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Referees' comments: 

Referee #1 (Remarks to the Author): 

The manuscript of Liao et al. reports on the assembly, validation and initial analysis of 47 human 

genome sequence assemblies. The efforts was conducted as part of the human pangenome 

consortium. The present paper is mainly a technical report on the development and evaluation of 

method for the construction of pangenome graphs and putting these data structure to good use, a 

task commonly thought of as the current grand challenge of genome informatics. There is nothing in 

this manuscript that struck me as a particularly interesting biological finding. What really sets it apart 

is its methods section, which is both exceptionally detailed and lucid. If all papers had method 

sections like this, there’d be no reproducibility crisis. The design of the computational experiments 

to validate pangenomes and their representations in figures is something that will inspire similar 

analysis in other pan-genome projects (of which there are now many in diverse species). This is a 

paper that people will read, think about and put to good use in their own research. Another aspect 

worth mentioning is that the applied software is brand new and under active development. The 

developers evaluated their respective tools on a common dataset of highest relevance and 

compared their results in the apparent absence of personal competition between them. This could 

easily have been otherwise and their decision to join forces will be to the great benefit of the wider 

pangenome community. 

Apart from a question about how chromosome scale assemblies were constructed, I have no 

technical concerns. The validation approaches build on public data from domains that are ubiquitous 

in genomics (WGS, RNAseq, ChIPseq) and the rationales for computational experiments are well 

explained. I do have a few suggestions for improving clarity. 

1. At first reading I was a bit disappointed about the lack of interesting biology. Recent papers about 

crop plant pangenome have illustrated the impact of SVs on agronomic phenotypes and proposed 

ways how this knowledge can be exploited in crop improvement. On second thought I realized that 

specific biological findings, which are harder to validate in human beings than in plants because of 

the need for suitable heterologous systems, might not fit into a technical paper of this breadth, 

depth and timeliness. The authors operate under the justified assumption that the value of a 

pangenome infrastructure for biological research is beyond doubt, that said infrastructure 

(algorithms and data structure) should be as good as possible, and that biological findings will be 

gleaned from them in future. This implicit argument (which I hope I’m correct to impute to the 

authors) should be made explicit. 

2. One particular thing I wished to have seen was a the impact of pangenome graph on GWAS or 

other aspect of quantitative genetics. I understand that this entails re-analyzing read data (mapping 

it to the graph) and phenotypes of real people, something not easily possible because of privacy 



rules (I guess). Anyway, I’d appreciate if the authors could give me some insights on one particular 

matter: GWAS models operate on biallelic variant matrices. How can the pan-genome graph be 

translated into such matrices and how can graph-derived matrices capture more information than 

conceptually much simpler methods like kmerGWAS (counting kmers from short reads). 

3. I believe that the concluding sentence of the abstract is not the most effective way of getting 

readers that are disinterested in human genome informatics excited about this manuscript. To 

understand what reducing errors by 34 % means, the reader needs to know the baseline. The 

relevance of reducing a, say, 0.5 % error rate by one third, is not self-evident. Another, possibly more 

relevant, concern which the authors raise themselves, is that the truth sets are not so true after all 

because they were built from short reads. So the apparent precision (104 %, 34 %) is misleading. 

Also I misread the second sentence of the abstract in the sense that the 47 assemblies capture 99 % 

of structural variation (a commonly reported metric in pan-genome papers). 

4. One aspect I’d learn more about is how the structural integrity of the haplotype-resolved 

assemblies was validated at the pseudomolecule level and how much effort was expended in manual 

curation. How many biologically true inversions and translocations within and between 

chromosomes were found? Are some of these consequences of tissue culture? Pstools checks 

haplotype phasing with Hi-C data not used in the assembly process. But how where chromosomal 

pseudomolecules constructed if no Hi-C data were used? 

5. I may have overlooked it, but did not see statements about data and code availability. Obviously, 

all data (assemblies and underlying raw data and other types of data) need to be publicly released. 

Also the pangenome graphs should be put up for download. 

6. The top most dot in the q arm panel of Supplementary Figure 52 overlaps with the legend (p 

value). 

Referee #2 (Remarks to the Author): 

This paper is a feat of science. The team behind this paper have done a tremendous 

amount of work sequencing, assembling and representing the resulting assemblies as 

a graph. This is something that the community has talked about for a while, but only 

now has this been possible thanks to the development of sequencing techniques, 

algorithmic method development and graph tool building over the last few year. 

The results of this paper are first, the pangenome built from the haplotype assemblies 

generated and second the downstream analysis that show the benefits of moving away 

from a linear genome reference and using a pangenome approach. 

The paper reads quite well, except for two points. First, some sections of the results 

are about methods used to get results, not the results (see minigraph and pangenome below), 

merging them with the results part would improve the flow. Second, the choice of MC vs 

PGGB should be motivated and really shouldn't be an either or, but rather presented 

as choosing a representation that fits what your endgoal is. This is addressed in the 

discussion but would be better to repeat in the results. 



I have three major issues that should be easy to fix/address. 

1. RNA-seq mapping analysis 

This part of the manuscript is a bit thin in my opinion. The role of this part is 

to show the downstream improvements of using a pangenome graph for the analysis 

as opposed to a linear reference. The key result is in panel B, Figure 7, where 

the comparison between STAR and vg mpmap is used. By using two different programs and 

two different references it remains unclear whether the improvement is because of the 

improved reference or the programs. I would suggest running vg mpmap on the grc38 linear graph 

with the same splice junctions included as STAR (or at least the same GTF file). 

Another simple experiment to run is to generate the truth data from the linear reference 

and compare the two (as a supp fig) to try to quantify how much of the difference 

is because of the programs and how much of the difference is due to the reference used. 

The use of MAPQ numbers to compare the two is a bit artificial, since STAR 

has reports only 0,1,255 values (255 being uniquely mapped), using MAPQ as a cutoff 

makes sense when comparing two outputs from the same program. 

For most downstream analysis you would either use all multimapping reads or only 

uniquely mapping reads. 

Finally the authors explicitly mention discarding transcripts from patches or alternative contigs 

(page 45, ensembl mapping) when mapping genes to the assemblies, this is fine since these are 

copies of the gene annotations of the reference chromosomes (except maybe for the HLA alt 

contigs). 

But using the patches for analysis has benefits when aligning to the transcriptome 

and not the genome. This is necessary when quantifying isoforms and can be done using e.g. hisat 

for 

transcriptome alignment followed by rsem. It would be interesting to see the difference between 

using the transcriptome with patches, e.g. full ensembl GTF, vs transcriptome + pangenome. 

2. page 8, 2nd para 

"indicating that .. are structurally correct" 

this is a bit of a leap in my opinion, the only conclusion is that the regions 

containing genes are structurally correct, but this analysis does not show that 

the "vast majority of annotated haplotypes are structurally correct". I would 

recommend revising this sentence to reflect that for purposes of gene analysis 

the haplotypes are structurally correct. 

3. page 18, figure 5 



The bandage layout is convenient when you are working with graphs interactively. 

For this presentation I would recommend drawing the contigs and the gene locations by hand. 

It is hard to discern where RHD starts and ends in the graph, also it seems that one 

of the contigs is traversed backwards and forwards (shown by arrows in panel B). 

Once the graph is drawn you can show each of the haplotypes in panel B as a path through 

the graph. This representation is in line with the language used in the paper and is much 

easier to follow rather than a color gradient. 

Minor concerns 

page 2, abstract 

-"reduces errors by 34%" 

not clear what measurement is used here, sensitivity or specificity? 

-boosts the detected structural variants, 

the SV's are not boosted, the numbers are (presumably) increased. 

page 5, line 6 

- Using short substrings (k-mers) 

what value of k? 

- Yak (Cheng et al. 2021) 

Reading this it was unclear that Yak refers to a program 

page 6, 3rd para 

-The average number of the t2t-chm13 bases with two ... 

not clear enough what is being aligned to what and what the numerator is. 

Are the sequences in the t2t assembly aligned to the reference? 

- (4.99/199Mb,) 

skip / , write out of 

Figure 2 

panel B 

this plot is indexed by genes that are duplicated ordered by copy number. The plot 

does not make good use of the space (large white space) and makes it impossible 

to see how many of the genes are merely 2,3, copies. I would recommend turning this 

into a histogram of (x) copy number repeat and (y) number of genes with that copy number 

panel C 

more or less the same comment, the ordering is fairly arbitrary and it would be 



better to turn it into a histogram of duplications (x-axis) colored by ancestry (fill ), 

this way you could glean from the plot whether AFR ancestry have higher duplication 

calls than others. 

page 11, para 1 

"generating a combined ... is non-trivial" 

There are two ways to read this, it is computationally hard (agreed) and there are 

trade-offs between representations (also agreed). Perhaps it would be better to rephrase 

this and emphasize the purpose that the pangenome serves and that different application 

may benefit from different representations. 

page 11, para 2 and 3 

"Minigraph" and "pggb" 

These paragraphs read more as a methods part than results. The results for these two 

methods are mentioned on the next page. 

page 12, para 3 

"dipcall confident regions" 

First mention of Dipcall in the paper, the reference and definition of "easy regions" is on the next 

page 

page 13, para 1 

"comparative genomics" 

odd reference, pdf points to paperpile link 

page 13, para 2 

"2.4% are missing from gnomAD" 

Are they present in the variant calls from 150K sequences of UK Biobank? 

page 14, fig 3 

panel A, the text should be monospace, the addition of - does not align properly 

and makes it hard to read and compare to the graph 

page 17, para 2 

"Figure 5, top" 

Which panels 

page 21, para 1 

1000 Genomes, vs 1KG 

There is a naming inconsistency throughout, sometimes the abbreviation is used, 

sometimes not and in one instance it uses 1000GP (page 23) 

page 23, para 4 

"is modest but consistent" 



modest should be quantified, also make it clear that this derives from supp fig 38 

Referee #3 (Remarks to the Author): 

This manuscript presents a draft human pan-genome reference derived from diploid assemblies of 

47 diverse individuals. It describes multiple applications of and advantages of using a pangenome vs. 

a linear reference, including improving variant calling particularly for SVs. There are also more 

modest gains in performance for small variant calling, with most gains in difficult to call regions. 

Overall, this study represents a major milestone in moving away from a limited linear reference 

toward a reference that considers a more complete set of genetic variation. It also produces many 

valuable community resources (pangenome graphs themselves, improved 1000G callset, and 

software tools). I have the following suggestions that may help improve the broader utility of this 

work: 

Data availability: there is reference to a data availability section, but I cannot seem to find one. I 

assume it will be added to the final publication but would be nice to see what those will look like. 

The HPRC perspective from earlier this year indicates data will be released on S3, google, and other 

cloud platforms. It will also be helpful to guide users in which of the three pangenomes (minigraph, 

MC, pggb) might be most useful for different applications. 

Applications of pangenomes and showing where they are most useful: My impression has been that 

some of the main advantages of pangenomes would be: (1) improved structural variation (SV) 

representation and detection, but also (2) reducing biases in our analyses that stem from mapping to 

a single (mosaic) linear genome that does not adequately represent diverse human populations. 

There are many analyses that clearly demonstrate #1, but almost nothing on #2. Although the draft 

pangenome includes individuals from diverse populations (Fig. 1), and the 2022 perspective 

mentions “making genotyping accuracy less dependent on ancestry”, this is not really highlighted in 

the current manuscript. For example, is the improvement in variant calling more pronounced for 

individuals from populations not represented in GRCh38/T2T-CHM13 that are represented in the 

pangenome? 

Also, a large part of the paper focuses on the assemblies (the first two main figures) and it takes a 

while to get to the actual pangenomes. Even after pangenomes are introduced, a lot of focus (until 

page ~17/25) is put on small variants, where the gains are real but less exciting than those for the 

SVs. 

Validation of new variants: given that a main selling point of the pangenomes approach is that it 

enables discovery of novel variants, it would be helpful to have a form of external validation for 

some of those. For short variants (see Page 16: “suggesting that most putative errors are in fact real 

variants”) -> can some of those be confirmed by e.g. Sanger? For new SVs (e.g. shown in Fig. 6) -> is 

there a way to confirm some of those? I guess those are difficult to PCR, but perhaps evaluating if 

there is evidence in existing long read data for some of those samples that the new SVs are real? 



The paper nicely shows examples of structurally complex regions (e.g. C4, HLA, LPA) that have 

already been well characterized. How rare is this type of complexity? Does the pangenome approach 

enable detection of new regions not known previously to be so complex that are likely to be 

medically relevant? 

Additional points: 

The abstract and discussion claim to reduce errors when discovering small variants by 34%, but I am 

not quite sure where that number comes from. I think it is from Sup. Figure 41 but am not sure how 

that number was derived. 

For VNTRs: I am confused by the notion of TP/TN, etc. which seems to imply the presence or 

absence of a variant. My impression was that the VNTR itself exists in all genome copies, but then 

there is variation in copy number. Only upon reading the methods I realized these annotations seem 

to be based on the read mappings, not discovery of a variant itself. It would be helpful to define in 

the main text or legend how these “positive” vs. “negative”s are defined. 

How does VNTR copy number estimation change as a function of the repeat unit length or total 

length of the VNTR? Also the performance numbers seem modest compared to other short-read 

approaches based on coverage (e.g. Mukamel et al Science 2021). Is the poor performance due to 

lower overall coverage here? 

Can VNTR copy number be assessed on the pangenome graphs using something other than 

coverage? Finally, how was “ground truth” defined for VNTR lengths? 

The RNA-seq/ChIP-seq sections are quite limited and have modest results. Related to the comment 

above on diverse populations, I wonder if this could improve e.g. allele-specific binding or ASE 

estimates that face a problem with reference bias, especially in diverse genomes. 

Minor points: 

The asmgene feature of paftools.js doesn’t seem to have usage documentation associated with it. 

https://github.com/lh3/minimap2/search?q=asmgene. How does it distinguish true duplications 

from errors? 

Fig. 3a: would be nicer if the “-”’s were monospace so everything is aligned 

Fig. 3b: I don’t see a bar for minigraph but it is in the legend. I guess it is not included because it 

focused on larger SVs and not small variants? 

Fig. 2c legend: it says duplications are relative to GRCh38 (152) but the y-axis seems to show raw 

numbers. Also, is it surprising that some African genomes have substantially higher numbers than 

the other samples? 

How are the gene diagrams generated for fig. 5c/f (and similar supplementary figures for other 



regions?) Do the segments need to be manually annotated? Can this type of annotation be easily 

done for newly discovered complex regions? If the manual annotations are taken from elsewhere, it 

would be helpful to cite where those came from (e.g. it looks like Supp fig. 14 C4 haplotype 

annotations are based on Sekar et al. 2016). 

If there is a concise diagram that could capture it, it could be helpful to somehow conceptually 

illustrate the differences in how the graphs for the three methods (Minigraph, MC, pggb) are 

constructed or how they represent certain regions in different ways. This could also help community 

users decide which graph is most appropriate for their use case. 

For Fig. 4 A/B, it would be helpful to label the number of variants falling in each category.



Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
The manuscript of Liao et al. reports on the assembly, validation and initial analysis of 47 
human genome sequence assemblies. The efforts was conducted as part of the human 
pangenome consortium. The present paper is mainly a technical report on the development and 
evaluation of method for the construction of pangenome graphs and putting these data structure 
to good use, a task commonly thought of as the current grand challenge of genome informatics. 
There is nothing in this manuscript that struck me as a particularly interesting biological finding. 
What really sets it apart is its methods section, which is both exceptionally detailed and lucid. If 
all papers had method sections like this, there’d be no reproducibility crisis. The design of the 
computational experiments to validate pangenomes and their representations in figures is 
something that will inspire similar analysis in other pan-genome projects (of which there are now 
many in diverse species).  
 

Author Rebuttals to Initial Comments:



This is a paper that people will read, think about and put to good use in their own research. 
Another aspect worth mentioning is that the applied software is brand new and under active 
development. The developers evaluated their respective tools on a common dataset of highest 
relevance and compared their results in the apparent absence of personal competition between 
them. This could easily have been otherwise and their decision to join forces will be to the great 
benefit of the wider pangenome community. 
 
Apart from a question about how chromosome scale assemblies were constructed, I have no 
technical concerns. The validation approaches build on public data from domains that are 
ubiquitous in genomics (WGS, RNAseq, ChIPseq) and the rationales for computational 
experiments are well explained. I do have a few suggestions for improving clarity. 
 
We thank the reviewer for the positive feedback, and have maintained these aspects of the 
paper. 
 
1. At first reading I was a bit disappointed about the lack of interesting biology. Recent papers 
about crop plant pangenome have illustrated the impact of SVs on agronomic phenotypes and 
proposed ways how this knowledge can be exploited in crop improvement. On second thought I 
realized that specific biological findings, which are harder to validate in human beings than in 
plants because of the need for suitable heterologous systems, might not fit into a technical 
paper of this breadth, depth and timeliness. The authors operate under the justified assumption 
that the value of a pangenome infrastructure for biological research is beyond doubt, that said 
infrastructure (algorithms and data structure) should be as good as possible, and that biological 
findings will be gleaned from them in future. This implicit argument (which I hope I’m correct to 
impute to the authors) should be made explicit. 
 
 
The reviewer is correct that the focus of this paper is upon building a new reference resource for 
human genomics rather than exploring the inherent biology. We modified the first paragraph of 
the discussion to be more explicit about this as follows:  
 
“While the focus of this effort has been to build a reference resource, highly accurate 
haplotype-resolved assemblies allow us to access previously inaccessible regions highlighting 
novel forms of genetic variation (as in Figure 5) and providing new insights into mutational 
processes such as interlocus gene conversion (see Vollger et al, companion).” 
 
We hope that this statement of intent is helpful, and is balanced with the fact that there are 
some interesting biological results tucked into the paper and within companion manuscripts. 
Notably, and partly quoting from the paper: 
 
The discovery of several novel haplotypes at complex loci, for example: “In the RHD/RHCE 
(Figure 5A-C), in addition to previously described haplotypes, we also inferred the presence of 5 
novel haplotypes, which included one duplication allele of the RHD gene, and one inversion 
allele occurring between the RHD and RHCE gene that results in the swapping of the last exon 



of both genes. Around HLA-A (Figure 5D-F; Supplementary Figure 17), two deletion alleles 
have been previously described – albeit with imprecise breakpoints (Sudmant et al., 2015) – but 
an insertion allele carrying an HLA-Y pseudogene is previously unreported. The long sequence 
(65 kb) inserted with HLA-Y occurs at high frequency (28%) but has little homology to GRCh38.” 
 
The haplotype resolved confirmation of the existence of many rare copy-number variations of 
genes that lie outside of existing SDs: “There are 1,115 protein-coding gene families within the 
Flagger predicted reliable regions of the full set of assemblies that have a gain in copy number 
in at least one genome (Figure 2B). Each assembly has an average of 36 genes with a gain in 
copy number relative to GRCh38 within its predicted reliable regions, with a bias towards rare, 
low-copy CNVs (Figure 2C); 71% of CNV genes appear in a single haplotype. Previous studies 
using read depth found that rare CNVs occur generally outside of regions annotated as being 
enriched in SDs (Sudmant et al., 2010).” 
 
A significant contribution to understanding how much euchromatic sequence is commonly 
polymorphic: “Overall, the euchromatic autosomal non-reference sequence adds up to ~175 Mb 
in MC (and ~190 Mb in PGGB), out of which ~55 Mb (~105 Mb) are observed only on a single 
haplotype. Our analysis further suggests that ~5 Mb and ~70 Mb (~10 Mb and ~60 Mb) can be 
attributed to core (present in ≥95% of all haplotypes) and common genome (present in ≥5% of 
all haplotypes). … Extrapolating under Heaps’ Law (Tettelin et al., 2008) (Methods), we expect 
at least an additional ~150 Mb of euchromatic autosomal sequence in the pangenome graph 
when HPRC produces 700 haplotypes in future.” 
 
We also provide concrete evidence of strong homology between acrocentric chromosome short 
arms (Figure 1B). In a companion paper, we investigate further to explore the hypothesis that an 
unknown mechanism (likely non-homologous recombination) is maintaining homology between 
these elements. 
 
Finally, with regards to efforts to create pangenomes for other species, we added the following 
sentence to the discussion with references to the papers mentioned by the reviewer:  
 
“The methods we are developing should prove valuable for other species, and indeed other 
groups are pioneering such efforts.” 
 
The referenced tomato paper used our vg and vg giraffe, for example. 
 
2. One particular thing I wished to have seen was a the impact of pangenome graph on GWAS 
or other aspect of quantitative genetics. I understand that this entails re-analyzing read data 
(mapping it to the graph) and phenotypes of real people, something not easily possible because 
of privacy rules (I guess). Anyway, I’d appreciate if the authors could give me some insights on 
one particular matter: GWAS models operate on biallelic variant matrices. How can the pan-
genome graph be translated into such matrices and how can graph-derived matrices capture 
more information than conceptually much simpler methods like kmerGWAS (counting kmers 
from short reads). 



 
The reviewer is absolutely correct that using the pangenome to enable the GWAS of SVs and 
other variants missed by standard single-reference genome approaches, is an obvious and 
desirable objective. However, for the reasons the reviewer states, we believe this is well outside 
of the scope of this current study and worthy of future, standalone efforts. We have now 
mentioned this in the discussion of the paper as follows: 
 
“The draft pangenome therefore delivers much better SV calling than earlier approaches, 
extracting latent information from short-read samples that are already available, and so in the 
future enabling the inclusion of tens of thousands of additional SV alleles into genome-wide 
association studies (GWAS).” 
 
With respect to the reviewer's question about biallelic variant matrices, the results of the variant 
calling pipelines presented (both SVs and point variants) are VCF files and can be manipulated 
as such, as in standard GWAS pipelines. Furthermore, the large majority of the individual 
variant sites are biallelic (see Figure 3B-C) for both SNPs and SVs. For the remainder, some of 
which are common (Figures 3E-F), one possible approach is to convert each multi-allelic variant 
into a set of bi-allelic variants that in combination encode the possible multiple alleles.  
 
3. I believe that the concluding sentence of the abstract is not the most effective way of getting 
readers that are disinterested in human genome informatics excited about this manuscript. To 
understand what reducing errors by 34 % means, the reader needs to know the baseline. The 
relevance of reducing a, say, 0.5 % error rate by one third, is not self-evident. Another, possibly 
more relevant, concern which the authors raise themselves, is that the truth sets are not so true 
after all because they were built from short reads. So the apparent precision (104 %, 34 %) is 
misleading. Also I misread the second sentence of the abstract in the sense that the 47 
assemblies capture 99 % of structural variation (a commonly reported metric in pan-genome 
papers). 
 
We appreciate the reviewers concern. We have modified the sentence to: 
 
“Using our draft pangenome to analyze short-read data reduces combined false positive and 
false negative errors when discovering small variants by 34% and increases the number of 
detected structural variants per haplotype by 104% compared to GRCh38-based workflows, 
allowing the typing of the significant majority of SV alleles present in each genome.” 
 
We hope that these changes make it clearer what the 34% reduction refers to and 
contextualizes the 104% statistic with regards to SVs. While we appreciate that a 34% reduction 
of an already small error rate is a small number of errors being removed (order of thousands of 
variants), we would like to stress that in our view such improvements are important, particularly 
for rare variant workflows where candidate variant sets are often highly enriched for false 
positive variants. 
 
With regards to the second sentence, we modified it to be clearer as follows: 



 
“These assemblies cover more than 99% of the expected sequence in each genome and are 
more than 99% accurate at the structural and base-pair levels.” 
 
 
4. One aspect I’d learn more about is how the structural integrity of the haplotype-resolved 
assemblies was validated at the pseudomolecule level and how much effort was expended in 
manual curation. How many biologically true inversions and translocations within and between 
chromosomes were found? Are some of these consequences of tissue culture? Pstools checks 
haplotype phasing with Hi-C data not used in the assembly process. But how where 
chromosomal pseudomolecules constructed if no Hi-C data were used? 
 
To confirm inversions, we utilized strand-seq data, mapped to the assemblies. This analysis on 
a subset of HPRC assemblies is reported in a companion paper 
https://doi.org/10.1101/2022.07.06.498874. This paper reveals that 6-7 Mbp of DNA are 
incorrectly orientated per haplotype. We have now summarized this finding in the discussion: 
 
“There are many remaining challenges in growing and refining this reference. For example, 
assembly reliability analysis revealed roughly an order of magnitude more erroneously 
assembled sequences in the HPRC assemblies than in the T2T-CHM13 complete assembly. 
Similarly, in a companion analysis, Strand-seq data analysis of a subset of assemblies 
reveals 6-7 Mb of incorrectly oriented sequence per haplotype (see Porubsky et al, 
companion), indicating that there is room to structurally improve the assemblies.”   
 
With respect to tissue culture artifacts, as explained in the text, we attempted to avoid gross 
chromosomal abnormalities acquired in tissue culture by using minimally passaged lines (1-3 
passages) and performing karyotyping and microarray analysis before sequencing. To attempt 
to actually quantify the effects of tissue culture in the Jarvis et al. companion, which is now 
published in Nature (https://www.nature.com/articles/s41586-022-05325-5), we describe an 
experiment to sequence the genome of blood from a participant (HG06807) and ask if there 
were differences with the tissue culture derived genome. While obviously a very limited result, 
we did not find any change in mosaciasm, but three small inversions (1.6-10 kb in size) in one of 
the haplotype of the cultured cells. These findings suggest small SV changes in LCL cultures. 
We pointed readers to this study for cell culture analyses. 
 
With respect to the Hi-C data, we did not use it for phasing the assemblies. Instead we used trio 
information from the sequencing of the parents of each sample. The algorithmic approach is 
described in detail in the trio-Hifasm paper 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961889/). Hifasm Hi-C phasing was not yet 
available and, furthermore, does not appear to be superior to using paternal and maternal k-mer 
libraries.  
 
We also did not use Hi-C to create scaffolds (i.e., the pseudomolecules the reviewer refers to), 
but are rather contig only assemblies. In our bakeoff study 



((https://www.nature.com/articles/s41586-022-05325-5) we show that the scaffolding tools 
available at the time when we started sequencing (in 2020) were too error prone. 
 
5. I may have overlooked it, but did not see statements about data and code availability. 
Obviously, all data (assemblies and underlying raw data and other types of data) need to be 
publicly released. Also the pangenome graphs should be put up for download. 
 
We thank the reviewer for pointing this out and apologize for the unintentional omission. We 
have now added a “Data Availability” section to the “Methods”. This section details the 
availability of the sequencing data, assemblies, pangenomes, variant call sets and annotations. 
 
6. The top most dot in the q arm panel of Supplementary Figure 52 overlaps with the legend (p 
value). 
 
Thanks, this has been fixed. 
 
 
 
Referee #2 (Remarks to the Author): 
 
This paper is a feat of science. The team behind this paper have done a tremendous 
amount of work sequencing, assembling and representing the resulting assemblies as 
a graph. This is something that the community has talked about for a while, but only 
now has this been possible thanks to the development of sequencing techniques, 
algorithmic method development and graph tool building over the last few year. 
 
We thank the reviewer for their positive sentiment; it is collectively appreciated! 
 
The results of this paper are first, the pangenome built from the haplotype assemblies 
generated and second the downstream analysis that show the benefits of moving away 
from a linear genome reference and using a pangenome approach. 
 
The paper reads quite well, except for two points. First, some sections of the results 
are about methods used to get results, not the results (see minigraph and pangenome below), 
merging them with the results part would improve the flow. Second, the choice of MC vs 
PGGB should be motivated and really shouldn't be an either or, but rather presented 
as choosing a representation that fits what your end goal is. This is addressed in the 
discussion but would be better to repeat in the results. 
 
We have removed duplication in the results section with the methods section by substantially 
shortening the introductory overview of the different pangenome alignment construction 
methods. We now spend one or two sentences on each method to give a very high-level 
overview and have removed the subsection titles that made the section feel like it belonged in 
the methods. 



 
With regards to the either/or question about which pangenome to prefer, all three (M, MC, and 
PGGB) methods were actively developed or extended as part of this project and we hope that 
the results are convincing that there is strong high-level agreement between the graphs within 
the euchromatic portions of the graph (for example by the analysis of variants and by the 
analysis of complex loci). Our intention was to show that by completely independent methods 
we could achieve strong agreement in the shape of the human pangenome alignment. We 
believe this is an important result. While we appreciate it would be useful to provide guidance on 
which method to prefer for a particular analysis, with the exception of the mapping-based 
analyses where we explain that we are limited to using the MC graph, at this point it is unclear if 
the choice substantially matters.  
 
I have three major issues that should be easy to fix/address. 
 
1. RNA-seq mapping analysis 
 
This part of the manuscript is a bit thin in my opinion. The role of this part is 
to show the downstream improvements of using a pangenome graph for the analysis 
as opposed to a linear reference. The key result is in panel B, Figure 7, where 
the comparison between STAR and vg mpmap is used. By using two different programs and 
two different references it remains unclear whether the improvement is because of the 
improved reference or the programs. I would suggest running vg mpmap on the grc38 linear 
graph with the same splice junctions included as STAR (or at least the same GTF file). 
Another simple experiment to run is to generate the truth data from the linear reference 
and compare the two (as a supp fig) to try to quantify how much of the difference 
is because of the programs and how much of the difference is due to the reference used. 
 
The use of MAPQ numbers to compare the two is a bit artificial, since STAR 
has reports only 0,1,255 values (255 being uniquely mapped), using MAPQ as a cutoff 
makes sense when comparing two outputs from the same program. 
For most downstream analysis you would either use all multimapping reads or only 
uniquely mapping reads. 
 
Finally the authors explicitly mention discarding transcripts from patches or alternative contigs 
(page 45, ensembl mapping) when mapping genes to the assemblies, this is fine since these 
are copies of the gene annotations of the reference chromosomes (except maybe for the HLA 
alt contigs). But using the patches for analysis has benefits when aligning to the transcriptome 
and not the genome. This is necessary when quantifying isoforms and can be done using e.g. 
hisat for transcriptome alignment followed by rsem. It would be interesting to see the difference 
between using the transcriptome with patches, e.g. full ensembl GTF, vs transcriptome + 
pangenome. 
 
The reviewer makes a good point regarding our comparison with vg mpmap on the 1000 
Genomes Project-derived graph. Comparing instead to vg mpmap on a linear reference 



provides both a more apples-to-apples comparison to STAR and a more meaningful comparison 
to the HPRC graph in the context of this paper.  We have updated the analysis accordingly. 
 
The reviewer is also correct that quantitative MAPQs are less-commonly used in RNA-seq 
informatics than in DNA-seq informatics. We believe this is in part because many of the most 
widely-used RNA-seq mapping tools do not adequately estimate mapping quality according to 
its definition. Nevertheless, we agree that the results will be more accessible to geneticists if we 
stick to the more familiar distinction between uniquely-mapped and multi-mapped reads. We 
have replaced the MAPQ-thresholded precision-recall plot with a pair of precision-recall plots 
stratified only by unique mapping, with no major change in conclusions. 
 
Following the reviewer’s suggestion, we also performed an experiment comparing expression 
inference with a pangenome-based pipeline to linear reference pipelines, both with and without 
alternative contigs (Supplementary Figure 43). In contrast to the reviewer’s expectation, we 
find that the alternative contigs generally lead to reduced accuracy in gene-level expression 
inference, measured globally across genes. Moreover, the pangenome pipeline’s accuracy 
exceeds that of the linear reference pipelines on the gene-level. 
 
2. page 8, 2nd para 
"indicating that .. are structurally correct" 
this is a bit of a leap in my opinion, the only conclusion is that the regions 
containing genes are structurally correct, but this analysis does not show that 
the "vast majority of annotated haplotypes are structurally correct". I would 
recommend revising this sentence to reflect that for purposes of gene analysis 
the haplotypes are structurally correct. 
 
We agree and apologize that this was an overinterpretation. We have changed this sentence to: 
“..., indicating that in terms of gene structure the vast majority of the annotated haplotypes are 
structurally correct.”  
 
3. page 18, figure 5 
The bandage layout is convenient when you are working with graphs interactively. 
For this presentation I would recommend drawing the contigs and the gene locations by hand. 
It is hard to discern where RHD starts and ends in the graph, also it seems that one 
of the contigs is traversed backwards and forwards (shown by arrows in panel B). Once the 
graph is drawn you can show each of the haplotypes in panel B as a path through 
the graph. This representation is in line with the language used in the paper and is much 
easier to follow rather than a color gradient. 
 
To address this concern we added lines alongside the Bandage plots in Figure 5 A,B, and E and 
Supplementary Figures 14, 15, 16, 17, and 18 to show RHD/RHCE and other gene locations 
and paths more clearly. We hope the inclusion of these lines, in addition to the paths, will allow 
readers to more clearly discern the features of the genes. 
 



Minor concerns 
page 2, abstract 
-"reduces errors by 34%" 
not clear what measurement is used here, sensitivity or specificity? 
 
To address the mentioned ambiguity this sentence is rephrased to:   
 
“Using our draft pangenome to analyze short-read data reduces combined false-positive and 
false-negative errors when discovering small variants by 34%....”. 
 
-boosts the detected structural variants, 
the SV's are not boosted, the numbers are (presumably) increased. 
 
We changed this sentence to: “... boosts the number of detected structural variants …”. 
 
page 5, line 6 
- Using short substrings (k-mers) 
what value of k? 
 
A k-mer size of 31 was used. We now mention the k-mer size in the text. 
 
- Yak (Cheng et al. 2021) 
Reading this it was unclear that Yak refers to a program 
 
Thanks for pointing this out. Yak is a k-mer analyzer. We have rephrased the sentence to make 
this clearer. 
 
page 6, 3rd para 
-The average number of the t2t-chm13 bases with two ... 
not clear enough what is being aligned to what and what the numerator is. 
Are the sequences in the t2t assembly aligned to the reference? 
 
We aligned our assemblies to the T2T-CHM13 reference. We rephrased the sentence to make 
this clearer. 
 
- (4.99/199Mb,) 
skip / , write out of 
 
Apologies, we replaced “/” by “out of”. 
 
 
Figure 2 
panel B 
this plot is indexed by genes that are duplicated ordered by copy number. The plot 



does not make good use of the space (large white space) and makes it impossible 
to see how many of the genes are merely 2,3, copies. I would recommend turning this 
into a histogram of (x) copy number repeat and (y) number of genes with that copy number 
 
As suggested, we have substituted the following histogram with the information suggested. 
Because any gene may have multiple different copy number states in different individuals, this 
histogram reflects all observations of copy number combined across assemblies. Note in 
response to Referee 3, we have applied the Flagger filtering to all gene annotations in addition 
to duplicated gene annotations, resulting in a change in the distribution of copy number variants 
towards fewer gene copies.  
 

 
 
We have modified the caption for Figure 2B from: 
 
“Assembled gene duplications per genome. The number of genomes containing a duplicated 
gene for 1529 protein-coding gene duplications indexed by increasing copy number, observed 
in the predicted reliable regions of the HPRC/HPRC+ genomes.” 
 
To: 
 
“Frequency of gene copy number. Individual genes may have separate copy number states 
among genomes, and the frequency reflects 3,210 observed copy number changes among the 
HPRC/HPRC+ genomes.” 
 
panel C 
more or less the same comment, the ordering is fairly arbitrary and it would be 



better to turn it into a histogram of duplications (x-axis) colored by ancestry (fill ), 
this way you could glean from the plot whether AFR ancestry have higher duplication 
calls than others. 
 
We feel the pattern of increased number of duplicated genes in genomes with AFR ancestry is 
largely visible in the existing figure 2C. Because the sample sizes are relatively small, a 
histogram would require coarse binning of values, hiding some of the information currently 
shown.  
 
Finally, we have updated the figure legend to clarify that Figure 2D reflects a subset of all 
duplicated genes. 
 
 “The GRCh38 gene duplications reflect families of duplicated genes, while the counts in other 
genomes reflect gene duplication polymorphisms. The assemblies are color coded according to 
their population of origin. D) The top 25 most commonly CNV genes or gene-families in the 
HPRC/HPRC+ assemblies, “ 
 
to: 

 
“The GRCh38 gene duplications reflect families of duplicated genes, while the counts in other 
genomes reflect gene duplication polymorphisms. The assemblies are color coded according to 
their population of origin. D) The top 25 most commonly CNV genes or gene-families in the 
HPRC/HPRC+ assemblies out of all 1,115 duplicated genes,” 
 
This conveys the overall fraction of the haplotypes in the pangenome that have at least one 
duplicated sequence. It also relays which genes are duplicated. It would be difficult to convey 
the same information in a histogram, and a cutoff is required considering the large number of 
duplicated genes. 
 
page 11, para 1 
"generating a combined ... is non-trivial" 
There are two ways to read this, it is computationally hard (agreed) and there are 
trade-offs between representations (also agreed). Perhaps it would be better to rephrase 
this and emphasize the purpose that the pangenome serves and that different application 
may benefit from different representations. 
 
We agree; the mentioned paragraph is rephrased to clarify these points:  
 
“The process of generating a combined pangenome representation is an active research area. 
The problem is non-trivial both because of the potential computational challenges (there are 
hundreds of billions of bases of sequence to align) and because determining which alignments 
to include is not always obvious, particularly for recently duplicated and repetitive sequences. 
We applied three different graph construction methods that have been under active 
development for this project:  Minigraph (Li et al., 2020), Minigraph-Cactus (MC), and 



PanGenome Graph Builder (PGGB) (Methods). The availability of these three models provides 
us with multiple views into the homology relationships in the pangenome while supporting cross-
validation of discovered variation by independent methods.” 
 
page 11, para 2 and 3 
"Minigraph" and "pggb" 
These paragraphs read more as a methods part than results. The results for these two 
methods are mentioned on the next page. 
 
These two paragraphs have been removed from the results part, with a much briefer overview 
of the pangenome construction methods now given, and the details that were present have 
instead been combined with related paragraphs in Methods. (Section “Pangenome Graph 
Construction”) 
 
page 12, para 3 
"dipcall confident regions" 
First mention of Dipcall in the paper, the reference and definition of "easy regions" is on the next 
page 
 
We added a reference and changed this sentence to “... confident regions, which were based on 
alignments of each sample’s assembly to the GRCh38 reference using Dipcall (Li et al., 
2018): …” 
 
page 13, para 1 
"comparative genomics" 
odd reference, pdf points to paperpile link 
 
We have fixed the reference and now “Tettelin et al., 2008” is used to refer to the article 
“Tettelin, H., Riley, D., Cattuto, C., & Medini, D. (2008). Comparative genomics: the bacterial 
pan-genome. Current Opinion in Microbiology, 11(5), 472–477.” 
 
page 13, para 2 
"2.4% are missing from gnomAD" 
Are they present in the variant calls from 150K sequences of UK Biobank? 
 
We unfortunately do not have access to the UK Biobank data currently. We agree that this 
would be an interesting cross-check and plan to examine the question in more detail in the 
future. 
 
page 14, fig 3 
panel A, the text should be monospace, the addition of - does not align properly 
and makes it hard to read and compare to the graph 
 
We have updated the figure accordingly. 



 
page 17, para 2 
"Figure 5, top" 
Which panels 
 
We replaced “Figure 5, top” with “Figure 5A-C” to refer to the panels specifically. 
 
page 21, para 1 
1000 Genomes, vs 1KG 
There is a naming inconsistency throughout, sometimes the abbreviation is used, 
sometimes not and in one instance it uses 1000GP (page 23) 
 
We have fixed this and now only use “1KG” to refer to the 1000 Genomes. 
 
page 23, para 4 
"is modest but consistent" 
modest should be quantified, also make it clear that this derives from supp fig 38 
 
We now clarify that “modest” refers to an increase of 0.006-0.011 across different data sets. We 
have also altered the presentation to remove the varying MAPQ thresholds. Instead, we use a 
single threshold of MAPQ ≥ 30. 
 
Referee #3 (Remarks to the Author): 
 
This manuscript presents a draft human pan-genome reference derived from diploid assemblies 
of 47 diverse individuals. It describes multiple applications of and advantages of using a 
pangenome vs. a linear reference, including improving variant calling particularly for SVs. There 
are also more modest gains in performance for small variant calling, with most gains in difficult 
to call regions. 
 
Overall, this study represents a major milestone in moving away from a limited linear reference 
toward a reference that considers a more complete set of genetic variation. It also produces 
many valuable community resources (pangenome graphs themselves, improved 1000G callset, 
and software tools).  
 
We thank the reviewer for their positive words! 
 
I have the following suggestions that may help improve the broader utility of this work: 
 
Data availability: there is reference to a data availability section, but I cannot seem to find one. I 
assume it will be added to the final publication but would be nice to see what those will look like. 
The HPRC perspective from earlier this year indicates data will be released on S3, google, and 
other cloud platforms.  
 



We apologize for the unintentional omission. We have now added a “Data Availability” section to 
“Methods”. This section details the availability of the sequencing data, assemblies, 
pangenomes, variant call sets and annotations. 
 
 
It will also be helpful to guide users in which of the three pangenomes (minigraph, MC, pggb) 
might be most useful for different applications. 
 
We appreciate the desire for concrete answers here. In the revised discussion we write:  
 
“We demonstrate concordance between these different construction approaches; the MC and 
PGGB pangenomes contain nearly the same number of small variants and SVs of various 
types. Further, these encoded pangenome variants show high levels of agreement with existing 
linear reference-based methods for variant discovery, particularly within the non-repetitive 
fraction of the genome. Where the pangenome drafts presented differ is principally in how they 
handle CNV sequences. The PGGB method will frequently merge copies of a CNV, while the 
MC graphs represent CNV copies as independent subgraphs. Both approaches have merits, 
and which approach to favor will take further experimentation and community input, and may 
vary by the specific application. The PGGB method retained all centromeric and satellite 
sequences, while the MC graph pruned much of this sequence. This made it practical with 
current methods to use the MC graphs for read alignment applications. However, pruning these 
sequences is not a satisfactory solution. Longer-term, more work is needed to determine how 
best to align and represent these large repeat arrays within pangenomes, particularly as T2T 
assembly becomes commonplace and these arrays are therefore finished.”  
 
We feel this is representative of what we can currently conclude, that is: (i) all three methods are 
available and applicable to datasets such as that presented, (ii) that they share high-level 
agreement and that (iii) further work is needed to improve them, particularly with regard to 
satellite sequences. 
 
Applications of pangenomes and showing where they are most useful: My impression has been 
that some of the main advantages of pangenomes would be: (1) improved structural variation 
(SV) representation and detection, but also (2) reducing biases in our analyses that stem from 
mapping to a single (mosaic) linear genome that does not adequately represent diverse human 
populations. There are many analyses that clearly demonstrate #1, but almost nothing on #2. 
Although the draft pangenome includes individuals from diverse populations (Fig. 1), and the 
2022 perspective mentions “making genotyping accuracy less dependent on ancestry”, this is 
not really highlighted in the current manuscript. For example, is the improvement in variant 
calling more pronounced for individuals from populations not represented in GRCh38/T2T-
CHM13 that are represented in the pangenome? 
 
We agree with the reviewer that #2 is very important. We had focused our analyses on #1 
because we felt that a full analysis of population specific biases requires pangenomes with more 
samples in them. To answer the reviewers’ question to the extent possible, we looked at 



mappings of short reads to the pangenome relative to GRCh38, as well as comparing variant 
calls of both small variants and SVs, separately, to the pangenome relative to GRCh38.  
 
The short-read mapping and small variant mapping results show consistent benefits across 
individuals of different ancestries. For example, for small variants (Supplementary Figure 24: A, 
pasted below for convenience) we see consistently higher numbers of PASS non-homozygous 
reference called variants vs. GRCh38, with the increases being constant across ancestry 
groups. Similarly, for read mapping, we see a consistent improvement of the identities of read 
alignments relative to the HPRC MC reference vs. GRCh38 (Supplementary Figure 24: B, 
pasted below). It is worth stressing that this picture may change as we integrate larger numbers 
of generally rarer variants into the pangenome, and it is also possible that there are specific loci 
where some samples local ancestries benefit from the move to a pangenome more than others 
(comparably to the RHCE gene results, shown in Supplementary Figure 26).  

 
Supplementary Figure 24: A) Number of variants with at least one alternate allele (i.e. 
excluding homozygous for the reference allele) for each in the 1000 Genomes Project samples. 
The number of variants in the 1000 Genomes Project callset (x-axis) are compared to the 
variants found when aligning reads to the HPRC pangenome and calling variants with 
DeepVariant (y-axis). Points (samples) are colored by their “super-population” label from the 
1000 Genomes Project. B) The proportion mapped reads that align perfectly (y-axis) is shown 
for a subset of samples from the 1000 Genomes Project, ordered by the number of variant 
called (x-axis). Two mapping approaches are compared: mapping short reads to GRCh38 with 
BWA (green); mapping to the HPRC pangenome with vg giraffe (orange). The samples were 
selected to span the x-axis. 
 
 
 
For SVs, where we might expect a larger effect due to stronger divergence from the reference, 
we compared the number of variants per sample in our SV callsets (i.e. after Pangenie 
genotyping from short reads) to the respective numbers observed from 1KG short-read callsets. 



In Supplementary Figure 47 (pasted below), we colored the data points according to the 
superpopulation the sample originates from (AFR, AMR, EAS, EUR and SAS) and observed 
that they cluster by population, which is indeed consistent with different levels of detection bias 
per superpopulation. But we caution that the composition of the samples underlying the 
pangenome relative to the composition of the set of samples genotyped could potentially 
influence these results and a careful analysis is warranted. We plan to further quantify this once 
future version of a human pangenome with more samples become available.  
 
 

 
 
Supplementary Figure 47. Number of SVs per sample in the HPRC PanGenie filtered set as 
well as the 1kGP Illumina calls for all 3,202 1KG samples. Samples are colored by 
superpopulation. The left plot excludes the african superpopulation, while the right plot shows 
the same results including african samples and including the assembly samples present in the 
graph (marked by a black circle). 
 
We have summarised these findings on in the manuscript with the following text: 
 
“These new pangenomic workflows could potentially benefit individuals of different ancestries 
differently. For read mapping and small variant calling, we observed a consistent improvement 
across individuals (Supplementary Figure 24). Still, the pangenome might improve structural 
variant genotyping differently across individuals due to the stronger divergence of the alleles 
from the reference. In the 1000 Genomes Project cohort, we observed that the genotyped 
samples clustered by super-population labels (Supplementary Figure 47), which would 
suggest different levels of detection bias that are mitigated with the pangenome. Still, we 
caution that the composition of the samples underlying the pangenome relative to the 
composition of the set of samples genotyped could potentially influence these results and a 
careful analysis with more samples is warranted.”  
 
 
Also, a large part of the paper focuses on the assemblies (the first two main figures) and it takes 
a while to get to the actual pangenomes. Even after pangenomes are introduced, a lot of focus 
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(until page ~17/25) is put on small variants, where the gains are real but less exciting than those 
for the SVs. 
 
We have added several additional analyses involving SVs, as discussed in this response. We 
believe the assessments of the assemblies, and in particular their structural and base-level 
correctness, is important and complementary to the later analysis in the paper. 
 
Validation of new variants: given that a main selling point of the pangenomes approach is that it 
enables discovery of novel variants, it would be helpful to have a form of external validation for 
some of those. For short variants (see Page 16: “suggesting that most putative errors are in fact 
real variants”) -> can some of those be confirmed by e.g. Sanger? For new SVs (e.g. shown in 
Fig. 6) -> is there a way to confirm some of those? I guess those are difficult to PCR, but 
perhaps evaluating if there is evidence in existing long read data for some of those samples that 
the new SVs are real? 
 
In the original submitted version of our paper, we had done several quality checks of our filtered 
set of PanGenie genotypes to ensure that these calls are reliable: (a) we compared the allele 
frequencies across the PanGenie genotypes for all 2,504 unrelated 1KG samples to the allele 
frequencies of the 44 HPRC panel haplotypes (Main Figure 6c) and observed high correlation; 
(b) we additionally plotted the allele frequencies of the computed genotypes vs. the 
heterozygosity, and observed a relationship close to Hardy-Weinberg Equilibrium (Supplementary 
Figures 31, 32, and 33). In addition to these experiments, we have now further analyzed the 
quality of the novel variants (wrt. The 1KG Illumina calls) that are contained in our filtered 
PanGenie set. For this purpose, we re-visited the leave-one-out experiment that we performed 
for the first submission of this paper (Supplementary Figure 30, described in detail in the Methods 
section, “Genotyping Evaluation based on assembly samples” p.66). Briefly, we took the 
haplotypes of one of the assembly samples out of the MC-VCF, and used the remaining samples 
to genotype the left-out sample. The predicted genotypes for the left-out sample were then 
compared to its true genotypes in order to evaluate PanGenie’s genotyping accuracy. While the 
previous leave-one-out experiment was run on the unfiltered PanGenie genotypes, we have now 
restricted the evaluation to only the variants contained in the filtered set and among those, 
separately evaluated performances of novel variants that are not in the 1KG short-read based 
Illumina calls, and variants that matched between ours and the 1KG callset, respectively. Results 
are shown in the Figure below (Supplementary Figure 47, pasted below). The top panels excludes 
variants that are unique to the left-out sample and thus not typable by any re-genotyping method. 
The bottom panels includes these variants. In general, genotype concordances of all lenient 
variants (brown, dark purple) are slightly higher compared to the concordances we observed for 
the unfiltered set (Supplementary Figure 30).  Furthermore, concordances of the known variants 
are highest. This is expected, since these variants tend to be in regions easier to access by short 
reads. Concordances for novel variants are slightly worse. This is also expected, since these 
variants tend to be located in more complex genomic regions that are generally harder to access. 
However, even for these novel variants, concordances are still high, indicating that most of these 
variants are indeed real. 
 



 
 
Supplementary Figure 37. Leave-one-out experiment for novel variants. A leave-one-out 
experiment was conducted by repeatedly removing one of the assembly-samples from the panel 
VCF and genotyping it based on the remaining samples. Plots show the resulting weighted 
genotype concordances for variants in our filtered PanGenie set. The novel variants include only 
SVs not contained in the 1kGP Illumina set, the known variants include only variants contained 
in these Illumina calls. Weighted genotype concordances are stratified by graph complexity: 
biallelic regions of the MC graph include only bubbles with two branches, and multiallelic 
regions include all bubbles with > 2 different alternative paths defined by the 88 haplotypes. The 
top panel excludes variants that are unique to the left-out sample and thus not typable by any 
re-genotyping method. Additionally, we plotted the results including untypables (bottom panel). 
 
 

H
G

00
43

8

H
G

00
73

3

H
G

02
71

7

N
A2

01
29

H
G

03
45

3

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

w
ei

gh
te

d 
ge

no
ty

pe
 c

on
co

rd
an

ce
 [%

]

SV deletions (>=50bp)

H
G

00
43

8

H
G

00
73

3

H
G

02
71

7

N
A2

01
29

H
G

03
45

3

70

75

80

85

90

95

w
ei

gh
te

d 
ge

no
ty

pe
 c

on
co

rd
an

ce
 [%

]

SV insertions (>=50bp)

H
G

00
43

8

H
G

00
73

3

H
G

02
71

7

N
A2

01
29

H
G

03
45

3

65

70

75

80

85

90

95

100

w
ei

gh
te

d 
ge

no
ty

pe
 c

on
co

rd
an

ce
 [%

]

SV others (>= 50bp)

biallelic novel + filtered
biallelic known + filtered
biallelic filtered

multiallelic novel + filtered
multiallelic known + filtered
multiallelic filtered

u
n

typ
ab

le varian
ts in

clu
d

ed
SV others (>= 50bp)

H
G

00
43

8

H
G

00
73

3

H
G

02
71

7

N
A2

01
29

H
G

03
45

3

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5
w

ei
gh

te
d 

ge
no

ty
pe

 c
on

co
rd

an
ce

 [%
]

SV deletions (>=50bp)

H
G

00
43

8

H
G

00
73

3

H
G

02
71

7

N
A2

01
29

H
G

03
45

3

75

80

85

90

95

w
ei

gh
te

d 
ge

no
ty

pe
 c

on
co

rd
an

ce
 [%

]

SV insertions (>=50bp)

H
G

00
43

8

H
G

00
73

3

H
G

02
71

7

N
A2

01
29

H
G

03
45

3

70

75

80

85

90

95

100

w
ei

gh
te

d 
ge

no
ty

pe
 c

on
co

rd
an

ce
 [%

]

u
n

typ
ab

le varian
ts exclu

d
ed



The paper nicely shows examples of structurally complex regions (e.g. C4, HLA, LPA) that have 
already been well characterized. How rare is this type of complexity? Does the pangenome 
approach enable detection of new regions not known previously to be so complex that are likely 
to be medically relevant? 
 
To address this comment we have performed a systematic analysis of complex SVs and 
assessed their overlap with medically relevant genes, and with previously reported SVs from the 
1KG project. We have included a new paragraph to describe this analysis, and a new 
supplementary table 16 to report these loci. We have pasted the new/modified text below for 
your convenience.  
 
“We next turned our attention to complex multiallelic SVs, which have historically been difficult 
to map using reference-based methods. To perform an initial screen for complex SVs, we 
identified bubbles >10 kb size from minigraph that exhibited at least five structural alleles among 
the assembled haplotypes (Methods). We found that 620 of 76,506 total sites (0.81%) were 
complex, and that 44 overlap with medically relevant protein coding genes (Wagner et al., 2022) 
(Supplementary Table 16). Some of these are well known complex SV loci, and all are known to 
be structurally variable based on prior short-read SV mapping studies (Sudmant et al., 2015; 
Byrska-Bishop et al., 2022, Handsaker et al, 2015). However, whereas prior short-read SV calls 
at these loci are typically imprecise due to alignment issues and low resolution read-depth 
analysis methods, here we have resolved their structure at single base resolution. These results 
will help enable future efforts to study the role of complex variation in human disease; however, 
we note that further work will be required to more comprehensively identify medically relevant 
complex SVs, and to ensure the accuracy of each allele represented in the pangenome. 
 
We then selected five clinically relevant complex SV loci for detailed structural analysis: 
RHD/RHCE, HLA-A, CYP2D6/CYP2D7, C4, and LPA (Methods). For each locus and graph, we 
identified its location within the graph and then annotated paths within this subgraph with known 
genes. We then traced the individual haplotypes through the subgraph to reveal the structure of 
each assembly. In CYP2D6/7 (Supplementary Figure 14), C4 (Supplementary Figure 15), and 
LPA (Supplementary Figure 16), we recapitulated previously described haplotypes. For 
CYP2D6/7, our calls matched 96% of haplotypes of 76 assemblies called by Cyrius using 
Illumina short-reads data (Chen et al., 2021). Two discrepancies appear to be caused by errors 
from Cyrius, and the third is a false duplication in the HG01071#2 pangenome assembly 
revealed by Flagger. This comparison suggests the pangenomes faithfully agree with existing 
knowledge of this complex loci. In RHD/RHCE (Figure 5A-C), in addition to previously described 
haplotypes, we also inferred the presence of 5 novel haplotypes, which included one duplication 
allele of the RHD gene, and one inversion allele occurring between the RHD and RHCE gene 
that results in the swapping of the last exon of both genes. Around HLA-A (Figure 5D-F; 
Supplementary Figure 17), two deletion alleles have been previously described – albeit with 
imprecise breakpoints (Sudmant et al., 2015) – but an insertion allele carrying an HLA-Y 
pseudogene is previously unreported. The long sequence (65 kb) inserted with HLA-Y occurs at 
high frequency (28%) but has little homology to GRCh38.  
 



We also compared the representation of these five loci in the MC and PGGB graphs 
(Supplementary Figure 18). Each graph independently recapitulated the same haplotype 
structures. In general, in the PGGB graph many SV hotspots, including the centromeres, are 
transitively collapsed into loops through a subgraph representing a single repeat copy, a feature 
which tends to reduce the size of variants found in repetitive sequences. Assemblies that 
contain multiple copies of the homologous sequence traverse these nodes a corresponding 
number of times. In contrast, MC maintains separate copies of these homologous sequences.” 
 
 
 
Additional points: 
 
The abstract and discussion claim to reduce errors when discovering small variants by 34%, but 
I am not quite sure where that number comes from. I think it is from Sup. Figure 41 but am not 
sure how that number was derived. 
 
Sup. Figure 41 shows the amount of errors for each approach, relative to the standard method 
of mapping reads to the reference genome with BWA-MEM. The points corresponding to the 
HPRC-Giraffe-DeepVariant pipeline are, on average, 34% lower than that GRCh38-BWAMEM-
DeepVariant baseline. We have clarified the legend of this figure: 
 
“Mapping to the HPRC pangenome with Giraffe and calling variants with DeepVariant (light blue 
circle) resulted in a reduction of errors of 34%, on average across samples, compared to 
mapping reads to the linear reference with BWA-MEM.” 
 
In the main text and in this legend, we have also clarified that errors correspond to false positive 
and false negative calls. 
 
For VNTRs: I am confused by the notion of TP/TN, etc. which seems to imply the presence or 
absence of a variant. My impression was that the VNTR itself exists in all genome copies, but 
then there is variation in copy number. Only upon reading the methods I realized these 
annotations seem to be based on the read mappings, not discovery of a variant itself. It would 
be helpful to define in the main text or legend how these “positive” vs. “negative”s are defined. 
 
We have updated the text accordingly to indicate that the performance was measured on VNTR 
read mapping. Specifically, we updated the following text from: 
 
The graph approach also outperformed the alternative in terms of true positives (TP), true 
negatives (TN), and false negatives (FN) (Figure 7A): The TN was on average 1.9% higher than 
the GRCh38 approach, and the TP was on average 0.087% higher. The graph approach also 
reduced FN by 2.1 fold. The slight increase in FP is possibly due to the boundary annotation of 
VNTRs on assemblies.  
 
to: 



 
The graph approach also outperformed the alternative in terms of the correctness of VNTR read 
mapping (Figure 7A): The true negatives were on average 1.9% higher than the GRCh38 
approach, and the true positives were on average 0.087% higher. The graph approach also 
reduced false negatives by 2.1 fold. The slight increase in false positives is possibly due to the 
boundary annotation of VNTRs on assemblies.  
 
 
How does VNTR copy number estimation change as a function of the repeat unit length or total 
length of the VNTR? Also the performance numbers seem modest compared to other short-read 
approaches based on coverage (e.g. Mukamel et al Science 2021). Is the poor performance 
due to lower overall coverage here? 
 
The Mukamel et al. study had an emphasis on coding VNTRs and reported the genotyping 
performance for just 118 loci. In this work, we genotyped VNTRs across the whole genome and 
measured the performance for 60,861 loci. We provided a simplistic approach for VNTR 
genotyping as a proof of concept, showing that existing methods operating on hg38 can be 
improved by considering the read depth in a pangenome graph. We also noted that while 
methods exist to genotype VNTR length from short reads using sophisticated models (Bakhtiari 
et al Nat Commun 2021) or intricate bias correction (Mukamel et al Science 2021), it is beyond 
the scope of this work and deserves dedicated work to explore the utility of the pangenome 
graph in efficient and accurate VNTR genotyping. 
 
Can VNTR copy number be assessed on the pangenome graphs using something other than 
coverage? Finally, how was “ground truth” defined for VNTR lengths? 
 
We have added the following description to the methods section: 
The ground truth for a VNTR in a genome is defined as the number of bases spanned by the 
VNTR, averaged from the two haplotypes.  
 
 
The RNA-seq/ChIP-seq sections are quite limited and have modest results. Related to the 
comment above on diverse populations, I wonder if this could improve e.g. allele-specific 
binding or ASE estimates that face a problem with reference bias, especially in diverse 
genomes. 
 
We agree with the reviewer that allele-specific expression is a natural use case for pangenomes 
in transcriptomics. We have added an analysis of allelic bias in mapped coverage over 
heterozygous variants, which shows that the pangenome-based pipeline reduces allelic bias 
and preserves a greater proportion of mapped coverage (Supplementary Figure 40). This is 
not a full ASE analysis, which would also include further downstream statistical estimation and 
hypothesis testing. Nevertheless, we believe that it is not a stretch to suppose that it would 
improve these methods’ statistical validity and power to provide them inputs with higher 
coverage and reduced bias. 



 
Indeed, in our results, we apply the draft pangenome reference to map epigenomic data to SVs 
and then we apply the binomial test to identify events that are specific to an SV allele (Fig 7D). 
At the request of the reviewer, we checked how the draft pangeome reference enables ASE 
estimates in diverse genomes using the fact that the ChIP-seq came from individuals from African-
ancestry (AF) or European-ancestry (EU). To do this, we tabulated how many heterozygous SVs 
were involved in ASE events observed only in AF genomes, EU genomes or both. We have found 
194 SVs that were involved uniquely in African-ancestry genomes, 150 SVs that are uniquely 
involved in European-ancestry genomes and 216 SVs that were involved in both African and 
European-ancestry genomes. As expected, rare alleles were enriched for ancestry-specific 
events. We have amended the text to include this new result. 
 
 

 
Supplementary Figure 45: Number of samples in which H3K4me1 peaks were assigned to the 
SV allele, the reference allele, or both alleles SVs with peaks are stratified into those that are 
observed only in African-ancestry genomes, only European-ancestry genomes, or both 
ancestries. 
 
Minor points: 
 



The asmgene feature of paftools.js doesn’t seem to have usage documentation associated with 
it. https://github.com/lh3/minimap2/search?q=asmgene. How does it distinguish true 
duplications from errors? 
 
As the reviewer correctly points out, asmgene does not distinguish between true duplicates and 
errors. Looking at asmgene results we observe the duplication trend and detect any outlier 
across assemblies. Regarding the documentation we added a citation to hifiasm paper where 
asmgene is described. 
 
Fig. 3a: would be nicer if the “-”’s were monospace so everything is aligned 
 
Thanks for pointing this out, we have updated the Figure accordingly. 
 
Fig. 3b: I don’t see a bar for minigraph but it is in the legend. I guess it is not included because it 
focused on larger SVs and not small variants? 
 
The reviewer is correct that small variants (<50 bp) are not included in the minigraph, and 
therefore no bar for minigraph in Figure 3B. To avoid confusion, now Figure 3B and 3C have 
their own legends. 
 
Fig. 2c legend: it says duplications are relative to GRCh38 (152) but the y-axis seems to show 
raw numbers. Also, is it surprising that some African genomes have substantially higher 
numbers than the other samples? 
 
Our pipeline to discover duplicated genes annotates orthologous gene copies to GRCh38, and 
then identifies additional copies of each gene. Because gene duplications are also enriched in 
misassemblies, Flagger was applied to remove spurious duplications. We investigated our 
pipeline for calling duplicated genes and found that the original orthology maps included regions 
annotated by Flagger as low quality, and were included in the total duplication count. We 
apologize for this mistake (and glad you prompted us to investigate!). In this revision we have 
applied Flagger to both the duplication annotations and the original gene counts. This has 
lowered the total number of duplicated genes from 1,529 to 1,115. The fraction of low-copy 
(rare) duplicated genes decreased from 80% to 71%, indicating that our results remain in 
agreement with previous studies (Sudmant 2015). Similarly, the fraction of duplications in 
segmental duplications remains: low, medium, and high copy-number changes were updated 
from 13, 40, and 80% were updated to 14, 50, and 81%. The highlighted genes SPDYE2 and 
GPRIN2 were unchanged (Figures 2F and 2G), and the maximum defensin gene copy number 
changed from 8 to 7. The most commonly duplicated gene families (Figure 2D, 2E) remain 
largely unchanged; there were some small adjustments to the count and ordering of some 
genes, but because the majority of the genes found in erroneously duplicated regions were in 
genes with low copy number changes, this does not affect the high copy-number changes 
much. Finally, the trend of increasing duplication count in African genomes remains. 
 



How are the gene diagrams generated for fig. 5c/f (and similar supplementary figures for other 
regions?) Do the segments need to be manually annotated? Can this type of annotation be 
easily done for newly discovered complex regions? If the manual annotations are taken from 
elsewhere, it would be helpful to cite where those came from (e.g. it looks like Supp fig. 14 C4 
haplotype annotations are based on Sekar et al. 2016). 
 
We first identified structural haplotypes of each assembly by detecting SVs, including CNVs, 
inversions and gene conversions. We then counted the number of assemblies that had each 
structural haplotype and computed their frequency. The linear diagrams in Figure 5C/F are 
generated by the gggenes R package based on the structural haplotypes we identified. We 
have rephrased the description of this analysis in the Methods (entitled “Analysis of 5 complex 
loci”) to make this clearer.  

 
The linear haplotype plot of copy number change of each assembly can also be automatically 
obtained by using odgi (v0.6.2, (Guarracino, Heumos, et al., 2022), 
https://odgi.readthedocs.io/en/latest/rst/tutorials/injecting_gene_arrows.html), although in this 
case we did not use this tool.  

 
We manually annotated the ranges of the genomic regions to be shown in the bandage plots, 
and also the locations of genes and interesting segments, including the HERV-K insertions in 
C4A/C4B (https://www.ncbi.nlm.nih.gov/nuccore/U07856.1?report=genbank), the CYP2D7 
spacer (PMID: 33462347) and the KIV-2 repeat in LPA (PMID: 3670400). Since only GRCh38 
coordinates for the regions and segments are needed as input, this annotation can be easily 
done for newly discovered complex regions. 
 
If there is a concise diagram that could capture it, it could be helpful to somehow conceptually 
illustrate the differences in how the graphs for the three methods (Minigraph, MC, pggb) are 
constructed or how they represent certain regions in different ways. This could also help 
community users decide which graph is most appropriate for their use case. 
 
Thank you for the suggestion. We have included a new supplementary figure 6 to illustrate the 
differences in pangenome graph construction between Minigraph, MC, and PGGB. We have 
pasted the new figure with its caption below for your convenience. 



 
Supplementary Figure 6 | The differences in pangenome graph construction 
methods for Minigraph, MC, and PGGB. A) Two haplotypes (H1 and H2) vary in copy 
number of a chromosomal segment S. The S1, S2, and S3 segments are highly similar 
with only a SNP or a small indel. B) Pangenome graph structures for Minigraph, MC, 
and PGGB. Minigraph used H1 as an initial backbone and then merely augmented with 
SVs (≥50 bp) from H2, such that the SNP in S2 is not represented in the pangenome 
graph. MC added small variants (<50 bp) to the pangenome graph constructed by 
Minigraph. PGGB used a symmetric, all-by-all alignment of haplotypes to build a 
pangenome graph whose structure is not affected by the order of inputs (unlike 
Minigraph and MC). The critical difference in graph construction is that PGGB collapses 
highly similar copies of a chromosomal segment, while Minigraph and MC do not. 
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For Fig. 4 A/B, it would be helpful to label the number of variants falling in each category. 
 
We have updated Figure 4A-B to include the average number of variants for each category. 
 
 
 



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I’m happy with the revision. The authors engaged with the referees’ comments and crafted a well-

thought-out response letter. The companion papers referred to by the authors clarify some open 

technical points and dive deeper into biological implications. 

Referee #2 (Remarks to the Author): 

The authors have addressed all of the concerns I pointed out in my earlier review. In particular I find 

that figures 2 and 5 are significantly easier to interpret. 

I did try to replicate parts of the RNA-seq simulation analysis, having the simulated reads available 

for download was good. The scripts given on the githhub site where readable, but not reproducible 

without significant amount of work, still better than most papers. 

Referee #3 (Remarks to the Author): 

The authors have done an impressive job addressing the comments raised. Congratulations on this 

work and I look forward to seeing it published. 

While going through the revision, the following typos were noticed. This is probably not an 

exhaustive list so the text, in particular the supplementary figure legends, should be proofread 

carefully: 

Supplementary Figure 45 legend is missing a period: "the reference allele, or both alleles SVs with 

peaks are" -> "the reference allele, or both alleles. SVs with peaks are" 

Supplementary Figure 24 legend: “The proportion mapped reads” -> “The proportion of mapped 

reads” 

In the discussion: “particularly as T2T assembly becomes" -> “particularly as the T2T assembly 

becomes"


