Evaluation of Pathogenicity and Structural Alterations for the Mutations Identified in the Conserved Region of C-Terminal Kinase Domain of human- Ribosomal S6 Kinase 1

Vaishnvee Chikhale^{a,b}, Nabajyoti Goswami^a, Mudassar Ali Khan^{a,b}, Probodh Borah^c and Ashok K. Varma^{a,b,*}

^a Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, 410210, India

^b Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India ^c Bioinformatics Infrastructure Facility, College of Veterinary Science, Assam Agricultural University, Khanapara,

Guwahati, Assam, India 781022.

* Corresponding author at: Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, Maharashtra, 410210, India.

E-mail address: avarma@actrec.gov.in

Keywords: RSK1; missense mutation; cancer; molecular dynamics simulation; PCA.

401	411	421	431	441	
HSVVQQLHGK	NLVFSDGYVV	KETIGVGSYS	ECKRCVHKAT	NMEYAVKVID	
eebbeebeee	eeebeeebeb	eeebeeebbb	bbeebeeeee	eeebbbebbe	
		fs		sf	
451	461	471	481	491	
KSKRDPSEEI	EILLRYGQHP	NIITLKDVYD	DGKHVYLVTE	LMRCGELLDK	
eeeeeeeb	ebbeebeeee	ebbebeebee	eeeebbbbbe	bbeeebbee	
f	f	f	f	ffs	
501	511	521	531	541	
ILROKEFSER	EASEVLHTIG	KTVDYLHSQG	VVHRD LKPSN	ILYVDESGNP	
beeeebeee	ebeebbeebb	ebbebbbeee	bbbeebeeee	bbbbeeeeee	
f		s	stt tttt		
551	561	571	581	591	
ECLRICDEGE	AKQLRAENGL	LMTECYDANF	VAPEVLKRQG	YDEGCDIWSL	
eebebbebbb	beeeeeeee	eebebbebeb	bbeebbeeee	eeebbebbbb	
Í ÍSSS	si	st t	stt	I I SSS	
601	611	621	631	641	
GILLYTMLAG	TEFANGESD	TPELLERIG	SGKFTLSGCN	WNTVSETAKD	
eedddddddd	ebeeeeeee	eeeebbeebe	eeebebeeee	beebeeebee	
S I	II	I		I I	
651	661	6/1	681	691	
LVSKMTHVDP	HQELTARQVL	OHEMATORDK	LPOSQLSHQD	LO VKCAMAA	
DDeebbebee	eeebebeebb	eeeppeeeee	ecceccecc	Deedeedded	
701	711	701	701		
TUL		121	731		
DISALINSSRP	POTRPIDSS	THACKINVKKL	PSTIL		
Deppeeeee	ecebeebeee	eppeeeeee	eeeee		
Legend:					
The conservation scale:					
1 2 3	4 5 6 7	8 9			
Variable Average Conserved					
e - An exposed residue according to the neural-network algorithm.					
b - A buried resid	ue according to th	e neural-network	algorithm.		
f - A predicted functional residue (highly conserved and exposed).					
s - A predicted structural residue (highly conserved and buried).					
Jucufficient data the coloulation for this site was nonformed on less than 1004 of the sec					

Insufficient data - the calculation for this site was performed on less than 10% of the sequences.

Figure S1. Evolutionary conservancy of RSK1-CTKD generated by ConSurf. Based on multiple sequence alignment ConSurf generates a colour-coded output. The higher the score more is the residue conserved. Residue can be predicted to be exposed (e), buried (b), functional highly conserved, and exposed residue (f), structural highly conserved, buried (s), and x insufficient data

Figure S2. Structural stability and compactness analysis of RSK1-CTKD WT (black) and mutants H533N (red), P613L (green), S720C (blue), R725Q (yellow), and S732F (brown), (**a**) RMSD of WT and mutants showing similar pattern, (**b**) Rg of WT and mutant indicating alteration to some extent in compactness of a structure

Figure S3. Structural flexibility and Solvent accessible surface area (SASA) analysis of RSK1-CTKD WT (black) mutants H533N (red), P613L (green), S720C (blue), R725Q (yellow), and S732F (brown). (a) RMSF of WT and mutants showing minor changes in the flexibility of a protein, (b) SASA of wild-type and mutant indicating not much alteration in an area accessible to the solvent

Figure S4. Several intramolecular hydrogen bonding pairs and their % existence throughout the simulation of WT and mutated residue (**a**) number of H-bonding pair formed by WT residue and mutated residue, (**b-e**) high scored H-bond existence formed by WT residue and mutated residue in (**b**) H533N (**c**) R725Q (**d**) S720C, and (**e**) S732F

Figure S5. Snapshot of WT and mutant (a) R434P, (b) T701M, (c) A704T, (d), R725W, and (e) R726Q RSK1-CTKD confirmation at different simulation time steps

Table S1: Functional consequences of missense mutations predicted by SIFT, PolyPhen2, PhD-SNP,PMut, and PROVEAN

Protein	phD-SNP	Pmut	PROVEAN	SIFT	PolyPhen2
Change					
S457L	neutral	disease	Deleterious	Deleterious	Benign
R588L	Disease	disease	Deleterious	Deleterious	Probably damaging
R434H	neutral	disease	Deleterious	Deleterious	Probably damaging
S719P	neutral	neutral	Neutral	Tolerated	Benign
G530R	Disease	disease	Deleterious	Deleterious	Probably damaging
R503Q	Disease	neutral	Tolerated	Tolerated	Benign
G520D	Disease	neutral	Neutral	Deleterious	Possibly damaging
R493W	Disease	disease	Deleterious	Deleterious	Probably damaging
E623K	neutral	disease	Tolerated	Tolerated	Benign
E490V	Disease	disease	Deleterious	Deleterious	Probably damaging
L463F	Disease	disease	Deleterious	Deleterious	Probably damaging
G617S	neutral	neutral	Tolerated	Tolerated	Probably damaging
G495E	Disease	disease	Deleterious	Deleterious	Probably damaging
E524G	neutral	disease	Deleterious	Tolerated	Probably damaging
G639V	Disease	disease	Deleterious	Deleterious	Benign
S539C	Disease	disease	Deleterious	Deleterious	Probably damaging
R565Q	neutral	disease	Deleterious	Deleterious	Probably damaging
G630S	neutral	neutral	Deleterious	Tolerated	Benign
R554H	neutral	disease	Deleterious	Deleterious	Probably damaging
Y605H	Disease	disease	Deleterious	Deleterious	Possibly damaging
A704T	Disease	disease	Deleterious	Deleterious	Probably damaging
E524Q	neutral	neutral	Neutral	Tolerated	Probably damaging
P682S	neutral	neutral	Tolerated	Tolerated	Probably damaging
T701M	Disease	disease	Deleterious	Deleterious	Probably damaging
K451M	Disease	disease	Deleterious	Deleterious	Probably damaging
S720C	neutral	disease	Deleterious	Deleterious	Probably damaging
T577A	Disease	disease	Deleterious	Deleterious	Possibly damaging
S708F	neutral	disease	Deleterious	Tolerated	Benign
A582V	Disease	disease	Deleterious	Deleterious	Probably damaging
R726Q	Disease	disease	Deleterious	Deleterious	Benign
V515D	Disease	disease	Deleterious	Deleterious	Probably damaging
P613L	Disease	disease	Deleterious	Deleterious	Probably damaging
P712S	neutral	disease	Deleterious	Tolerated	Benign
F614L	Disease	disease	Deleterious	Deleterious	Probably damaging
V531F	Disease	neutral	Deleterious	Deleterious	Probably damaging
K421N	neutral	disease	Deleterious	Deleterious	Benign
V419M	neutral	neutral	Neutral	Tolerated	Benign
R725W	Disease	disease	Deleterious	Deleterious	Probably damaging
R588H	neutral	neutral	Deleterious	Tolerated	Probably damaging
A439T	neutral	neutral	Neutral	Tolerated	Benign

S732F	neutral	neutral	Deleterious	Deleterious	Benign
N411S	neutral	neutral	Neutral	Tolerated	Benign
V652M	neutral	disease	Neutral	Deleterious	Possibly damaging
V485A	Disease	neutral	Deleterious	Tolerated	Possibly damaging
H533N	Disease	disease	Deleterious	Deleterious	Benign
L463P	Disease	disease	Deleterious	Deleterious	Probably damaging
V446I	neutral	neutral	Neutral	Deleterious	Probably damaging
L536M	Disease	disease	Neutral	Deleterious	Probably damaging
G610D	Disease	disease	Deleterious	Deleterious	Possibly damaging
T606I	Disease	neutral	Deleterious	Tolerated	Benign
G630D	Disease	disease	Deleterious	Tolerated	Probably damaging
P673L	Disease	disease	Deleterious	Deleterious	Benign
R663C	Disease	disease	Deleterious	Deleterious	Probably damaging
R725Q	Disease	disease	Deleterious	Deleterious	Possibly damaging
K521R	neutral	neutral	Neutral	Tolerated	Benign
L463I	neutral	neutral	Neutral	Deleterious	Probably damaging
R434P	Disease	disease	Deleterious	Deleterious	Probably damaging
Q468L	Disease	disease	Deleterious	Deleterious	Probably damaging
R510Q	neutral	neutral	Neutral	Tolerated	Benign
L636P	Disease	disease	Deleterious	Deleterious	Possibly damaging
L502M	neutral	neutral	Neutral	Tolerated	Probably damaging

Protein	Structure	Properties
Change		
		1. Mutant residue is smaller and
		hydrophobic than wild type.
		2. Positive wild type residue mutated
		into neutral charge residue.
R434P		3. Disruption in Salt bridge interaction
		between Glutamic acid 422 and 443.
		4. The mutated residue is located in a
		domain that is important for the
		binding of other molecules. The
		mutated residue is in contact with
		residues in another domain. The
		mutation may disturb these contacts.
		1. Mutant residue is smaller and
		hydrophobic than wild type.
		2. Disruption in hydrogen bonding
		between aspartic acid 535 and cysteine
		556.
H533N		3. The mutated residue is located in a
	OH OH	domain that is important for the
	H ₂ N 0	activity of the protein and in contact
		with residues in another domain. This
		interaction may be important for the
		correct function of the protein. The
		mutation can affect this interaction and
		as such affect protein function.
P613L		1. The mutant residue is bigger than the
	HULLESS INTO	wild-type residue.
		2. wild-type residue was buried in the
		core of the protein. The mutant residue
	0	is bigger and probably will not fit.
		3. The mutated residue is located in a
		domain that is important for the

Table S2: Effect of 10 mutations over RSK1-CTKD predicted by HOPE server

1. Mutant residue bigger and more hydrophobic than wild type.

2. The wild-type residue was buried in the core of the protein. The mutant residue is bigger and probably will not fit and will probably leads to loss of hydrophobic interactions in the core of the protein.

3. The mutated residue is located in a domain that is important for the activity of the protein and in contact with another domain that is known to be involved in binding. The interaction between these domains could be disturbed by the mutation, which might affect the signal transduction between the domains.

1. Mutated residue is more hydrophobic than wild type and will cause loss of hydrogen bonds in the core of the protein and as a result disturb correct folding.

2. The mutated residue is located in a domain that is important for the activity of the protein and in contact with another domain that is known to be involved in binding. The interaction between these domains could be disturbed by the mutation, which might affect the signal transduction between the domains.

		1. Mutant residue is smaller and
		hydrophobic than wild type.
		2. Positive wild type residue mutated
		into neutral charge residue.
		3. The residue is located on the surface
	H ₂ N NH NH H ₂ N OH Mutates into	of the protein, mutation of this residue
R726Q		can disturb external interactions with
		other molecules or other parts of the
		protein.
		4. The mutated residue is located in a
		domain that is important for the
		activity of the protein and in contact
		with another domain that is known to
		be involved in binding. The interaction
		between these domains could be
		disturbed by the mutation, which might
		affect the signal transduction between
		the domains.
		1. Mutant residue is bigger and
S732F	_он	hydrophobic than wild type.
		2. The mutated residue is located in a
	H ₂ N OH	domain that is important for the
	0	activity of the protein and in contact
		with another domain that is known to
		be involved in binding. The interaction
		between these domains could be
		disturbed by the mutation, which might
		affect the signal transduction between
		the domains.

.