces pombe (fission yeast), Rattus norvegicus (rat),

Drosophila melanogaster (fruit fly) and Mus musculus (mouse) from BioGRID v.4.2.191 (Oughtred

et al., 2019). We model these species-specific PPI data as PPI networks in which nodes represent

genes (or equivalently in this study, their protein products), and edges connect nodes whose cor-

responding proteins physically bind. The network statistics of these species-specific PPI networks

are presented in Supplementary Table 18.

Network Representation. We represent the species-specific PPI networks with their positive

point-wise mutual information (PPMI) matrices, X, where each entry in the matrix contains the

information about how frequently two nodes co-occur in a random walk in the corresponding PPI

network. Following Xenos et al. (2021), we use the DeepWalk closed formula by Perozzi et al.

(2014) with its default settings, which corresponds to 10 iterations, to compute the PPMI matrix.

This formula can be interpreted as a diffusion process that captures high order proximities between

the nodes in the network; hence, PPMI is a richer representation than the adjacency matrix (Xenos

et al., 2021).

Biological Annotations. We use the Gene Ontology Biological Process (GO BP) annotations

to represent the biological functions in a cell. As described in the main manuscript (section 2.1),

we collect the experimentally validated genes to GO BP annotations from NCBI’s web-server (col-

lected on 28 September 2021). However, to have a more generic perspective of the functional

organization of the species-specific embedding spaces, here we extend the previous set by also

considering the ancestors of the annotations in the GO ontology directed acyclic graph, using
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GOATOOLS (Klopfenstein et al., 2018), and by following ‘is a’ and ‘part of’ links. Supplementary

Table 19, shows the number of GO BP annotations used in each species-specific PPI network.
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2.2 Supplementary Results

2.2.1 FMM captures the functional organization of different species-specific embed-

ding spaces

In this section, we evaluate the capability of the FMM to capture biologically relevant interactions

between the annotation embedding vectors, in six different species-specific embedding spaces. In

particular, we take the species-specific protein-protein interaction (PPI) networks of the following

species: human, baker’s yeast, fission yeast, fruit fly, rat, and mouse (detailed in Supplementary

section 2.1.1). We produce the embedding space of each network by using the NMTF algorithm

(detailed in section 2.3, of the paper). For these embedding spaces, we find the optimal numbers

of dimensions: 240, 80, 80, 100, 100, 100, and 100 for human, baker’s yeast, fission yeast, fruit

fly, rat, and mouse, respectively (detailed in Supplementary section 2.2.2). Next, we apply our

FMM-methodology to obtain the embedding vectors of each of the GO BP annotations and the

mutual positions of these vectors, which we call “distances”, in the species-specific embedding

spaces (detailed in section 2.4, of the paper). Having the corresponding FMMs, we explore if

all six species-specific embedding spaces are functionally organized, i.e., the annotations whose

embedding vectors are close in a space are more semantically similar (functionally related) than

those annotations whose embedding vectors are far in the space (detailed in section 2.6, of the

paper). To this end, first we calculate the Pearson’s correlation coefficient between the Lin’s

semantic similarities of the functional annotations and the mutual positions of their embedding

vectors in the space (as detailed in section 2.6, of the paper). We find negative correlations of

−0.22, −0.22, −0.23, −0.16, −0.20, and −0.17 between the semantic similarities of the annotations

and the distances between their embedding vectors in human, baker’s yeast, fission yeast, fruit

fly, rat, and mouse species-specific embedding spaces, respectively (see Supplementary Tables 16

and 17). We assess the significance of these correlations coefficients by calculating the probability

of having the same results if the correlations coefficients were zero (null hypothesis).

Also, we evaluate if those annotations whose embedding vectors cluster together based on their

distances in the species-specific embedding spaces, as measured by the cosine distance, are more

functionally related than those annotations whose embedding vectors do not cluster in space. To
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this end, we cluster the functional annotation embedding vectors based on their mutual positions

(cosine distances) in the species-specific embedding spaces by applying the k-medoid algorithm to

each FMM (detailed in section 2.6, of the paper). For the number of clusters, we use the heuristic

rule of thumb (k =
√

n
2 , where n is the number of annotations) (Kodinariya and Makwana, 2013).

We end up with 59, 39, 31, 38, 43 and 56 clusters for human, baker’s yeast, fission yeast, fruit fly,

rat, and mouse, respectively. We observe that the annotations whose embedding vectors cluster

together based on their distances in the species-specific embedding spaces, have an average Lin’s

semantic similarity 1.35, 1.60, 1.60, 1.41, and 1.40 times higher than those annotations whose

embedding vectors do not cluster in human, baker’s yeast, fission yeast, fruit fly, rat, and mouse

species-specific embedding space, respectively (see Supplementary Figure 17 and 18).

To confirm the previous results, we also analyze the functional organization of random PPI

networks, i.e., when rewiring the previous species-specific networks randomly. In particular, for

each species-specific PPI network, we randomly rewire the corresponding adjacency matrix. Then,

we follow the same protocol as we used with the real species-specific PPI networks to generate

the gene embedding spaces. We obtain the FMMs of these spaces and evaluate their functional

organization following the same clustering approaches explained in the previous paragraph. For

each species, we repeat this procedure 100 times, calculating the average intra and inter cluster

Lin’s semantic similarity of the annotations and keeping the p-value of the corresponding Mann-

Whitney U test. Once the 100 repetitions are finished, we correct the p-values for multiple tests

by using the Bonferroni correction (Brown, 2008). As expected, we do not find a statistically

significant difference in the semantic similarity between the annotations whose embedding vectors

are clustered together based on their distances in the space and those annotations whose embedding

vectors do not cluster in the space.

Finally, we illustrate the previous property by focusing on the annotation embedding vectors

of the 500 closest and 500 farthest pairs of annotations in the species-specific embedding spaces.

Although the observation remains the same (annotations whose embedding vectors are close in

the embedding space have higher semantic similarity than those whose embedding vectors are

distant in the space), we find a bigger difference in the Lin’s semantic similarity between these sets
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of annotations (see Supplementary Figure 19 and 10). Indeed, the mean average Lin’s semantic

similarity of the annotations corresponding to the 500 closest pairs of vectors in the embedding

space is close to 0.9 in all six species-specific embedding spaces. In contrast, this average is close to

0.1 in the annotations corresponding to the 500 farthest pairs of vectors in the space. Altogether,

these results demonstrate that our FMM-based method captures the functional organization of

different gene embedding spaces from a functional perspective for all six species.

To conclude, we also evaluate the ability of the FMMs to capture the similarities in the func-

tional organization of different species-specific embedding spaces (see section 2.5 of the paper).

As expected, we find that the functional organization of the embedding space of evolutionary re-

lated species is more similar (lower RSE between their FMMs) than the functional organization

of embedding spaces of evolutionary distant species. For instance, the RSE between human and

mouse FMMs is 0.15, while it is 0.20 between human and baker’s yeast (see Supplementary Ta-

bles 21 and 20). Thus, as captured by our new FMM-based method, similarities between the

functional organization of different species-specific embedding spaces correctly identify the evolu-

tionary closeness between the species. Although this observation is promising, a further exploration

of its capabilities is left for future research, and we devote the rest of the paper to cancer-related

applications.

2.2.2 The similarity between the FMMs of different dimensional spaces reveal the

optimal dimensionality of the embedding space

In this section, we apply our FMM-based method to find the optimal dimensionality of six species-

specific embedding spaces. First we produce the embedding space of each species-specific PPI

network by using the NMTF algorithm (following the same methodology explained in the first

paragraph of the Supplementary section 2.2.1). To generate these embeddings, we use different

sets of dimensions. We use the heuristic rule of thumb (k =
√

n
2 , where n is the number of nodes

in each species-specific PPI network) (Kodinariya and Makwana, 2013) to define the previous

set of dimensions. This heuristic rule gives 95.6, 38.3, 28.5, 47.2, 44.8, and 26.6 dimensions for

human, baker’s yeast, fission yeast, fruit fly, rat, and mouse, respectively. For human, we round
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the dimensions to 96, and we use half of this dimensionality (48) to define the increment in the

number of dimensions from 48 to 288 dimensions. For the other model organisms, we also round

the dimensions to 40, 30, 50, 45, and 30 in baker’s yeast, fission yeast, fruit fly, rat, and mouse,

respectively. In this case we decide to choose the number of dimensions that we obtain from baker’s

yeast since it has the most complete PPI. Hence, similar to human, we use half of its dimensionality

(20) to define the increment in the number of dimensions from 20 to 100 dimensions. As detailed

in section 2.4 of the paper, we obtain the FMMs by first generating the embedding vectors of each

of the GO BP annotations in each embedding space and then calculating their mutual positions.

By tracking the Relative Square Errors (RSEs) of the FMMs across previous sets of dimensions

(detailed in section 2.5, of the paper), we find that the mutual positions of the embedding vectors

of the functional annotations converge to a stable i.e., non-changing functional organization, after

240, 80, 80, 100, 100, and 100 dimensions in human, baker’s yeast, fission yeast, fruit fly, rat, and

mouse embedding spaces, respectively (RSE between their FMMs plateaus, i.e., stops decreasing,

see Supplementary Figures 11 and 20). We farther validate this observation by extending the sets

of dimensions to 600, 700, 800, 900, 1000 dimensions in human, and 150, 200, 250, 300 in baker’s

yeast, fission yeast, fruit fly, rat, and mouse, respectively. As expected, we do not find an increment

in the RSE after the optimal dimensionality. Thus, we conclude that 240, 80, 80, 100, 100, and

100 dimensions are optimal dimensionality for human, baker’s yeast, fission yeast, fruit fly, rat, and

mouse embedding spaces, respectively. We hypothesize the number of dimensions may reflect the

increasing evolutionary complexity of the organisms.
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2.3 Supplementary Figures

Supplementary Figure 17: Lin’s semantic similarity (Semantic similarity) between the annotations
whose embedding vectors are clustered together (Intra) based on mutual position in human em-
bedding space and those that are not (Inter). The plot shows this measure for human embedding
spaces generated by applying the NMTF algorithm on the corresponding tissue-specific PPI net-
work with different number of dimensions (48, 96, 144, 192, 240, 288, 300, 400, 500, 600, 700, 800,
900, 1000). In all the cases, the intra cluster Lin’s semantic similarity is statistically higher than
the inter cluster one (one-sided Mann Whitney U test p-value < 0.05).
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Supplementary Figure 18: For five species-specific embedding spaces: Saccharomyces cerevisiae
(denoted by baker’s yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegi-
cus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted
by mouse). The plot shows the Lin’s semantic similarity (Semantic similarity) between the anno-
tations whose embedding vectors are clustered together (Intra) based on mutual position in the
corresponding species-specific embedding spaces and those that are not (Inter). The plot illustrate
this measure for the species-specific embedding spaces generated by applying the NMTF algorithm
on the corresponding tissue-specific PPI network with number of dimensions (20, 40, 60, 80, 100,
150, 200, 250 and 300). In all the cases, the intra cluster Lin’s semantic similarity is statistically
higher than the inter cluster one (one-sided Mann Whitney U test p-value < 0.05).
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Supplementary Figure 19: For five species-specific embedding spaces: Saccharomyces cerevisiae
(denoted by baker’s yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegi-
cus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted
by mouse). The plot illustrates the Lin’s semantic similarity between the top 500 closest functional
annotation embedding vectors in the tissues-specific embedding spaces and the Lin’s semantic sim-
ilarity between the top 500 farthest functional annotation embedding vectors in the tissues-specific
embedding spaces. The plot shows this measure for the species-specific embedding spaces generated
by applying the NMTF algorithm on the corresponding tissue-specific PPI network with number
of dimensions (20, 40, 60, 80, 100, 150, 200, 250 and 300). In all the cases, we find that the Lin’s
semantic similarity of the 500 closest pairs of annotation embedding vectors in the embedding space
is statistically higher than the average Lin’s semantic similarity of the 500 farthest pairs (one-sided
Mann Whitney U test p-value < 0.05).

50



Supplementary Figure 20: For five species-specific embedding spaces: Saccharomyces cerevisiae
(denoted by baker’s yeast), Schizosaccharomyces pombe (denoted by fission yeast), Rattus norvegi-
cus (denoted by rat), Drosophila melanogaster (denoted by fruit fly), and Mus musculus (denoted
by mouse). Each panel shows the Relative Square Error (RSE) of FMMs corresponding to the
cancer and control tissues-specific embedding spaces of increasing dimensions (from 20 to 100 with
a step of 20 dimensions and from 100 to 300 with a step of 50 dimensions).
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2.4 Supplementary Tables

Species 48-D 96-D 144-D 192-D 240-D 288-D 300-D 400-D 500-D 600-D 700-D 800-D 900-D 1000-D

Human -0.15 -0.16 -0.17 -0.18 -0.22 -0.21 -0.21 -0.21 -0.20 -0.20 -0.21 -0.21 -0.21 -0.20

Supplementary Table 16: The first row, labeled “Species,” presents each of the 13 dimensions that
we tested for the human PPI network embedding spaces: 48, 96, 144, 192, 240, 288, 300, 400, 500,
600, 700, 800, 900, and 1000. Each column shows the Pearson’s correlation coefficient (Benesty
et al., 2009) between the pairwise cosines distance of the annotations’ embedding vectors in the
space and the semantic similarities of the annotations (measured by the Lin’s semantic similar-
ity (Lin et al., 1998)). We assess the significance of these correlations coefficients by calculating the
probability of having the same results if the correlations coefficients were zero (null hypothesis).
We find that all coefficients are statistically significant (p-value < 0.05). Regarding the p-value,
their values are close to 0, but due to the fact that p-values in Python are float64 objects, i.e., 16
decimals are reported), they are rendered to 0.

Species 20-D 40-D 60-D 80-D 100-D 150-D 200-D 250-D 300-D

Baker’s yeast -0.19 -0.20 -0.21 -0.22 -0.22 -0.23 -0.23 -0.24 -0.25
Fission yeast -0.20 -0.23 -0.23 -0.25 -0.27 -0.29 -0.29 -0.30 -0.30
Rat -0.16 -0.16 -0.17 -0.17 -0.17 -0.18 -0.18 -0.19 -0.20
Fruit Fly -0.12 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18 -0.20 -0.20
Mouse -0.17 -0.18 -0.17 -0.18 -0.18 -0.18 -0.18 -0.20 -0.20

Supplementary Table 17: Column “Species,” presents species-specific PPI network embedding
spaces analyzed in this study: Saccharomyces cerevisiae (denoted by “Baker’s yeast”), Schizosac-
charomyces pombe (denoted by “Fission yeast”), Drosophila melanogaster (denoted by “Fruit fly”),
and Mus musculus (denoted by “Mouse”). Each column represents the Pearson’s correlation coef-
ficient (Benesty et al., 2009) between the pairwise cosine distances of the annotations’ embedding
vectors in the corresponding embedding space (produced with different dimensionalities: 20, 40,
60, 80, 100, 150, 200, 250, and 300) and their Lin’s semantic similarity (measured by the Lin’s se-
mantic similarity (Lin et al., 1998)). We assess the significance of these correlations coefficients by
calculating the probability of having the same results if the correlations coefficients were zero (null
hypothesis). We find that all coefficients are statistically significant (p-value < 0.05). Regarding
the p-value, their values are close to 0, but due to the fact that p-values in Python are float64
objects, i.e., 16 decimals are reported), they are rendered to 0.
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Network #Nodes #Edges #Density

Human 18,290 368,180 0.0022
Baker’s yeast 5,887 111,307 0.0064
Fission yeast 3,269 10,958 0.0020
Fruit fly 8,917 49,756 0.0012
Mouse 8,043 26,661 0.0008
Rat 2,847 5,252 0.0013

Supplementary Table 18: The statistics of the species-specific PPI networks. For the six species:
Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (denoted by “Baker’s
yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila melanogaster (de-
noted by “Fruit fly”), Mus musculus (denoted by “Mouse”) and Rattus norvegicus (denoted by
“Rat”). Column, “# Nodes”, specifies the number of nodes in the species-specific PPI network;
column, “# Edges,” contains the number of edges between the nodes; column, “# Density,” spec-
ifies the edge density of the corresponding species-specific PPI network.

Species # GO BP terms

Human 6,864
Baker’s yeast 3,042
Fission yeast 1,864
Fruit fly 3,712
Rat 2,828
Mouse 6,343

Supplementary Table 19: Number of GO BP annotations for each species-specific PPI networks.
For the six species: Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (de-
noted by “Baker’s yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”), Rattus norvegicus (denoted by “Rat”) and Mus musculus
(denoted by “Mouse”). Column, “# GO BP terms,” presents the number of GO BP terms that
annotates at least one gene in the corresponding species-specific PPI network.

Human Baker’s yeast Fission yeast Fruit fly Mouse

Human 0.000 0.204 0.228 0.182 0.159
Baker’s yeast 0.204 0.000 0.157 0.178 0.217
Fission yeast 0.228 0.157 0.000 0.195 0.242
Fruit fly 0.182 0.178 0.195 0.000 0.180
Mouse 0.159 0.217 0.242 0.180 0.000

Supplementary Table 20: Pairwise relative error between the species-specific FMMs. For
the five species: Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (de-
noted by “Baker’s yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”) and Mus musculus (denoted by “Mouse”). The table speci-
fies the relative error between their FMMs.
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Human Baker’s yeast Fission yeast Fruit fly Mouse

Human 0 529 1,017 736 89
Baker’s yeast 529 0 529 1,017 1,017
Fission yeast 1,017 529 0 1,017 1,017
Fruit fly 736 1,017 1,017 0 736
Mouse 89 1,017 11,017 736 0

Supplementary Table 21: Common ancestor time, Million Yeats Ago (MYA) (O’Leary et al., 2016).
For the five species: Homo sapiens sapiens (denoted by “Human”), Saccharomyces cerevisiae (de-
noted by “Baker’s yeast”), Schizosaccharomyces pombe (denoted by “Fission yeast”), Drosophila
melanogaster (denoted by “Fruit fly”) and Mus musculus (denoted by “Mouse”). The table shows
the million years from the common ancestor between the species.
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