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S1 Supplementary Methods

S1.1 Continuum macro model parameterization 

The continuum macro model was updated and extended to support both RAS (KRAS4b) and RAS-
RBDCRD (KRAS4b bound to RBD and CRD domains from RAF1) proteins. The parameterization was 
done largely along the same lines as the earlier RAS-only macro model described in.1 This section 
describes the updated parameterization: starting with estimates of the relative RAS and RAF 
concentration, short descriptions of the different CG reference simulations using in the parameterization, 
how the protein states and rates were derived, as well as the protein-lipid interactions. 

A variety of western blot and proteomic analyses have been used to determine the amount of RAS and 
RAF proteins in cell lines and tissue, with concentrations to ranging from 0.005 – 1.3 M.2-7 Depending 
on the cell line and method used the ratio of RAS:RAF ranged from 1:5 to 180:1. These results suggest 
that in most cell lines analyzed there is a higher concentration of RAS compared with RAF. We chose a 
concentration of 150 RAF molecules per m2 to allow us to have sufficient RAF particles in the 
simulation to allow significant sampling but keeping the level to 50% of that of RAS (300 RAS molecules 
per m2). The kinetics of the binding between RAS and the RBD domain of RAF has been measured with 
an association rate of 4.5 x 107 M-1 s-1 and a dissociation rate of 7.4 s-1.8 In a single molecule co-
immunoprecipitation analysis, the binding rate of RBDCRD domain of RAF1 with RAS was measured as 
0.28 s-1 with a dissociation rate of 2.5 s-1.9 These affinities were used to inform the RAS-RBDCRD rates 
discussed below.

The main set of parameterization simulations, as mentioned in the main text, were Martini coarse-grained 
simulation of RAS and RAS-RBDCRD on an 8-lipid type plasma membrane mimic10 sampled from a 
previous m2 macro model simulation.1 The details of these two sets of simulations are described in 
Nguyen et al.11 and here we give a short summary. 732 simulations were run for RAS-only and 970 for 
RAS-RBDCRD. All the simulations started from initial patches, 30 nm x 30 nm lipid membranes with a 
RAS in the middle cut out from a larger m2 macro model simulation.1 These were selected randomly 
within five groups along the low, average, high RAS-count latent coordinate.1 For each simulation: 
diverse initial protein structures were selected, the membrane initialized based the accompanying macro 
model patch, the protein pulled to the membrane, initial equilibrium run followed with 10 s of projection 
simulation. Frames were saved every 2 ns but most of the analysis was done at a 10 ns frame rate. For 
lipid macro model parameterization of both lipid-lipid RDFs and lipid diffusions (see below) a separate 
set of lipids only simulations were run. These simulations were selected, set up, and run exactly like the 
RAS and RAS-RBDCRD simulations (see11 and above) except the proteins were omitted. 50 simulations 
were selected, 10 in each of the 5 lipid groups, and each simulated for 10 s.

The RAS and RAS-RBDCRD are described in the macro model as one or two beads, respectively. Each 
protein/bead is in a specific ‘state’, with unique properties, representing a protein confirmational state 
with respect to the membrane. In order to define the protein bead ‘states’ for the macro model, the 
population in RAS tilt-rotation space of configurations near the end of the main parameterization 
simulations were analyzed. For the RAS-only system, three clear basins were found, and two major and 
one minor basin found for the RAS-RBDCRD system (see Fig. 2 in main paper). For the RAS-RBDCRD 
system the minor basin in rotation space combined with a threshold on the CRD-membrane distance were 
used to define a third elevated ‘Z’ state called za. The state definitions are shown in Fig. 2 of the main 
text, and each point in tilt-rotation space was assigned to the state (basin) to which there is a strictly uphill 
path in the population histogram. The RAS-RBDCRD za-state was defined by the RAS rotation in the 
(140º, 315º) interval and the CRD-membrane distance > 4.8 nm. The population in the different states 
were as follows:



RAS-only system RAS-RBDCRD system
state : 21.5% state ma: 52.9%
state : 65.4% state mb: 46.6%
state ’: 13.1% state za: 0.5% (high Z-state)

To get an indication that these populations are also close to what the equilibrium populations would be, 
we defined a two state Markov model for the RAS-RBDCRD system (here ignoring the relatively low 
population and short-lived za-state) and fit this model to the time evolution of the relative populations in 
states ma and mb. The simulation data and model evolution are shown in Fig. S1. Solving for the 
equilibrium of the so-defined model yields 56.3% in state ma and 43.7% in state mb, which is close to 
what was observed at the end, the 9-10 µs interval, of the simulations from11 and listed in the above table.

Fig. S1  Two-state Markov model for population evolution between the two major states in the RAS-RBDCRD system. The rate 
unit is 1/µs. Blue and green show the time evolution between the two major population basins in the main parametrization 
simulations. Red and cyan show the corresponding model evolution. We can see a quite good agreement between this simple 
model and the real simulation data. 

In order to quantify the rate of transitions among basins, we utilized a set of much longer simulation, done 
on a similar lipids mixture. A single RAS-RBDCRD complex was built on a two-lipid mixture and 
deposited on its surface. The lipid membrane was composed of a 70:30 POPC:POPS mixture, as 
described in Travers et al.12 The Protein complex was modeled following the same protocol as previously 
published.12 Ten initial replicates were started in order to populate the most equilibrated configurations of 
the RAS-RAF complex bound to the anionic membrane. This first round of simulations was run for 100 
s each, until convergency of equilibration was observed. Then, 500 representative configurations were 
extracted from each basin (three basins = 1500 sims) and parallel simulations were continued. Each 
trajectory was run for 30 s and frames saved every 30 ns used for analysis. To further validate the 
relative population sizes of the different protein states Hidden Markov Model analysis of these longer 
simulations yields roughly equal equilibrium populations in the two main basins for a wide range of lag 
times, see Fig. S2.



Fig. S2  Equilibrium populations from HMM analysis of longer two-lipid mixture simulations. For a range of lag times, the relative 
populations of the two main basins remain of similar magnitude. The lag times shown, from left to right, are 20 frames (600 ns), 
100 frames (3 µs), and 500 frames (15 µs).

The orientation of the complex was measured using a set of reaction coordinates, the ‘tilt’ and ‘rotation’ 
angles. The tilt angle is defined as the tilt of the RAS G-domain away from the bilayer normal and the 
azimuthal angle (the rotation) is the angle at which that tilt occurs, as previously described.1, 12, 13 These 
tilt and rotation values were projected into polar coordinates, see Fig. 2 in main text. For RAS-RBDCRD 
the tilt and rotation were calculated in the same manner as well as the depth of CRD penetration into the 
membrane, which was calculated using the center of mass (COM) distance of the residues belonging to 
the hydrophobic loop of CRD, residues THR145-LYS148 and PHE158-ASN161, with respect to the 
center of mass of the membrane COM. Only the Z component of the distance is taken into account.

The transition rates for the macro model were determined through a continuous-time Markov chain 
(CTMC) model. Estimates based on MD simulations were used to constrain the parameter space of the 
CTMC calculations, and the rates were constructed to recover both the equilibrium state populations from 
the MD as well as the experimentally observed residency time distributions of RBDCRD in HeLa cells 
(with endogenous KRAS4b). The values of these rates along with their associated state pathways can be 
found in Fig. 2C in the main document. 

For the lipids the 8-lipid type plasma membrane mimic was used as described in1, 10 except the PIP2 
(Martini lipid name PAP6) lipid charge was changed from -5 to -4 as described in.11 Due to the changes in 
PAP6 lipid parameters, we updated the lipid-lipid RDFs using the 50 lipid-only control simulations 
described above. RDFs were calculated from the same Martini beads as previously used1 (T1A, C1A, 
D1A, R1) and in the macro model the same scaling for the PIP2 interactions as described in1 was used. 
For all the lipids the same lipids diffusion values were also used as determined in.1

For the proteins the macro model parameters were calculated from the reference simulation described 
above. The lipid-RAS RDFs were calculated using the same reference beads as previously described1 (F1 
bead of farnesyl and T1A/C1A/D1A/R1 beads of lipids). The reference point for the CRD RAF bead for 
the lipid-CRD RDFs was the COM of the CRD loops (as defined above in the tilt/rotation/depth section 
above). Lateral diffusion for the RAS-only and RAS-RBDCRD complex were computed using the gmx 
msd tool as provided by GROMACS. First, periodic conditions of the simulations were reconstructed 
allowing a full displacement of the proteins on the surface of the membrane. This was achieved by using 
the pbc nojump option in GROMACS. Then the COM displacement of the membrane was removed and 
the lateral mean square displacement (MSD) of the proteins was measured. Means were taken for 
trajectories corresponding to all the defined states. Distances between RAS and CRD RAF beads in the 
macro model are state specific and set to 0, 3.2 and 3.3 nm for the za, ma, and mb states, respectively. In 
the za state the RAF-CRD is not attached to the membrane and the CRD bead is located on top of the 
RAS bead. For ma and mb states the average distance between RAS farnesyl bead F1 to the COM of 
RAF-CRD loops residues THR145-LYS148 and PHE158-ASN161 were estimated from Martini CG 



simulations to determine the bead separation in the continuum macro model. The RAS and RAF (CRD 
bead) RDF’s for the ma and mb states include interference from RAF and RAS, respectively. While not 
done for the present campaign, deconvolving this interference could improve the protein-lipid potentials 
for these states.

In the current macro model, we wanted to focus on the induced effects of lipids. Protein-protein 
interactions are complex and specific to the relative protein-protein confirmation, and the macro model as 
a large-scale model is not expected to have a good opinion of what happens with close protein-protein 
interactions as they are only each represented by a rotationally averaged point particle (bead). For this 
reason, we define the protein-protein interactions to be a soft-core repulsion to prevent overlap, so that for 
the most part the protein-protein interactions are implicitly defined through the lipids only. The form of 
the soft-core repulsion was:

,𝑈(𝑟) = ( 𝜎
𝑟 ― 𝑟𝑐)

12
―𝑎 ― 𝑏(𝑟 ― 𝑟𝑐)

with , , and a and b chosen so that .𝜎 = 1.375 𝑛𝑚 𝑟𝑐 =  7 𝑛𝑚 𝑈(𝑟𝑐) =  𝑈’(𝑟𝑐) =  0

The model created as described in the previous sections results in too high a concentration of PIP2 around 
the proteins, particularly around the RAS-RBDCRD complex, more than the input RDF’s show. In 
addition, strong aggregation of the proteins occurs. In order to adjust the number of PIP2 around the 
proteins we introduce a charge screening function that scales the lipid-protein interaction as a function of 
lipid charge in the neighborhood of each protein. We define first the charge around a protein at position 𝑄 

 by:𝒓
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Next, given the protein-lipid potential  we define the scaled protein-interaction U as:𝜙(𝑟)

.𝑈(𝒓) =  ∑𝑛𝑙𝑖𝑝𝑖𝑑𝑠
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With the scaling function .  is a constant related to the preferred charge around a given 𝑆(𝑞) =
1

1 + |𝑞|𝛼 𝑄0

protein as determined by the equilibrium lipid density around a protein.  and  are fitting parameters. 𝛼 𝜅
We used the same  and  for all protein types. We set , , and all other lipid 𝛼 𝜅 𝑞𝑃𝐼𝑃𝑠 = ―4 𝑞𝑃𝐴𝑃𝑆 = ―1
charges to zero. In our simulations we used , , and . Fig. S3 shows the effect of this 𝛼 = 20 𝜅 = 1 𝑄0 = 14
charge screening on the lipid profiles around different protein beads in the macro model.



Fig. S3  Lipid profiles around protein beads in CG and the macro model for PIP2 (left), CHOL (middle), and DIPE (right). CG density 
profile shown in yellow, and macro model profile in blue. Top row: Lipids around RAS in the  state. Middle row: Lipids around 𝛼
RAS for the RAS-RBDCRD complex in the ma state. Bottom row Lipids around RAF-CRD for the RAS-RBDCRD complex in the ma 
state.

S1.2 Protein structure input libraries 

Libraries of initial structure in each state for both RAS-only and RAS-RBDCRD were sampled from the 
pre-campaign single protein CG simulation ensample described in Nguyen et al.11 This pre-campaign 
simulation ensample was itself set up from diverse sets of protein structures and lipid configurations and 
consisted of 732 RAS-only (KRAS4b) and 970 RAS-RBDCRD (KRAS4b with RBD and CRD domains 
from RAF1) simulations with an aggregated simulation time over 21 ms. For all the simulations each 
frame was assigned to a given state based on tilt/rotation (RAS-only) or tilt/rotation/depth (RAS-
RBDCRD), see section S1.1, and for each protein and each state protein structures were saved from 5000 
random frames.

S1.3 Createsims: Mapping Continuum-to-CG 

The MuMMI Createsims module creates a CG Martini simulation form a given macro model patch in an 
automatic and fault tolerant manner. The initial Createsims module was described in Ingólfsson et al.,1 
here we give a short summary and detail the changes made. The Createsims module runs on CPUs only 
for MuMMI to utilize available CPU resources and not to compete with concurrently running MD 
production runs that use the GPUs. First, the selected macro model patch is parsed and converted from 
macro model resolution to CG Martini resolution. Macro model lipid densities are discretized to whole 
lipids and protein structures, from specified conformational sates, are sampled from input libraries and 



palace as dictated by the macro model patch. Second, the CG simulation is built using a modified version 
of the insane membrane building tool.14 Third, proteins are pulled from solution to the membrane and 
initial system minimization and equilibration is performed using the GROMACS MD package 
v2019.06.15 Fourth and last, the resulting simulation is converted from GROMACS to ddcMD16-18 format 
using the ddcMDconverter 19 and now ready for running with ddcMD on GPU resources. 

The macro model represents each protein with one (RAS-only) or two (RAS-RBDCRD) beads. RAS-
RBDCRD has one bead for RAS and one for the attached CRDRBD of RAF. Additionally, each protein 
can exist in one of three possible confirmational states. Protein initial structures are randomly sampled 
from input libraries as defined in Section S1.2. For the placement of proteins, as before, the macro model 
RAS bead dictated the farnesyl position of RAS in the bilayer x,y plane. RAS-only proteins are randomly 
rotated around the z-axes while for RAS-RBDCRD proteins the position of the second RBDCRD bead is 
used to rotate the selected RAS-RBDCRD accordingly along the z-axes. The angle placement applies to 
the two RAS-RBDCRD confirmational states (ma and mb) were the CRD is membrane bound, in the 
third (za) state the CRD bead is above the RAS bead and the structures z-axes rotation is randomized. As 
before, MDAnalysis20, 21 is used to detect overlap between proteins, with protein CG bead <0.8 nm from 
other proteins. If an overlap is detected, new random rotations and initial structures are tried, currently up 
to 500 times before all proteins are spaced away from each other by 0.5, 1, 1.5 or 2 nm and the progress 
repeated. If no placement of all proteins can be found the setup of this patch is stopped and marked as 
failed. To guard against bias in the build procedure we updated the method to place all proteins at the 
same time, if any two proteins have overlap the placement of all proteins is repeated. The proteins, except 
for the RAS fanesyl’s, are initially places in solution 2.25 nm above the membrane and later pulled to the 
membrane. 

For the lipid placement, we want to place the lipids to match the number of lipids represented by the 
macro model patch density field, both in terms of overall composition and in spatial distribution. We use 
the following stochastic method to place discrete lipid molecules in close approximation of the macro 
model density field at individual lipid resolution instead to the 5×5 subgrid (64 lipids each) approximation 
we used before. We place the lipids in a 40x40 grid, to select one for each grid cell for a total of 1600 
lipids in each of the inner and outer layers. The process first divides the density in each grid cell so that it 
total number of molecules (represented by the density in that grid cell) equals one. Then a grid point is 
selected at random, and a lipid type is selected according to the relative densities in that grid cell. The 
left-over density is distributed to all not yet sampled grid points by selecting a multiplier for each lipid 
type so that the total remaining amount of that lipid is the expected amount. The process is repeated until 
all grid points have been sampled. After this process is complete, some lipids are removed by selecting a 
set of locations at random to create the desired overall density and asymmetry between the outer/inner 
leaflets. The full lipid placement grid is passed to a modified version of the insane membrane building 
tool14 which we use to construct each lipid and place water and ions. 

After placement of all molecules the system is energy minimized, initial equilibrium is run, and proteins 
pulled to the membrane. The GROMACS MD package v2019.0615 is used to run the same sequence of 
minimization and equilibrium steps as described before except now the pulling is done slightly slower 
(0.0005 nm/ps with 1,000 kJ mol-1 nm-2 force constant along the z-axes only) and an short (10000 steps) 
in-between equilibrium run with position restraints on protein beads (100 kJ mol-1 nm-2 restraints on 
protein beads in x and y dimensions) added to let the membrane better adapt to the proteins before the 
weaker (10 kJ mol-1 nm-2) run. 

The Martini 2.2v CG force field parameters14, 22-28 were used as described in1 with updated protein 
parameters and PIP2 (specifically Martini lipid PAP6) lipid charge are described in11 and using the same 
simulation parameters as described in1, 11; notably, following the new-rf Martini parameter set29 with final 
simulations run at 20 fs time step, 1 bar semiisotropic pressure coupling and a temperature of 310 K, as 



well as weak (2 kJ mol-1 nm-2) harmonic potentials applied to the outer leaflet POPC PO4 beads along the 
z-direction to keep limit large bilayer undulations. 

After simulation set up and initial equilibrium the GROMACS inputs were converted to ddcMD format 
using the ddcMDconverter19, ddcMD run files and select setup file are saved and the setup success or 
failure marked for the MuMMI workflow. Current configuration of Createsims is tuned to run on 24 CPU 
cores on Lassen and Summit and takes ~1.5 h to run for the ∽140,000 particles CG systems. 

S1.4 CG Simulations and Analysis

During a MuMMI multiscale simulation all CG simulations are converted from continuum macro model 
patches as described in section S1.3. After conversion the MuMMI workflow launches a CG Simulation 
and Analysis module for each CG simulation when GPU compute resources become available.30 Each CG 
Simulation and Analysis module requires three CPUs and one GPU and manages the running and on-the-
fly analysis of a single CG simulation. The module is Python based and runs and manages its files locally 
on the compute node it is launched on, with periodic updates of simulation files to the global filesystem 
adding frames to the simulation trajectory and more frequent passing of data for online feedback. The 
module runs the CG MD simulation using a GPU enabled version of ddcMD.16 ddcMD runs the full MD 
loop on the GPU only utilizes CPU resources only for I/O, coordination and logging; delivering ~1 s per 
day for the ∽140,000 particles CG systems simulated here.16, 30 The simulation run conditions CG 
parameters are as explain in Ingolfsson et al.1 and in section S1.3 with updates described in.11, 31 The 
module monitors the running simulation restarting and stopping (currently set at 5 s) as needed. ddcMD 
outputs simulation snapshots every 0.5 ns locally which are all analyzed as they come in using a parallel 
multithreads analysis routine with batched writes to global filesystem, passing data to macro model 
feedback as well as well as possible conversion to AA simulation, and saving simulation trajectories at a 2 
ns interval. The on-the-fly analysis is an updated version of the analysis described in,1 were each frame is 
parsed using MDAnalysis20, 21 and can be analysis for a number of properties, including assignment of 
lipids to leaflet, degerming protein state and calculating protein-lipid RDFs. The analysis methods were 
updated to support different types of proteins, including RAS-RBDCRD. 



S2 Supplementary Figures



Fig. S4  Converting continuum macro model patch lipid densities to individual lipids for CG simulation build. The lipid described 
are converted as described in section S1.3 above. Here we show a comparison of the macro lipids densities to a CG lipid 
instantiation and averaging of 10, 100, or 1000 instantiations. A) Shows a patch with two RAS-RBDCRD and one RAS-only and 
(B) a patch with one RAS-only and one RAS-RBDCRD, all lipid types (eight inner and six outer leaflet) are shown for both. Note 
continuum macro model densities are in lipids per m2 while the CG setup are counts and averaged counts per cell.



Fig. S5  The effect of the on-the-fly feedback on protein-lipid radial distribution functions (RDFs) is shown by comparing the 
initial (colored) and final (black) RDFs. The shaded region highlights the difference achieved through the feedback. Same data as 
shown in main text Fig. 6 except here shown for all lipids and all conditions. 



Fig. S6  RAS helix 5 length distribution in AA simulations before (helix 5 ends at 172) and after (helix 5 ends at 171) HVR 
feedback. The last parts of the AA simulations (>40 ns) were analyzed to examine the length of RAS helix 5. Before HVR Feedback 
on average helix 5 ends at 169.8 (CG HVR Position: 172) with an average shift of 2.2 residues. After HVR Feedback on average 
helix 5 ends at 169.1 (CG HVR Position: 171) average shift of 1.9 residues. 



S3 Supplementary Tables

RAS proteins

0 1 2 3 4 5
0 3598 3660 4507 1185 213 0
1 7204 3398 3368 56 10 5
2 1476 671 208 56 20 0
3 796 808 235 56 0 0
4 709 651 148 0 0 0
5 662 354 3 0 0 0

R
A

S-R
B

D
C

R
D

 
com

plexes

6 459 2 1 0 0 0

Table S1: Distribution of CG systems by composition. The values along the left-most column are the number of RAS-RBDCRD 
complexes and the top-most row describing the number of RAS proteins.
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