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Suppl. Table S1: Overview of the datasets used for the benchmark. The #Genes and #Cells columns
show the number of rows and columns in the count matrix after filtering out rows and columns for
which all values were zero. Perc. Zeros shows what fraction of all values were 0. 99% Quant shows the
99% quantile of the counts. Overdisp. shows the global overdispersion estimate with glmGamPoi.

#Cells  #Genes Perc. Zeros 99% Quant UMI/cell Overdisp.

Consistency
Hematopoietic Cells 2,838 21,398 87% 12 5,020 0.33
SUM149PT Cells 1,196 25,231 74% 35 54,900 0.14
Lung Epithelium 11,407 20,728 90% 5) 7,730 0.17
Pharyngeal Mesoderm 7,581 19,939 79% 19 21,700 0.12
Neural Progenitors 13,572 25,711 87% 7 11,500 0.31
Mouse Mammary 6,969 19,757 89% 6 6,970 0.24
Mouse Aorta 10,477 20,020 86% 8 9,420 0.89
Bovine IVDs 8,231 17,464 90% 6 3,940 1.20
T Helper Cells 10,064 21,153 83% 15 19,300 0.33
T Cells 43,283 23,978 92% 4 5,360 0.53

Simulation
Dyngen 5,000 995 75% 3 291 0.20
Linear Walk 8,569 17,130 90% ) 4,340 2.20
muscat 5,000 999 63% 22 1,830 0.98
Random Walk 8,569 17,192 90% 5 4,820 2.60
scDesign2 2,838 16,199 82% 15 5,170 0.35

Downsampling (original)

mcSCRB 249 16,864 57% 48 59,000 0.47
Fibroblasts 369 16,535 45% 224 199,000 0.82
Fibroblasts 2 737 18,682 48% 181 197,000 0.33
HEK 339 18,746 63% 38 56,100 0.15
siRNA KD 4,298 18,956 56% 106 122,000 0.36

Downsampling (reduced)

mcSCRB 249 16,864 87% 5 95,020 0.32
Fibroblasts 369 16,535 85% 6 5,020 0.19
Fibroblasts 2 737 18,682 88% ) 5,020 0.13
HEK 339 18,746 89% 4 5,140 0.11
siRNA KD 4,298 18,956 88% ) 4,990 0.23
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Supplementary Figure S1: Log-log scatter plot of the mean-variance relation across all genes for each
dataset. As size factor variations between cells introduce heterogeneity, for each dataset, we filtered
out the largest and smallest 25% of cells.



A Mathematical detail

A.1 Variance-stabilizing transforma-
tion for a quadratic mean-
variance relation

The Gamma-Poisson distribution with mean u
and overdispersion « implies a quadratic mean-
variance relation

Var[Y] = o(p) = p + ap®.
Our goal is to find a function g for which
Sd[g(Y)] ~ const.

The delta method approximates the standard
deviation of a transformed random variable as

Sd[g(Y)] = |g'(w)| SA[Y].

We can require this to be constant and solve for
g (1)]:

|9’ ()] SA[Y] = const.

const.

1eon _ const. (1)
g (1) = SAY]

v(p)

Given the derivative ¢’, we can use integration
to identify the functional form of our transfor-
mation (note that without loss of generality, we
can ignore the constant, whose value does not
affect the variance stabilization property.)

1
9(n) = /Wdu

1
= [ ———=d
/ vVt CY,UQ a (2)
= \/25 asinh (y/op)

= \/1& acosh (2au +1).
The last two expressions are mathematically
equivalent. In the paper, we preferentially use
the acosh-based expression since it seems slightly
simpler. It is, however, worth noting that in the
past, the name asinh transformation has been
used (Bartlett, 1947).

If there is no overdispersion (o = 0), the acosh
transformation reduces to the well-known square
root variance stabilizing transformation for Pois-
son random variables

lim g(p) = 2y/p. (3)

a—0

A.2 Approximating the acosh trans-
formation with the shifted loga-
rithm

The inverse hyperbolic cosine (acosh) transfor-
mation from Eq. (1) can also be expressed in
terms of the logarithm function,

1
g(y) = —=acosh (2ay + 1)
a

Va

_ ;a log (2ay + /ay + 12 — 1+ 1)@

We want to approximate this transformation us-
ing the shifted logarithm and thus find a, b, and
cin
h(y) = a + blog(y + ¢), (5)
so that h(y) =~ g(y).
We aim to find a, b, and ¢ such that for large
y, h(y) converges to ¢g(y). We notice that

) (2ay+1)2 -1
lim
y—+00 2ay

=1, (6)
and thus for large y

o(y) ~ ;& log (day + 1)

L) | st

1
= —1 —_— .
\/&Og<y+4a Ja

The linear scaling b and the offset a do not in-
fluence the variance stabilization; the important
insight is that the pseudo-count yg = i ensures
that the shifted logarithm is most similar to the
variance-stabilizing transformation derived using
the delta method.

(7)

A.3 Delta method-based variance-
stabilizing transformation and
size factors

Extended Data Fig. S1 demonstrates that delta
method-based variance-stabilizing transforma-
tions struggle to account for varying size factors.

To incorporate cell-specific size factors in the
delta method-based variance stabilizing transfor-
mation approach, the counts Y;; are divided by
the size factor s; before applying the transfor-
mation: g(Yj;/s;) (Love et al., 2014). To see the
implications of this, it is helpful to look at a de-
composition of the variance of a Gamma-Poisson
random variable Y':

Y'|Q ~ Poisson(Q)
Q ~ Gamma(u, ) (8)

Y ~ Gamma-Poisson(u, o).



In the context of RNA-seq count data, the Pois-
son level of this hierarchical model represents
the technical sampling noise and ) models ad-
ditional variation. According to the law of total
variation

Var[Y] = E[Var(Y|Q)] + Var[E(Y|Q)]

9
= p+ap’, ®)

where Var[Y|Q] = p and Var[Q] = ap?.
If we apply the same approach to a model with
size factors

Y’|Q, s ~ Poisson(sQ), (10)
we find that
Var[V'] = E[Var(¥"|)] + Var[E(Y"|Q)]
= sy’ + asy (11)
=+ ap?

where p = sy’

If, however, we want to apply the delta method-
based variance-stabilizing transformation to a
size factor standardized count

X =Y'/s, (12)
we find that
Var[X] = S%Var[Y’]
= ;ﬁ(su’ +as?y?) (13)
=Ly v
S

The difference between the final line of Eq. (11)
and Eq. (13) explains the problem observed
when applying the delta method-based variance-
stabilizing transformation to correct data where
the size factors vary a lot between cells.
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