
A. Supporting Information Document S1 (SSIM) 

 

In general, SSIM quality metrics is comprised of the multiplication of the three terms, including the 

luminance term 𝐿(. ), contrast term 𝐶(. ), and structural term 𝑆(. ). SSIM per pixel/voxel between two 

2D/3D images A and B can be formulated as Equation 11.   

𝑆𝑆𝐼𝑀(𝑥, 𝑦)  =  [𝐿(𝑥, 𝑦)]𝛼[𝐶(𝑥, 𝑦)]𝛽[𝑆(𝑥, 𝑦)]𝛾                                                                                          [1] 

Where A and B are inputs to all functions, but they are omitted for the sake of clarity .The 𝑥 and 𝑦 are the 

pixel/voxel intensity values from the input images.  

Luminance, contrast, and structural terms can be defined as Equations (2-4):  
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where μx, μy, σx, σy, and σxy are the local means, standard deviations, and cross-covariance. By considering 

α = β = γ = 1, and C3 = C2/2, which has been proposed by Wang et al.1, the original SSIM quality metric 

(Eq. 1) can be simplified to Equation 5.       
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where C1 and C2 are two small constants to stabilize the division with a weak denominator, local statistics 

are computed by applying the 2D/3D Gaussian filter with standard deviation σG. 

Finally, the mean of the calculated SSIM map, a scalar value, can be used as a similarity metric between 

two given 2D/3D images. Equation 6 shows the mean of the SSIM map, which commonly used as an image 

quality assessment metric or loss function in the neural networks: 

𝑀𝑆𝑆𝐼𝑀(𝐴, 𝐵)  =  
1

𝑁
∑ ∑ 𝑆𝑆𝐼𝑀(𝑥, 𝑦)𝑦𝑥                                                                                                          [6] 

𝑁 is the number of the pixels/voxels inside the input images.  

In our work, we used SSIM as the part of the loss function in the 3D U-Net and the generator part of the 

GANs. To calculate the SSIM for the 2D GAN, C1 =0.0001 and C2 =0.0009, 2D Gaussian filter with 

window size = 11×11, and σG=1.5 were used. To calculate the SSIM for the 3D networks including TAV-

GAN, Temporal-GAN, Volumetric-GAN, and 3D U-Net, C1 =0.0001 and C2 =0.0009, 3D Gaussian filter 

with window size = 11×11×11, and σG=1.5 were used.     

B. Supporting Information Document S2 (2D GAN) 

 

B1. Network architecture. The detailed network architecture for 2D GAN is shown in Figure SB1. The 

generator is a 2D U-Net which consists of two paths: (I) the encoder path, which includes four 

downsampling blocks; (II) the decoder path, which contains four up-sampling blocks. Each block has two 

convolutional layers, with each layer containing learnable convolution filters followed by the non-linear 

activation function Leaky ReLU (LReLU). Convolutional layers in the first block of the network contain 

64 convolutional kernels, and the number of kernels doubles in each deeper block. Down-sampling and up-

sampling blocks in the encoder and decoder paths are connected via average pooling (strides = 2) and up-

sampling (strides = 2). A skip connection is used to pass the data between each pair of same-sized up-

sampling and down-sampling blocks. The discriminator is a 2D binary classifier which contains four 

downsampling blocks.  Each block contains two convolutional layers in which each convolutional layer 

contains convolutional kernels followed by LReLU. The starting number of channels used in the 

discriminator was 64, which was doubled in each deeper block. The last two layers are the fully connected 

layer followed by dropout and LReLU, and a single decision fully connected layer with a sigmoid activation 



function. Discriminator takes the magnitude of the generated images to decide whether it is “generated” or 

“clean” images. The input and output of the generator for the 2D GAN in the training stage is a complexed-

valued image patch with size 320×192×2 (real and imaginary), and magnitude-valued image patch with 

size 320×192×1, respectively.     

 

Figure SB1. The detailed network structure for 2D GAN. The generator part is a 2D U-Net with 4 

downsampling blocks and 4 up-sampling blocks. The discriminator part is a 2D binary classifier with four 

downsampling blocks. The number of the convolutional kernels and type of the activation functions are 

reported in the Figure.  Network training was performed on the image patches with size 320×192.  

B2. Loss function.  

The total loss function of the generator part of the 2D GAN 𝐿
𝐺2𝐷
𝑇𝑜𝑡𝑎𝑙(. ) is a linear combination of the 

adversarial loss 𝐿
𝐺2𝐷
𝑎 (. ), normalized L1 norm, and SSIM2D. The total loss function of the discriminator 

𝐿
𝐷2𝐷
𝑇𝑜𝑡𝑎𝑙(. ) is an adversarial loss 𝐿

𝐷2𝐷
𝑎 (. ). Equations (1, 2) formulated the generator’s objective function and 

the discriminator’s objective function, respectively:  
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Where 𝑥̃𝑢
𝑖,𝑡

 , 𝑥𝑖,𝑡 stands for the aliased and respiratory motion-corrupted, and un-aliased and free of the 

motion 2D image patches for the 𝑡𝑡ℎ  cardiac phase of the 𝑖𝑡ℎ  patient case. 𝛾 ,  𝜆 , and 𝜁  are the 

hyperparameters that control the contribution of the adversarial loss, spatial sparsity and local patch wise 

similarity. 𝑁 is the normalization factor and is equal to the number of the pixels inside 𝑥𝑖,𝑡.                                                                                      



B3. Training procedure. The training process for the 2D GAN is similar to the training process of the 

TAV-GAN. As shown in Figure SB2, the training process consists of five stable phases and four transition 

phases. The training started with a first stable phase. Only the layers with the lowest resolution are built 

and trained for an epoch in the first stable phase. Then first transition phase is started where new layers are 

added gradually to the lowest resolution layer to transit to the second stable phase. It is important to 

emphasize that as shown in Figure SB2, after each transition resolution of the image is doubled. In the 

transition phase, new layers were added with weight 1-α to the existing layers with weight α. The parameter 

α was linearly decreased from 1 to 0 through the iterations of the epoch's number. For instance, from the 

beginning of the transition phase (α=1), the newly added layers were getting zero weight, and as α decreases, 

the new layers had more weight until the part of the existing layers were faded (α=0). Once α reached 0, 

the transition phase was finished, and the next stable phase was started. These stable and transition phases 

were alternated while more layers were added progressively until the stable phase 5 was finished, which 

concluded the training process. Figure SB3 shows the first stable and transition phases for the 2D GAN. 

For the first to fourth stable and transition phases, the network is trained for an epoch. The number of the 

required epochs for the last stable phase is decided empirically. Two criteria for stopping the training 

process were considered: 1) outputs' quality through the training and 2) equilibrium state of the adversarial 

loss for the generator and the discriminator.  

                                 

 

Figure SB2. Progressive training strategy for 2D GAN. Intuitively, building the network with few layers 

with low resolution and training them and gradually adding more layers to reach the high-resolution images 

can alleviate the training process of the GANs. The training procedure contains five stable phases and four 

transition phases. As can be seen, in the stable phase 1, only layers with the lowest resolution were built. In 

the transition phase 1, new layers were gradually added to the old layers to reach stable phase 2. Parameter 

α controls the rate of gradual pointwise addition. It linearly reduced from 1 to 0 through the iterations of 

the training in each transition phase. Sample of transition and stable phases were explained in Figure SB3. 

This alternation between stable and transition phases was continued until to reach to the last stable phase 5. 



For the last stable phase, training was performed for the number of epochs. The number of the required 

epochs was decided based on the quality of the test results in the training stage, and the equilibrium state 

of the generator loss and the discriminator loss.      

 

Figure SB3. Illustration of the stable and transition phases of the 2D GAN in this work. For the sake of 

simplicity, we only showed the first stable and transition phases. Only layers with the lowest resolution 

were built for the generator and the discriminator in the first stable phase. The input complex image was 

downsampled four times and fed to the generator. The first convolution layer in the generator and the 

discriminator is increasing the channel dimensions of the input. The network was trained for an epoch in 

the first stable phase. Then, in the first transition phase, layers with twice resolutions were added gradually 

to the pre-trained layers. As can be seen, new layers were added to the generator and the discriminator 

progressively. The parameter α controls the addition process. It is linearly decreasing from 1 to 0 through 

all iterations in the epochs. We trained this phase only for an epoch. To make the idea clear, for α=1, we 

are at the beginning of the transition phase. For α=1, the graph for the generator and the discriminator is the 

same as the graph in the stable phase 1. Suppose α=0; it means that the first transition phase is finished, and 

training will enter the second stable phase. By considering α=0, it can be seen that adapting layers in the 

first stable phase were faded, and new layers with higher resolution were added to the graph.    

B4. Training parameters. 

For the 2D GAN, 𝛾 = 1,  𝜆 = 0.6 and 𝜁 = 0.4 are selected based on the limited search as the weight of the 

adversarial loss, normalized L1-loss, and SSIM2D loss. Adam optimizer was used with the momentum 

parameter β =0.9, mini-batch size= 64, an initial learning rate of 0.0005 for the generator, and an initial 

learning rate 0.00005 for the discriminator. Weights of the network are initiated with random normal 

distributions with a variance of σ = 0.01 and mean µ=0. The training was performed with the Pytorch 

interface on a commercially available graphics processing unit (GPU) (NVIDIA Titan RTX, 24GB RAM).  

 



 

 

C. Supporting Information Document S3 (Data-Preparation) 

 

As shown in Figure SC1 (b), each ROCK MUSIC2 scan continuously acquired NL Cartesian k-space lines 

grouped in quasi-spiral interleaves in the Ky-Kz plane that are arranged in a golden-angle manner, shown 

in Fig. SC1 (a). For each ROCK MUSIC raw data in Group A, a pair of image volumes were reconstructed 

for network training: the reference image and the highly accelerated, aliased and respiratory motion-

corrupted image. To reconstruct the reference image, data were binned into 9-12 cardiac phases of the end-

expiration respiratory state by using the cardiac and respiratory self-gating signal derived from the k-space 

center lines as shown in Figure SC1(b) and reconstructed based on Equation 12,3:  

𝑑̂ = argmin
𝑑

∑ ‖𝐷𝐹𝑆𝑖𝑑 − 𝑚𝑖‖2
2𝑁

𝑖=1 + 𝜆1‖𝑅1𝑑‖1 + 𝜆2‖𝑅2𝑑‖1                                                                    [1] 

Where F, Si, and D are the Fourier transform, sensitivity maps, and undersampling mask, respectively. d is 

the multiphase images, mi is the acquired undersampled k-space from each of the N receiver coil channels. 

R1 is the spatial wavelets and R2 is the temporal total variation. Hyperparameters 𝜆1 and 𝜆2 control the 

weight of the regularizers R1 and R2, respectively. The k-space under-sampling factor after cardiac and 

before respiratory motion SG ranged 2.8X-7.9X.  To reconstruct the “highly accelerated” image volume, 

as shown in Fig. SC1 (c), we extracted the first 𝑀 =  𝑚𝑖𝑛 (50000, 𝑁𝐿/2) k-space lines out of the data, 

resulting in a further retrospective under-sampling of the acquired data by a factor of at least 2. Because the 

quasi-spiral k-space interleaves were arranged in a golden-angle manner, the k-space sample uniformity is 

maintained even when the second half (or more) of acquired data was discarded. The total k-space under-

sampling factor was 10.7X-15.8X for the “highly accelerated” image volumes.  

 

Figure SC1. Data preparation process: (a) shows the ROtating Cartesian K-space (ROCK) sampling 

strategy used to acquire the data. (b) shows the SG CS-WV reconstruction process to create the clean 

reference volumetric images. (c) shows the zero-filled reconstruction process to create the aliased, 

respiratory motion-corrupted images. As shown in (c), the first half of the acquired lines (if NL<100000 



lines) or the first 50000 of the acquired lines (if NL>100000) were used to create the inputs for training and 

testing the network. Also, only a self-cardiac gating signal is used to sort the data to multiple cardiac phases. 

No respiratory motion gating was performed when generating the input images in (c). 

We note that, although the data were retrospectively under-sampled, we expect our data to accurately 

represent a prospectively under-sampled in vivo imaging scenario with the same under-sampling factor, 

because the prospective data would have been acquired using the exactly the same sequence timing and 

temporal order for the k-space lines and quasi-spiral interleaves. We subsequently binned the resulting 

highly accelerated k-space data into appropriate cardiac phases using the cardiac-gating signal, zero-filled 

each cardiac phase data, performed an inverse Fourier transform, and finally combined the resulting multi-

coil images to a single complex coil image using fast coil combination algorithm. The highly accelerated 

images, in the absence of any compressed sensing reconstruction and respiratory motion gating, had 

significant under-sampling aliasing artifacts and respiratory motion artifacts. Both the reference images and 

the highly accelerated images were normalized by subtracting the complex mean within the image volume 

and dividing by the absolute value of twice the standard deviation of the same volume. The highly 

accelerated image volumes were formatted as individual 4D tensors with its complex values expressed as 

real and imaginary channels. The magnitude of the normalized reference images were formatted as a 4D 

tensor as well with a single (magnitude) channel. To minimize the background effect, 10 voxels from the 

edge of the tensors were cropped. To prepare for network training, paired patches, of size 64×64×64×2 

from the highly accelerated images and of size 64×64×64×1 from the reference images, were extracted 

randomly from the cropped tensors and used as an input and target, respectively, in the training phase of 

the 3D U-Net, the Volumetric-GAN, and the TAV-GAN. For training the Temporal-GAN, the input was 

formatted as a real-valued 4D tensor with the magnitude of the three sequential cardiac phases t-1, t, t+1 in 

the channel dimension of the tensor, and the training target was the magnitude of the reference image 

corresponding to cardiac phase t. Subsequently, paired patches with sizes 64×64×64×3 for the input, and 

64×64×64×1  for the target 4D tensor, was extracted randomly and used as an input and target in the training 

phase for the Temporal-GAN. It is worth noting that in the Temporal-GAN, to prepare the data for the first 

and last cardiac frames, cardiac frames were assumed cyclic. For instance, for the last cardiac frame t as 

the target, three aliased and respiratory corrupted cardiac frames t-1, t, 1 were stacked in the channel 

dimension as the Temporal-GAN input. 

For 2D GAN, the reference images and the highly accelerated images were normalized slice-by-slice by 

subtracting the complex mean within the image slice, followed by division by the absolute value of the 

standard deviation of the slice. The input and target of the generator for the 2D GAN in the training stage 

was cropped from the slice-by-sliced normalized highly accelerated images and reference images  and 

formatted as a complexed-valued tensor with size 320×192×2 (real and imaginary), and a magnitude-valued 

tensor with size 320×192×1 , respectively.        

For the testing data sets in Groups B1 and B2, we reconstructed both the reference image volumes and the 

highly accelerated image volumes as well. Although data in these Groups were not used in network training, 

the reference images were used in the network performance evaluations and comparisons.  

D. Supporting Information Document S4 (Sharpness Analysis) 

 

The normalized Tenengrad focus measure4,5 was used to quantify the sharpness of the reconstructed 

respiratory motion-corrected results with different networks. In general, to compute the Tenengrad focus 

measure, the image is convolved with a Sobel operator, and the square of all the magnitudes greater than a 

threshold is reported as a focus measure. Equation 1 formulates the Tenengrad measure:  



𝐹𝑇𝑒𝑛𝑒𝑛𝑔𝑟𝑎𝑑 =  ∑ [𝐼(𝑖, 𝑗) ∗∗ 𝑆]2
𝑖,𝑗 + [𝐼(𝑖, 𝑗) ∗∗ 𝑆𝑇]2 ,                                                                     [1] 

where 𝐼(𝑖, 𝑗) shows the image and 𝑆 is the Sobel operator: 𝑆 =  [
1 0 −1
2 0 −2
1 0 −2

].  

Because of the difference in the size of the testing cases, the mean of the Tenengrad focus measure without 

threshold was calculated and reported as a sharpness score of an image. To calculate the results' sharpness 

score from different methods, we first cropped the cardiac region, and then we computed the mean of the 

Tenengrad focus measure for each slice of the cropped region and normalized them based on the calculated 

mean of the Tenengrad measure for the corresponding slice of the cropped region in the reference SG CS-

WV images. Then, the normalized values were averaged over the slices inside a cropped cardiac region and 

cardiac phases to represent a single sharpness number for each case. We excluded the 2D GAN in our 

sharpness analysis because of its inferior image quality with more residual artifacts than other methods. 

 

 

 

E. Supporting Information Document S5 (3D spatiotemporal GAN) 

E1. Purpose: The goal of this supplemental study is to compare a 3D spatiotemporal GAN against the 

Temporal-GAN qualitatively and quantitatively.  

E2. Method: A 3D spatiotemporal GAN was trained based on the ROCK MUSIC data in this work. To 

circumvent limitations in GPU memory, we first performed a Fourier Transform on the ROCK MUSIC 

data in the readout direction, to divide the 4D (3D spatial + cardiac phase) data into a contiguous series of 

2D dynamic slices in the readout direction, each slice having two spatial dimensions and one temporal 

dimension. We included 9 cardiac phases for each 2D dynamic slice. The same Fourier Transform in the 

readout direction was performed for both the highly-accelerated motion-corrupted datasets and the SG CS-

WV reference datasets. We subsequently trained a 3D spatiotemporal GAN that takes these individual 2D 

dynamic slices as the input such that the GPU memory is not saturated. This 3D spatiotemporal GAN  takes 

advantage of 2D spatial information and the temporal information, i.e., redundant information through the 

sequential 2D cardiac frames, to recover the clean images from the aliased and respiratory motion affected 

images. The network structure for the 3D spatiotemporal GAN is similar to the Temporal-GAN (see Sup. 

Info. Fig. S1), except that the last convolutional layer of the network has nine kernels. For the 3D 

spatiotemporal GAN, a combination of two-loss functions including the content loss ( λ = 0.5,  ζ = 0.3), and 

adversarial loss  (γ = 1) were considered. The progressive training strategy as described in the main 

manuscript was used to train the network. The network's trainable weights were initiated with random 

normal distributions with a variance of σ = 0.01 and mean µ=0. For the 3D spatiotemporal GAN, the Adam 

optimizer was used with the momentum parameter β =0.9, mini-batch size= 16, an initial learning rate of 

0.0001 for the generator, and an initial learning rate of 0.00001 for the discriminator. To evaluate the image 

quality of the 3D spatiotemporal GAN, we randomly selected 7 cases from Group B1 and Group B2, and 

asked two blinded radiologists to rank reconstructed dynamic image volumes using either the Temporal-

GAN and the new 3D spatiotemporal GAN. 

E3. Results: Figure SE1 shows the qualitative reconstruction and respiratory motion correction results for 

the two patient cases drawn from the datasets Group B1 and Group B2 for the three techniques, including 

the (a)Temporal-GAN, (b) 3D spatiotemporal GAN, and (c)2D GAN. The first row of each subpanel in 

Figure SE1 shows a coronal section of the results, and the second and third rows show the zoomed cardiac 



region and the temporal difference maps between two sequential cardiac frames. Based on the temporal 

difference maps in both patient cases, the flickering artifacts were substantially reduced in both Temporal-

GAN and the 3D spatiotemporal GAN in comparison to the 2D GAN. Both Temporal-GAN and the 3D 

spatiotemporal GAN had better performance in removing the aliasing and respiratory artifacts from the 

image than the 2D GAN. Based on blinded evaluations of 7 cases, both radiologists ranked the Temporal-

GAN higher than the 3D spatiotemporal GAN in 5 cases, and they were split in the remaining two cases 

(i.e. one ranked Temporal-GAN higher, and one ranked 3D spatiotemporal GAN higher in these two cases). 

SSIM (±SD), nRMSE (±SD)) which were calculated based on the testing dataset Group B1 for the 

Temporal-GAN, 3D spatiotemporal GAN, and the 2D GAN was (0.746±0.0495, 0.036±0.0072), 

(0.682±0.061, 0.053±0.010), and (0.481±0.0594, 0.072±0.0138), respectively. The mean of the normalized 

Tenengrad focus measure (±SD) for the reconstructed and respiratory motion-corrected results obtained by 

the Temporal-GAN and the 3D spatiotemporal GAN was 0.702±0.1408 and 0.762±0.146, respectively. 

  

 

Figure SE1. Qualitative results obtained by three techniques for two patient cases selected from the testing 

datasets Group B1 and Group B2. It shows the reconstruction and respiratory motion correction results for 

the Temporal-GAN (a, d), 3D spatiotemporal GAN (b, e), and 2D GAN (c, f). The magnified heart region 

is shown for each image (2nd row of each panel). The bottom row of each panel shows the temporal 

difference maps between two sequential cardiac frames. Both Temporal-GAN and 3D spatiotemporal GAN 

achieved better results regarding aliasing and respiratory motion and flickering artifacts reduction than the 

2D GAN. 

 

 

 

 

 



 

 

 

F. Supporting Information Document S6 (Cardiorespiratory gated inputs vs. the cardiac 

gated inputs) 

 

F1. Purpose: In this supplemental study, we sought to investigate the difference between TAV-GAN 

trained based on 1) cardiac-gated zero-filled images as input and cardiorespiratory-gated CS reconstruction 

as a reference, and the TAV-GAN trained based on 2) cardiorespiratory-gated zero-filled images as input 

and cardiorespiratory-gated CS reconstruction as a reference.    

F2. Method: As illustrated in the main manuscript, TAV-GAN was trained based on the cardiac-gated 

zero-filled images as input and cardiorespiratory-gated CS reconstruction images as the target. Another 

TAV-GAN with the same training procedure and parameters was trained based on the cardiorespiratory-

gated zero-filled images as input and cardiorespiratory-gated CS reconstruction images as the target. The 

performance of two TAV-GANs was compared qualitatively with regard to regular respiratory motion 

artifact and irregular respiratory motion artifact.   

F3. Results: Figure SF1 shows the qualitative results obtained by SG CS WV (a, d), TAV-GAN trained 

based on the cardiac-gated zero-filled images as input (b, e), and TAV-GAN trained based on 

cardiorespiratory-gated zero-filled images as input (c, f) for two representative cases selected from Group 

B1 and Group B2. For the patient with regular breathing, there was no apparent difference between the two 

TAV-GANs – both of them provided good image qualities. For the Group B2 patient, the TAV-GAN 

trained based on the cardiac-gated zero-filled images as input provided better overall image quality.  

 

Figure SF1. Qualitative representative results of two unseen cases from Group B1 and Group B2. (a-c) 

show the un-aliased and respiratory artifact-corrected images from a patient with a regular respiratory 

pattern during scanning, obtained by SG CS-WV, TAV-GAN (trained based on cardiac-gated zero-filled 

images as the input), and TAV-GAN (trained based on cardiorespiratory gated zero-filled images as the 



input), respectively. (d-f) show images using the same techniques from a patient with irregular respiratory 

motion. The TAV-GAN trained based on the cardiorespiratory gated zero-filled images as the input would 

reduce the respiratory and aliasing artifacts in the case with regular breathing, but it seems in the case with 

irregular breathing, its performance dropped substantially. In each panel, the 2nd rows are amplified images 

of the heart region, and the third rows are temporal difference maps for two sequential cardiac phases.   

F4. Discussion: For the presented test results (See Fig. SF1) from Group B1, which had regular breathing 

and was similar to the data in training datasets (Group A), both TAV-GANs showed similar performance. 

However, the TAV-GAN trained based on the cardiorespiratory gated zero-filled images, could not provide 

satisfactory results in the presence of irregular breathing (See Fig. SF1; Group B2). The TAV-GAN trained 

based on the cardiac gated zero-filled images as the input shows more robustness in the testing stage on the 

data with irregular breathing. We speculate that when the TAV-GAN is trained on cardiorespiratory-gated 

zero-filled images as the input, it would only learn how to remove under-sampling aliasing artifacts, which 

is easier than removing the aliasing and respiratory artifacts simultaneously. This drawback may 

compromise the network’s ability in removing any residual motion after respiratory self-gating in the testing 

stage. 
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G. Supporting Figures  

 

Supporting Information Figure S1.  Detailed network structure for the volumetric generator and 

discriminator used in TAV-GAN. The generator is a 3D U-Net which consists of two paths: (I) the encoder 

path, which contains three downsampling blocks; (II) the decoder path, which includes three up-sampling 

blocks. Each block contains two convolutional layers, with each layer containing learnable convolution 

filters followed by Leaky ReLU (LReLU). Convolutional layers in the first block of the network contain 64 

convolutional kernels, and the number of kernels doubles in each deeper block. Down-sampling and up-

sampling blocks in the encoder and decoder paths are connected via average polling (strides = 2) and up-

sampling (strides = 2). A skip connection is used to pass the data between each pair of same-sized up-

sampling and down-sampling blocks. The discriminator is a binary classifier that contains three down-

sampling operations followed by two convolutional layers in which each convolutional layer contains 

convolutional kernels followed by LReLU. The last two layers are the fully connected layer followed by 

dropout and LReLU, and a single decision fully connected layer with a sigmoid activation function. 

Discriminator takes the magnitude of the generated images to decide whether it is “generated” or “clean” 

images. The input and output of the generator for the Volumetric-GAN and temporally aware volumetric 

GAN (TAV-GAN) in the training phase are complexed-valued 3D image patches with size N×N×N×2 (real 

and imaginary), and magnitude-valued 3D image patches with size N×N×N×1, respectively. The input and 

output of the generator for the Temporal-GAN in the training phase are magnitude-valued 3D image patches 

with size N×N×N×3 (three sequential cardiac phases) and a magnitude-valued 3D image patch with size 

N×N×N×1, respectively. Due to the limitation of the GPU memory, N=64 is used in this work. 

 

 



 

Supporting Information Figure S2. Representative examples for the datasets: columns (a), (b), (c-e) 

represent qualitative examples of the images from the dataset A (training dataset), dataset B1 (mild testing 

dataset), and dataset B2 (severe testing dataset), respectively. The first row shows the magnitude of a slice 

from the volumetric images, and the second row shows the difference map between two sequential cardiac 

phases. As can be seen in (a), it has the lowest noise and flickering artifacts through the cardiac phases 

among the others. The image in the column (b) has relatively higher noise and flickering artifacts through 

the cardiac phases than the image in column (a). Based on the calculation of the noise inside a 15×15×15 

cubic region from the background, images in the datasets B1 (mean of the standard deviation = 0.076) are 

2 times noisier than the images in the datasets A (mean of the standard deviation = 0.038). Column (c) 

presents image that was profoundly affected by noise. Approximately, the noise level for noisy images in 

datasets B2 (mean of the standard deviation = 0.304) based on the calculation of the noise inside a 15×15×15 

cubic region from the background is, on average, 8 times the images in datasets A. Column (d) shows an 

image from a CHD patient with breathing irregularities scanned under anesthesia. As shown in column (d), 

image quality is degraded due to the respiratory motion artifacts. The image in column (e) shows an image 

from a CHD patient scanned under free-breathing without anesthesia. As shown in column (e), the quality 

of the image is degraded substantially due to the respiratory artifact and breathing irregularities. 

 

 

 

 

 

 

 



 

 

 

Supporting Information Figure S3. Training convergence: first row plots the loss components versus the 

iterations for the generator and the discriminator of the temporally aware volumetric GAN (TAV-GAN). 

Only adversarial loss is plotted for the generator, and it means how well the generator can fool the 

discriminator. The discriminator contains two components associated with classification performance for 

both real and fake images. As seen in the first row, all three components converge to an equilibrium state 

(0.7). Besides, this convergence is happening very fast because of the practical training strategy introduced 

in this work. The second row shows the qualitative validation results through the epochs. It seems that after 

epoch 60 (15000 iterations), image quality is improved sufficiently.     

 

 

 

 

 



 

 

Supporting Information Figure S4. Hallucination effect: by training the generative adversarial networks on 

the datasets with noisy ground truth, some characteristic artifacts were introduced to the image. As pointed 

with the red arrow, such a network generated spurious artifact has appeared in the left myocardium and 

liver region. For this case, we trained the network on dataset B1 and tested it on dataset A. We note that on 

average, the dataset B1 was two times noisier than the dataset A. This result reveals the importance of 

curating the data and using less noisy target reference images for training GANs. Otherwise, spurious 

features might be introduced to the reconstructed images. 

H. Supporting Tables 

Supporting Information Table S1. Multiple comparisons between the quantitative SSIM score of the 

images reconstructed by different methods. At the α=0.05 level of significance, SSIM scores of the images 

reconstructed by each of the 3D network (Volumetric-GAN, Temporal-GAN, 3D U-Net, TAV-GAN) are 

higher than the images reconstructed by 2D GAN. The paired SSIM score differences among the 3D 

networks were non-significant. 

 

 

 



*. The mean difference is significant at the 0.05 level. Tukey HSD = Tukey honestly significant difference 

 

Supporting Information Table S2. Multiple comparisons between the quantitative nRMSE score of the 

images reconstructed by different methods. At the α=0.05 level of significance, nRMSE scores of the 

images reconstructed by each of the 3D network (Volumetric-GAN, Temporal-GAN, 3D U-Net, TAV- 

Comparison 

Method 
(I) Groups (J) Groups 

Mean Difference (I-J) 
Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Tukey HSD 2D GAN ZF 0.1054* 0.000 0.041 0.169 

Temporal-GAN -0.2652* 0.000 -0.329 -0.201 

TAV-GAN -0.3037* 0.000 -0.368 -0.240 

Volumetric-GAN -0.2705* 0.000 -0.334 -0.206 

3D U-Net -0.2511* 0.000 -0.315 -0.187 

ZF 2D GAN -0.1054* 0.000 -0.169 -0.041 

Temporal-GAN -0.3706* 0.000 -0.435 -0.306 

TAV-GAN -0.4091* 0.000 -0.473 -0.345 

Volumetric-GAN -0.3759* 0.000 -0.440 -0.312 

3D U-Net -0.3566* 0.000 -0.421 -0.292 

Temporal-GAN 2D GAN 0.2652* 0.000 0.201 0.329 

ZF 0.3706* 0.000 0.306 0.435 

TAV-GAN -0.0385 0.490 -0.102 0.025 

Volumetric-GAN -0.0053 1.000 -0.069 0.059 

3D U-Net 0.0140 0.987 -0.050 0.078 

TAV-GAN 2D GAN 0.3037* 0.000 0.240 0.368 

ZF 0.4091* 0.000 0.345 0.473 

Temporal-GAN 0.0385 0.490 -0.025 0.102 

Volumetric-GAN 0.0332 0.646 -0.031 0.097 

3D U-Net 0.0525 0.166 -0.011 0.117 

Volumetric-GAN 2D GAN 0.2705* 0.000 0.206 0.334 

ZF 0.3759* 0.000 0.312 0.440 

Temporal-GAN 0.0053 1.000 -0.059 0.069 

TAV-GAN -0.0332 0.646 -0.097 0.031 

3D U-Net 0.0193 0.947 -0.045 0.083 

3D U-Net 2D GAN 0.2511* 0.000 0.187 0.315 

ZF 0.3566* 0.000 0.292 0.421 

Temporal-GAN -0.0140 0.987 -0.078 0.050 

TAV-GAN -0.0525 0.166 -0.117 0.011 

Volumetric-GAN -0.0193 0.947 -0.083 0.045 



GAN) are lower than the images reconstructed by 2D GAN. The paired nRMSE differences among the 3D 

networks were non-significant.  

*. The mean difference is significant at the 0.05 level. Tukey HSD = Tukey honestly significant difference 

Comparison 

Method (I) Groups (J) Groups 

Mean 

Difference (I-J) Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Tukey HSD 2D GAN ZF -0.0218* 0.001 -0.037 -0.006 

Temporal-GAN 0.0358* 0.000 0.020 0.051 

TAV-GAN 0.0423* 0.000 0.027 0.058 

Volumetric-GAN 0.0339* 0.000 0.018 0.049 

3D U-Net 0.0321* 0.000 0.017 0.047 

ZF 2D GAN 0.0218* 0.001 0.006 0.037 

Temporal-GAN 0.0577* 0.000 0.042 0.073 

TAV-GAN 0.0641* 0.000 0.049 0.079 

Volumetric-GAN 0.0557* 0.000 0.040 0.071 

3D U-Net 0.0539* 0.000 0.038 0.069 

Temporal-GAN 2D GAN -0.0358* 0.000 -0.051 -0.020 

ZF -0.0577* 0.000 -0.073 -0.042 

TAV-GAN 0.0064 0.815 -0.009 0.022 

Volumetric-GAN -0.0019 0.999 -0.017 0.013 

3D U-Net -0.0038 0.978 -0.019 0.011 

TAV-GAN 2D GAN -0.0423* 0.000 -0.058 -0.027 

ZF -0.0641* 0.000 -0.079 -0.049 

Temporal-GAN -0.0064 0.815 -0.022 0.009 

Volumetric-GAN -0.0084 0.595 -0.024 0.007 

3D U-Net -0.0102 0.374 -0.025 0.005 

Volumetric-

GAN 

2D GAN -0.0339* 0.000 -0.049 -0.018 

ZF -0.0557* 0.000 -0.071 -0.040 

Temporal-GAN 0.0019 0.999 -0.013 0.017 

TAV-GAN 0.0084 0.595 -0.007 0.024 

3D U-Net -0.0018 0.999 -0.017 0.013 

3D U-Net 2D GAN -0.0321* 0.000 -0.047 -0.017 

ZF -0.0539* 0.000 -0.069 -0.038 

Temporal-GAN 0.0038 0.978 -0.011 0.019 

TAV-GAN 0.0102 0.374 -0.005 0.025 

Volumetric-GAN 0.0018 0.999 -0.013 0.017 



 

Supporting Information Table S3. Multiple comparisons between the quantitative normalized Tenengrad 

focus measure  of the images reconstructed by different methods. At the α=0.05 level of significance, 

sharpness scores of the images reconstructed by Volumetric-GAN, TAV-GAN, and Temporal-GAN, are 

higher than the images reconstructed by 3D U-Net. 2D GAN is excluded from the sharpness analysis 

because of the sensitivity of the Tenengrad focus measure to the residual high-frequency artifacts.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

(I) group (J) group 

Mean 

Difference (I-J) Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

TAV-GAN Volumetric-GAN -0.0064 0.999 -0.142 0.129 

Temporal-GAN 0.1196 0.101 -0.016 0.255 

3D U-Net 0.5353* 0.000 0.399 0.671 

Volumetr

ic-GAN 

TAV-GAN 0.0064 0.999 -0.129 0.142 

Temporal-GAN 0.1261 0.077 -0.010 0.262 

3D U-Net 0.5418* 0.000 0.406 0.677 

Temporal

-GAN 

TAV-GAN -0.1196 0.101 -0.255 0.016 

Volumetric-GAN -0.1261 0.077 -0.262 0.010 

3D U-Net 0.4157* 0.000 0.280 0.551 

3D U-Net TAV-GAN -0.5353* 0.000 -0.671 -0.399 

Volumetric-GAN -0.5418* 0.000 -0.677 -0.406 

Temporal-GAN -0.4157* 0.000 -0.551 -0.280 

*. The mean difference is significant at the 0.05 level.  



Supporting Information Table S4. Multiple comparisons of subjective image quality rank comparisons 

were performed in Stage 1 subjective image quality evaluation. Among the 6 techniques ranked, only four 

techniques (Volumetric-GAN, Temporal-GAN, 3D U-Net, and self-gated CS-WV) are shown. We 

excluded TAV-GAN from this analysis because of its outstanding scores in the rank comparison, and it 

was consistently ranked highest among the 6 techniques. We also excluded the 2D GAN in this analysis 

because it was ranked consistently the worst among the 6 techniques. We excluded 2D GAN to ensure 

that the assumption of the variance's homogeneity is valid for the Tukey HSD test. At the α=0.05 level of 

significance, images reconstructed by 3D U-Net had lower scores in comparison to the Temporal-GAN. 

Mean difference values indicated that the Temporal-GAN has a higher rank score than other methods, 

including Volumetric-GAN, SG CS-WV, and 3D U-Net, although the difference was not significant. 

 

Comparison 

Method 
(I) Method (J) Method 

Mean 

Difference (I-

J) 

Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Tukey HSD Temporal-GAN Volumetric-GAN 0.250 0.155 -0.06 0.56 

SG CS-WV 0.233 0.204 -0.07 0.54 

3D U-Net 0.417* 0.003 0.11 0.72 

Volumetric-

GAN 

Temporal-GAN -0.250 0.155 -0.56 0.06 

SG CS-WV -0.017 0.999 -0.32 0.29 

3D U-Net 0.167 0.496 -0.14 0.47 

SG CS-WV Temporal-GAN -0.233 0.204 -0.54 0.07 

Volumetric-GAN 0.167 0.999 -0.29 0.32 

3D U-Net 0.183 0.411 -0.12 0.49 

3D U-Net Temporal-GAN -0.417* 0.003 -0.72 -0.11 

Volumetric-GAN -0.167 0.496 -0.47 0.14 

SG CS-WV -0.183 0.411 -0.49 0.12 

*. The mean difference is significant at the 0.05 level. Tukey HSD = Tukey honestly significant difference 

  
 


