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Supplementary Figure 1 | Spatial and Fourier domains of multi-view measurements by 
different methods. a-d 9 typical spatial angular views (left) and corresponding Fourier spectrums 

(right) of 1-μm-diameter synthetic tubulins obtained by LFM, LFM with cubic interpolation, 

VsLFM and sLFM, respectively. The high-frequency components of LFM is difficult to be precisely 

recovered by a simple cubic interpolation (a-b). On the contrary, VsLFM that learns the physical 

prior embedded between multiple phase-correlated angular measurements, can retrieve high-fidelity 

frequencies in the full range (c). The sLFM results shown in d serve as the reference, indicating that 

VsLFM keeps high consistency with sLFM both in spatial and frequency domains. Note that, this 

figure is extended from Fig. 1a for further analysis. Scale bars, 10 μm spatially and 1 μm-1 spectrally. 
  



 
Supplementary Figure 2 | Overview of Vs-Net network architecture. a, Basic structure of the 

Vs-Net framework, which is a global residual network mainly containing three core components: 

the feature extraction, feature interaction and fusion, and feature upsampling. A feature extractor is 

firstly imposed to yield three types of features from low-resolution spatial-angular views, including 

the spatial-angular feature, the light-field feature that is transformed into the light-field domain 

through a pixel-realignment operator, and the angular-mixed feature that is weighted by different 

spatial-angular views with weighting coefficients continuously optimized during the network 

training. Then, high-resolution spatial-angular views are gradually generated through feature 

interaction and fusion, and feature upsampling in the network. The pixel size of each image is 

indicated by the numerical values next to it. b, Unfolded flowchart of the feature interaction and 

fusion, containing spatial-angular interaction module, light-field interaction module, angular-mixed 



interaction module, and concatenation and fusion module. The operators such as convolution, 

leakyReLU and realignment are marked with boxes in the illustration. Among them, pixel 

realignment is a common operator in light-field imaging, used for the mapping between light-field 

domain and spatial-angular domain. Detailed network parameters of each layer are listed in 

Supplementary Table 1. 

  



 
Supplementary Figure 3 | Ablation study on Vs-Net. a, Simplified schematic of Vs-Net-1, with 

only the light-filed interaction module used. b, Simplified schematic of Vs-Net-2, with light-filed 
interaction module and spatial-angular interaction module used. c, Simplified schematic of Vs-Net, 

with all three interaction modules used. d, The simulated ground truth of two spatial-angular views 
and enlarged views of 1-μm-diameter synthetic tubulins obtained by sLFM with a 63×/1.4NA oil-

immersion objective in ideal imaging conditions. e-f, Corresponding output results obtained by Vs-
Net-1 (left), Vs-Net-2 (middle) and Vs-Net (right) with the input contaminated by mixed Poisson-

Gaussian noises. We set the image bit depth as 16, the variance of Gaussian noise as 5, and the 

photon number of the maximum intensity as 100 (e) or 10 (f) for the simulation. g-h, The SNR 
curves versus different angles of Vs-Net-1, Vs-Net-2 and Vs-Net with the maximum photon number 

of 100 (g) and 10 (h). The sLFM results serve as the ground truth for SNR calculation. Detailed 

adjustment of network structures is described in Methods. Scale bars, 20 μm (d-f).  



 

Supplementary Figure 4 | Comparisons between Vs-Net and state-of-the-art learning-based 
methods on spatial-angular measurements before reconstruction. a, Two representative high-

resolution spatial-angular views of the same L929 cell with membrane labelling (TSPAN4-

mCherry) as demonstrated in Fig. 2a, obtained by different methods. We used sLFM as the ground 

truth for comparison. The other results were obtained by LFM after processing with bicubic 

interpolation, CARE, DFCAN, DFGAN, LF-InterNet, LF-DFnet and Vs-Net, respectively. The 

SNR and SSIM indices marked in the top were calculated based on all 13 × 13 angular views. For 

fair comparisons, the training parameters including data pairs, training epoch were set almost the 

same, which concurrently ensured that all learning-based algorithms reached convergence during 

the training process (Methods). b, The curves of the SNR and SSIM versus different angles 

separately, indicating the superior performance of Vs-Net over state-of-the-art learning-based 

methods. Scale bars, 10 μm.  



  
Supplementary Figure 5 | Comparisons of the reconstructed volumes between the proposed 
Vs-Net and state-of-the-art SR algorithms applied on spatial-angular measurements. MIPs and 

two selected axial slices of reconstructed results of the spatial-angular views in Supplementary Fig. 

4 by different methods were compared. The sLFM results were used as ground truth. The arrows 

indicate the blur and artefacts. Scale bars, 10 μm. 
  



 
Supplementary Figure 6 | Comparisons between the reconstructed volumes of our VsLFM 
and the results of SISR algorithms applied on the reconstructed volumes of LFM. MIPs and 

two selected axial slices of reconstructed results by sLFM, VsLFM, LFM, CARE, DFCAN and 

DFGAN, respectively. The results of sLFM, VsLFM and LFM are consistent with those in 

Supplementary Fig. 5. In this figure, CARE, DFCAN and DFGAN were trained using 
reconstruction results of LFM as input and corresponding reconstruction results of sLFM as targets. 

The training dataset is the same as that used in Supplementary Fig. 4. The training of CARE network 

was performed on 3D volume pairs, while DFCAN and DFGAN were trained on 2D slice pairs 

segmented from 3D volumes. For fair comparisons, all learning-based algorithms reached 

convergence during the training process, with detailed training parameters including data pairs, 

training epoch, processing time and system environments described in Methods. The sLFM results 

served as ground truth. The white arrows indicate the blur and detail loss. Scale bars, 10 μm. 



  

Supplementary Figure 7 | Comparisons of resolution at different axial positions among LFM, 
VCD-Net, HyLFM-Net, VsLFM and sLFM. a-e, Orthogonal MIPs of 100-nm fluorescence beads 

uniformly distributed in low-melt agarose, obtained by different methods with a 63×/1.4NA oil-

immersion objective. f-j, Enlarged MIPs of individual reconstructed beads at different axial 

positions (z = -6.2 μm, -2.2 μm, 0.2 μm, 5 μm and 6.8 μm). The selected beads are marked by yellow 

arrows in a-e. The lateral and axial intensity profiles and FWHMs were plotted inside the MIP 

images, demonstrating that the resolution of VsLFM is close to that of sLFM at each depth and 

much better than the resolution of other methods. Scale bars, 10 μm (a-e) and 1 μm (f-j). 
  



 

Supplementary Figure 8 | Quantitative evaluation of VsLFM imaging performance on 
synthetic tubulins with different sample densities. a, Two spatial-angular views of 1-μm-

diameter synthetic tubulins obtained by LFM (left), VsLFM (middle) and sLFM with 3 × 3 scanning 

(right), are shown on the first row. Corresponding depth-coded reconstructed MIPs of enlarged 

regions, with insets displaying the Fourier spectrums and zoom-in views, are shown on the second 

row. Normalized intensity profiles along the marked red dashed lines are shown on the last row, 

demonstrating that VsLFM can resolve densely aliasing crisscrossing regions. The synthetic data 

were generated with random distributions. b, The curves of reconstructed SNR and SSIM versus 

different angles (top row) and reconstructed depths (bottom row) by LFM, VsLFM and sLFM. We 

used sLFM results with 13 × 13 full scanning as the ground truth for the calculation of SNR and 

SSIM in the evaluation along angles (top row), whereas the synthetic volume was used directly as 

ground truth in the evaluation along depths (bottom row). c, Decorrelation functions and the 

estimated cut-off frequency kc of the xy-MIPs in a by different methods. Gray curves represent 

decorrelation functions with high-pass filtering; green curves represent the decorrelation function 

without any high-pass filtering; vertical gray dashed lines represent the cut-off frequency. d, xy-

MIPs stitched by LFM, VsLFM, and sLFM results, with gradually increasing sample densities. e, 

The curves of SNR, SSIM and kc versus sample densities for LFM, VsLFM and sLFM. The sample 



density is defined by the number of tubulins in the whole field of view. Scale bars, 20 μm (a, d), 5 

μm and 2 μm-1 (insets in a). 



 

Supplementary Figure 9 | Long-term observation of living L929 cells with subcellular 
resolution and low phototoxicity. a, Orthogonal MIPs of living L929 cells with mitochondria 

(cyan) and membrane (magenta) labelling, obtained by LFM (left), VsLFM (middle) and sLFM 

(right) with a 63×/1.4NA oil-immersion objective at t = 0 s. b, MIPs of the selected region in a at t 

= 0 s, obtained by LFM, VsLFM and sLFM, respectively. Only membrane channel is shown for 

clear comparisons. c-d, SNR and SSIM indices across the depth range of LFM and VsLFM results 

in b, revealing superior performance of VsLFM. We used sLFM result as the reference for SNR and 

SSIM calculations. e, Mitochondria-channel orthogonal MIPs of the region marked in a at different 

time stamps. The whole imaging duration covers more than 5 hours continuously, without noticeable 

reduction in fluorescent intensity. The upper row shows the results of LFM, while the lower row 



shows the results of VsLFM with higher resolution to distinguish the subcellular structures. f, 
Membrane-channel orthogonal MIPs of the region marked in a at different time stamps, obtained 

by LFM and VsLFM, respectively. Membrane dynamics such as fiber retractions and migrasome 

formations can be observed by VsLFM. Scale bars, 10 μm (a-b, e-f). 

  



 

Supplementary Figure 10 | Evaluation of VsLFM imaging performance on synthetic tubulins 
at different noise levels. a, The high-resolution angular view (center view) of Vs-Net of the same 

synthetic tubulins as demonstrated in Fig. 3, with increasing shot noise levels indicated by the 

reduction of maximum photon number. Note that in this simulation, Vs-Net was only trained on 

synthetic tubulins without noise. b, The reconstructed MIPs of VsLFM at different noise levels, 

indicating the noise robustness of the method. Scale bars, 10 μm. 

 

  



 
Supplementary Figure 11 | Quantitative evaluation of the DAO performance of VsLFM. a, 

Orthogonal MIPs of a synthetic 6-μm-diameter fluorescence bead as the ground truth for simulation. 

b, Simulated orthogonal MIPs of the beads obtained by WFM, confocal microscopy, VsLFM, 

sLFM, VsLFM with DAO and sLFM with DAO, respectively. Different rows correspond to imaging 

conditions of different aberration levels in terms of root mean square (RMS) of 0.0 λ, 1.0 λ, and 2.5 

λ. The results reveal that VsLFM is compatible with DAO for aberration correction. c, The ground-



truth aberrations, estimated aberrations by VsLFM with DAO, estimated aberrations by sLFM with 

DAO and the corresponding error maps, under the given aberrations of 1.0 λ RMS (left) and 2.5 λ 

RMS (right). d, Comparisons of the amplitudes of different Zernike modes decomposed from the 

ground truth and estimated aberration wavefronts. Scale bars, 10 μm (a-b). 

  



 

Supplementary Figure 12 | Evaluation of VsLFM with and without DAO on synthetic tubulins 
at different levels of optical aberrations. a-b, Orthogonal MIPs and enlarged views of the 

synthetic tubulins, obtained by VsLFM without DAO (a) and VsLFM with DAO (b) at increasing 

aberration levels. As the aberration level increases, distorted disparities gradually appear in angular 

measurements and lead to ghosting and obscures after reconstruction, which can be accurately 

corrected by DAO. The estimated wavefronts by DAO are shown in the insets of b. Note that in this 

simulation, Vs-Net was only trained on synthetic tubulins without aberration. Scale bar, 10 μm. 

  



 
Supplementary Figure 13 | High-speed 3D in vivo imaging of subcellular membrane dynamics 
in zebrafish embryos. a-c, Center views obtained by LFM, VsLFM and sLFM at t = 0 s, 

respectively. The VsLFM results exhibit better noise suppression than sLFM, with the marginal 

amount of residual salt-and-pepper-like noises. d-f, Depth-coded MIPs of the corresponding zoom-

in region at t = 0 s. Different colors correspond to different depths. The noise was significantly 

attenuated after reconstruction, since the 3D deconvolution process also combined multiple angular 

measurements for better SNR. g, Comparisons between LFM, VsLFM and sLFM on the dynamic 

retraction fibers. Orthogonal MIPs of the region marked in d-f by LFM, VsLFM and sLFM (from 

top to bottom) are displayed at different time stamps. h, Normalized lateral intensity profiles along 

the lines marked in g, demonstrating the lateral resolution improvement and contrast enhancement 

of VsLFM. The intensity profile of sLFM serves as ground truth, revealing that VsLFM has high 

fidelity for fine biological structures. i, Normalized axial intensity profiles along the lines marked 

in g, exhibiting that VsLFM has a significantly higher axial resolution than LFM. Scale bars, 10 

μm.  



  

Supplementary Figure 14 | Quantitative comparisons of the generalization ability between 
VsLFM, VCD-Net and HyLFM-Net on synthetic data. a, Simulated ground-truth MIPs of 1-μm-

diameter synthetic tubulins, reconstructed by sLFM with a 63×/1.4NA oil-immersion objective. b, 

Results obtained by VsLFM, VCD-Net and HyLFM-Net. All three networks were trained on the 

same tubulin dataset. c, Results obtained by VsLFM, VCD-Net and HyLFM-Net, trained on a bead 

dataset. Due to large morphological differences between beads and tubulins, the performance of 

end-to-end networks degraded quickly. A large number of structural fragments that resemble the 

shape of small beads appear in the results of VCD-Net and HyLFM-Net, while VsLFM remains 

stable performance. d, Boxplots showing Pearson correlations of results obtained by different 

methods trained on the tubulins dataset and tested on the tubulins. e, Boxplots showing Pearson 

correlations of results obtained by different methods trained on the beads dataset and tested on the 

tubulins. The results show that Vs-Net has much better generalization ability on diverse sample 



structures with better stability than VCD-Net and HyLFM-Net. The format of boxplots in d and e: 

center line, median; box limits, lower and upper quartiles; whiskers, 1.5-fold interquartile range. P 

values were calculated by the two-sided paired t-test. In panel (d), P = 4.15×10-27 for VCD-Net and 

P = 1.18×10-27 for HyLFM-Net; in panel (e), P = 8.36×10-39 for VCD-Net and P = 1.65×10-39 for 

HyLFM-Net. n = 20 for each method. Different data points come from tubulins with different 3D 

distributions randomly. In this experiment, VCD-Net and HyLFM-Net were trained with the 

synthetic tubulins or beads as targets and corresponding light-field measurements as input. Scale 

bars, 10 μm. 

  



 

Supplementary Figure 15 | 3D tracking of blood cells in zebrafish larva with the VsLFM 
trained on the mouse data. The 3D tracking was accomplished automatically through Imaris 9.0.1 

software, with the overall tracking time length of 0.40 s, from t = 0 s to t = 0.40 s. 76 flowing blood 

cells were identified by white spheres and tracked with temporal-coding trajectory. The color bar in 

the bottom right corner represents different time stamps. Scale bar, 50 μm. 

 



 

Supplementary Figure 16 | Intravital subcellular imaging of neutrophil migration and 
retraction fiber formation in mouse liver at 1.33 VPS. a, Center view (top) and corresponding 

MIP (bottom) of the neutrophils (yellow) and blood vessels (magenta) in a living mouse liver 

obtained by VsLFM. b, Enlarged center views (top) and MIPs (bottom) of the region marked in a, 

obtained by LFM (left), VsLFM (middle) and sLFM (right), respectively. c, Orthogonal MIPs at 

different time stamps, obtained by LFM (upper row) and VsLFM (lower row). A retraction fiber 

indicated by the white arrows was generated during neutrophil migration, which was hard to be 

resolved in LFM. The whole migration dynamics under strong vibrations due to respiration, is 

clearly observed by VsLFM without motion artefacts (Supplementary Video 5). Scale bar, 10 μm.  



 
Supplementary Figure 17 | Attention-based HyLFM-A-Net developed for VsLFM to 
accelerate the 3D reconstruction process. a, Basic architecture of HyLFM-A-Net, with channel 

attention applied on 2D convolutions to enhance relevant features for reconstruction. Detailed 

network descriptions can refer to Methods section. b, Unfolded flowchart of the attention 

convolution. We adopted the squeeze-and-excitation structure, and the convoluted output feature 

was further multiplied by channel-wise weights with a range from 0 to 1. c-d, The similar 

reconstruction performance of iterative tomography (c) and HyLFM-A-Net (d) with the Vs-Net 

output. e, Bar plot of the processing time of two methods. The reconstruction time of HyLFM-A-

Net is two orders of magnitude less than that of iterative tomography. f, Comparison on network 

architecture and image dimensions between HyLFM-Net and HyLFM-A-Net. Scale bars, 20 μm (c, 

d). 
  



 
Supplementary Figure 18 | Generalization test of VsLFM to different MLAs. a, Pseudo codes 

(top) and illustration (bottom) for angular interpolation algorithm. In this illustration, the pixel 

numbers behind each microlens are set to 13×13 initially and 21×21 after angular interpolation. b, 
Reconstructed orthogonal MIPs of synthetic tubulins with the diameter of 1 μm, acquired by VsLFM 

with the same Vs-Net model using different microlens arrays (MLAs). The Vs-Net model was 

pretrained on simulated dataset captured by the system with MLA #1 (100-μm pitch size and 2100-

μm focal length). Tubulins captured using MLA #2 (115-μm pitch size and 2400-μm focal length) 

and MLA #3 (160-μm pitch size and 3400-μm focal length), were firstly proceeded by angular 

interpolation, and then enhanced by the pretrained Vs-Net model. The synthetic volume serves as 



ground truth (left). c-d, The curves of reconstructed SNR (c) and SSIM (d) versus different depths 

by VsLFM with different MLAs. The results indicate that VsLFM with angular interpolation can 

only adapt to different kinds of MLA with small changes, while MLA with a large change of 

parameters needs to retrain the Vs-Net model as guided in Methods. Scale bars, 20 μm (b). 



  
Supplementary Figure 19 | Transfer learning can further improve the performance of Vs-Net. 
a, Cross-sample applications to synthetic beads with the random diameter of 0.5 to 1 μm and 

synthetic tubulins with the diameter of 1 μm, by Vs-Net models that are solely pre-trained on beads 

or tubulins, respectively. The two types of samples have large morphological differences, which 

poses a big challenge on network generalization. Fortunately, Vs-Net with a physics-based learning 

framework focusing on inherent correlation and disparity of spatial-angular views, generalizes well 

on different sample types. Transfer learning further makes the network more tractable with a small 

amount (~1%) of additional data induced, which consequently close the small gap between different 

sample types. The center views obtained by different methods are shown for comparisons. N 

represents the number of paired data patch used in training process. The results upsampled by direct 

bicubic interpolation are also shown in the rightmost column for comparisons. b, The curves of SNR 

and SSIM versus the gradually increasing amount of additional data introduced in transfer learning. 

After pre-trained on one type of data, the network was fine-tuned by transfer learning with 

increasing amounts (0, 0.2%, 0.4%, 1%, 2%, 4%, 10%, 20%, 40%) of another type of data added, 

to improve the performance for the latter type of angular views. We used sLFM results as ground 

truth. Both SNR and SSIM indices were calculated on all 13 × 13 angular views. The gray dotted 

lines mark the 80% level of the converged value. Scale bars, 10 μm. 

  



Supplementary Table 1 | Detailed network parameters of the Vs-Net 
 

Module and sub-module Structure Function 

Feature extractor 

Spatial-angular Feature 

Extractor 
nn.Conv2d (1,64,3,1,0,1) 

Light field Feature Extractor nn.Conv2d (1,64, 3,1,13,13) 

Angular-mixed Feature 

Extractor 
nn.Conv2d (1,64,13, 13,0,0) 

Interaction 

and fusion 

Spatial-angular 

interaction module 

Convolution nn.Conv2d (64,64,3,1,0,1) 

Realignment 
From light-field domain to spatial-

angular domain 

Convolution nn.Conv2d (64,64,3,1,0,1) 

Concatenation cat(1) 

Convolution nn.Conv2d (2*64,64,3,1,0,1) 

Leaky ReLU nn.LeakyReLU 

K cascade K cascade - 

Concatenation Concatenation cat(1) 

Fusion 

Convolution nn.Conv2d (K*64,64,3,1,0,1) 

Leaky ReLU nn.LeakyReLU 

Realignment 
From spatial-angular domain to light-

field domain 

Light field interaction 

module 

Convolution nn.Conv2d (64,64, 3,1,13,13) 

Convolution 
nn.Conv2d (64,64*13*13,1,1,0,0) 

PixelShuffle(13) 

Realignment From spatial-angular domain to light-



field domain 

Convolution nn.Conv2d (64,64, 3,1,13,13) 

Concatenation cat(1) 

Convolution nn.Conv2d (3*64,64, 3,1,13,13) 

Leaky ReLU nn.LeakyReLU 

K cascade  K cascade  - 

Concatenation Concatenation cat(1) 

Angular-mixed 

interaction module 

Convolution nn.Conv2d (64,64, 1,1,0,0) 

Convolution nn.Conv2d (64,64,13,13,0,0) 

Leaky ReLU nn.LeakyReLU 

Concatenation cat(1) 

Convolution nn.Conv2d (2*64,64, 1,1,0,0) 

Leaky ReLU nn.LeakyReLU 

K cascade K cascade - 

Concatenation Concatenation cat(1) 

Fusion 

Convolution nn.Conv2d (K*64,64, 1,1,0,0) 

Leaky ReLU nn.LeakyReLU 

Convolution 
nn.Conv2d (64,64*13*13,1,1,0,0) 

PixelShuffle(13) 

Final fusion 
Convolution Conv ((K+2)*64,64, 3,1,13,13) 

Leaky ReLU nn.LeakyReLU 

Upsampling Realignment 
From light-field domain to spatial-

angular domain 



Convolution nn.Conv2d (64,64*3*3,3,1,0,1) 

Pixel Shuffle PixelShuffle(3) 

Convolution nn.Conv2d (64,1,1,1,0,0) 

Global residual Interpolation F.interpolate(Bicubic, scale=3) 

 
Notes 

nn.Conv2d (input_channel, output_channel, kernel_size, stride, dilation, padding) 

cat (concatenation_dimension) 

nn.LeakyReLU (negative_slope=0.1, inplace=True) 

K: The cascade number of the feature interaction modules 

 

  



Supplementary Table 2 | Imaging conditions for all fluorescence experiments 

 

 

Sample, 

(imaging 

T, °C) 

Fluorescent 

label 

Exposure 

time 

(# time pts) 

λ: Power 

(mW/mm2) 

Volume 

rate 

(VPS) 

Objective 

2a, S4, S5 
L929 cells 

37 °C 

TSPAN4-

mCherry 

100 ms 

1 pts 
561: 1.3 - 

63×/1.4NA 

Oil 

2b-2c, S7 

Fluorescenc

e beads 

27 °C 

Yellow-green 

fluorescent 

(505/515) 

100 ms 

200 pts 
488: 11.7 - 

63×/1.4NA 

Oil 

2d 

Fluorescenc

e beads 

27 °C 

Yellow-green 

fluorescent 

(505/515) 

100 ms 

2 pts 
488: 11.7 - 

63×/1.4NA 

Oil 

4a-4c 
L929 cells 

37 °C 
TOM20-GFP 

100 ms 

1 pts 
488: 0.8 - 

63×/1.4NA 

Oil 

4d-4g, 

S15, SV3 

Zebrafish 

larval 

27°C 

Tg(flk:EGFP; 

gata1: 

DsRed) 

3 ms 

101 pts 

488: 5.0 

561: 9.0 
50 

20×/0.5NA 

Air 

5a, SV4 

Living mice 

liver 

37 °C 

Ly6G 

(Neutrophil) 

WGA 

(vessel) 

30 ms 

1 pts 

561: 3.1 

640: 4.2 
1.333 

63×/1.4NA 

Oil 

5b-5c, 

SV4 

Living mice 

liver 

37 °C 

Ly6G 

(Neutrophil) 

WGA 

(vessel) 

30 ms 

45 pts 

561: 3.1 

640: 4.2 
12 

63×/1.4NA 

Oil 

5d, SV4 

Living mice 

liver 

37 °C 

Ly6G 

(Neutrophil) 

30 ms 

141 pts 
561: 3.1 0.174 

63×/1.4NA 

Oil 



6a-6g, 

SV6 

Drosophila 

22 °C 

pAce 

voltage 

indicator 

1.9 ms 

2500 pts 
488: 12.8 500 

25×/1.05NA 

Water 

6h-6j, 

SV6 

Drosophila 

22 °C 

pAce 

voltage 

indicator 

1.9 ms 

8500 pts 
488: 12.8 500 

25×/1.05NA 

Water 

S9, SV1 
L929 cells 

37 °C 

TSPAN4-

mCherry and 

TOM20-GFP 

300 ms 

282 pts 

488: 0.4 

561: 0.5 
0.015 

63×/1.4NA 

Oil 

S13, SV2 

Zebrafish 

embryo 

27 °C 

EGFP 
150 ms 

5400 pts 
488: 3.9 3 

63×/1.4NA 

Oil 

S16, SV5 

Living mice 

liver 

37 °C 

Ly6G 

(Neutrophil) 

WGA 

(vessel) 

30 ms 

401 pts 

561: 3.1 

640: 4.2 
1.333 

63×/1.4NA 

Oil 

S17c-

S17d 

L929 cells 

37 °C 

TSPAN4-

mCherry 

100 ms 

1 pts 
561: 1.3 - 

63×/1.4NA 

Oil 

 
  



Supplementary Videos 

Supplementary Video 1 
Long-term observation of living L929 cells to 

demonstrate the resolution improvements of VsLFM. 

Supplementary Video 2 

Experimental comparisons between LFM, VsLFM 

and sLFM on complicated 3D membrane dynamics in 

zebrafish embryos in vivo. 

Supplementary Video 3 

Highly dynamic circulating blood flow in a zebrafish 

larva at 50 VPS to compare the generalization ability 

of VsLFM, VCD-Net and HyLFM-Net, which were 

all trained on mouse liver data. 

Supplementary Video 4 

VsLFM eliminates the motion artefacts of sLFM in 

living mouse livers with extremely high-speed 

motions during respiration. 

Supplementary Video 5 

Intravital subcellular imaging of neutrophil migration 

and retraction fiber formation by VsLFM with heart 

beating accompanying in mouse liver. 

Supplementary Video 6 

3D imaging of voltage activities across the whole 

brain with subcellular resolution in Drosophila at 

ultrahigh speed of 500 VPS, allowing the observation 

of 3D propagation of action potentials in a single 

neuron. 

 


