

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The burden of multimorbidity across generations in Japan 2014-2019 - a historical cohort study using nationwide medical claims data

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063216
Article Type:	Original research
Date Submitted by the Author:	28-Mar-2022
Complete List of Authors:	Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences
Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		
4	1	Title
5	1	Title
6		
7 8	2	The burden of multimorbidity across generations in Japan 2014-2019 - a historical
9		
10	3	cohort study using nationwide medical claims data
11	5	conort study using hattorivide medical claims data
12		
13 14	4	
15		
16	5	Authors
17	0	
18 19		
20	6	Yoshiyuki Saito ^{1,2*} PharmD, Ataru Igarashi ^{1,3} PhD, Takeo Nakayama ² MD PhD, Shingo
21		
22	7	Fukuma ⁴ MD
23 24		
24 25	0	
26	8	
27		
28	9	Author Affiliations
29 30		
31	10	¹ Department of Health Economics & Outcomes Research, Graduate School of
32	10	Department of fleatur Economics & Outcomes Research, Oraduate Ochoor of
33 34		
35	11	Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
36		
37	12	113-0033, Japan
38		
39 40	10	² Developed a fille alle la ferre alle a Debe al a fin blie ble alle Debe al a fi
41	13	² Department of Health Informatics, School of Public Health, Graduate School of
42		
43	14	Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
44 45		
46	15	³ Unit of Public Health and Preventive Medicine, Yokohama City University School of
47	15	"Onit of Public Health and Preventive Medicine, Tokonama City Oniversity School of
48		
49 50	16	Medicine, Kanagawa 236-0027, Japan
50		
52	17	⁴ School of Human Health Sciences, Graduate School of Medicine, Kyoto University,
53	1/	
54 55		
56	18	Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

19	
20	Running head
21	The burden of multimorbidity in Japan 2014-2019
22	
23	*Corresponding author
24	Yoshiyuki Saito, PharmD
25	Department of Health Economics & Outcomes Research, Graduate School of
26	Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
27	113-0033, Japan
28	E-mail: saito.yoshiyuki.86x@kyoto-u.jp
29	Tel: +81-3-5841-4828
30	
31	Word count: 3121 (incl. abstract)
32	Tables: 1
33	Figures: 3
34	Supplementary Tables: 4
35	
36	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4 5	37	Abstract
6 7 8	38	Objective
9 10 11	39	To describe the prevalence of multimorbidity and its associations with clinical outcomes
12 13 14	40	across age groups.
15 16 17	41	Design
18 19 20	42	Historical cohort study using nationwide medical claims data.
21 22 23	43	Setting
24 25 26	44	Carried out in Japan between April 2014 and March 2019.
27 28 29	45	Participants
30 31 32	46	N = 246 671 Japanese individuals aged 20-74 enrolled in the Health Insurance
33 34 35	47	Association for Architecture and Civil Engineering companies (HIA ² CE) were included
36 37 38	48	into the baseline data set for fiscal year (FY) 2014. Of those, N = 181 959 individuals
39 40 41	49	were included into the cohort data set spanning FY2014-FY2018.
42 43 44	50	Exposures
45 46 47	51	Multimorbidity was defined as having ≥2 of 15 chronic conditions according to the ICD-
48 49 50	52	10 codes of the Charlson Comorbidity Index.
51 52 53	53	Primary and Secondary Outcomes
54 55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4 5 6	54	Primary outcome: The standardised prevalence of multimorbidity across age groups
7 8 9	55	was evaluated using data from FY 2014 and extrapolated to the Japanese total
10 11 12	56	population. Secondary Outcome: Hospitalisation and death events were traced by
12 13 14 15	57	month using medical claims data and insurer enrolment data. Associations between
16 17	58	multimorbidity and 5-year hospitalisation and/or death events across age groups were
18 19 20	59	analysed using a Cox regression model.
21 22 23	60	Results
24 25 26 27	61	The standardised prevalence of multimorbidity was approximately 5% (ages 20-29),
27 28 29 30	62	10% (30-39), 20% (40-49), 30% (50-59), 50% (60-69), and 60% (70-74). Compared to
30 31 32 33	63	individuals aged 20-39 without multimorbidity, those with multimorbidity had a higher
34 35 36	64	incidence of clinical events in any age group (HR = 2.43 [95% CI, 2.30-2.56] in ages 20-
37 38 39	65	39, HR = 2.55 [95% CI, 2.47-2.63] in ages 40-59, and HR = 3.41 [95% CI, 3.23-3.53] in
40 41 42	66	ages \geq 60). The difference in the incidence of clinical events between multimorbidity and
43 44 45	67	no-multimorbidity was larger than that between age groups.
46 47 48	68	Conclusions
49 50 51	69	Multimorbidity is already prevalent in the middle-aged generation and is associated with
52 53 54	70	poor clinical outcomes. These findings underscore the significance of multimorbidity and
55 56 57	71	highlight the urgent need for preventive intervention at the public health care level.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6 7 8 9 10 11 12 13 14	72	
15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32		
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 		
50 51 52 53 54 55 56 57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	73	Article Summary
6 7 8	74	
9 10 11	75	Strengths and limitations of this study
12 13 14	76	• The current study covers a wide age range of individuals from a nationwide
15 16 17	77	general population.
18 19 20	78	 Japan's high medical insurance coverage rate made it possible to
21 22 23	79	comprehensively identify chronic diseases from receipts.
24 25 26	80	 Longitudinal analysis enabled the examination of clinical outcomes of multiple
27 28 29	81	co-morbidities.
30 31 32	82	The prevalence of multimorbidity may be underestimated because the target
33 34 35	83	population comprised regular employees and their families and might
36 37 38	84	accordingly be healthier than the general population.
39 40 41	85	
42 43 44	86	Keywords
45 46 47	87	chronic disease, insurance claims, middle age, multimorbidity, preventive medicine
48 49 50	88	
51 52 53		
54 55 56		
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

6 7 8	90	Aging societies worldwide face the problem of how to provide adequate and
9 10 11	91	affordable health care for a growing number of patients with multiple chronic conditions,
12 13 14	92	termed multimorbidity. ^{1,2} Managing multimorbidity is becoming a global challenge on the
15 16 17	93	clinical and public healthcare level not only in high-, but also in low- and middle-income
18 19 20	94	countries. ³ Many epidemiological studies on multimorbidity have shown its association
21 22 23	95	with age, socio-demographic and socio-economic factors.4-7 In addition, numerous
24 25 26	96	studies have shown that multiple comorbidities are common in older people.8-11 It has
27 28 29	97	been reported that multimorbid older patients had more than twice as many contacts per
30 31 32	98	year with physicians than those without multimorbidity ¹² and that the likelihood of being
33 34 35	99	hospitalised was increased by a factor of 5.6 due to multiple co-morbidities. ⁸ On the
36 37 38	100	other hand, the accumulation of chronic diseases occurs continuously from middle age.
39 40 41	101	A number of recent studies conducted in various countries have reported that the onset
42 43 44	102	of multimorbidity is shifting towards younger age groups. ^{6, 13-15} However, multimorbidity
45 46 47	103	studies tend to focus on older people, and in-depth knowledge on multimorbidity in
48 49 50	104	younger age groups is lacking.
50 51 52 53	105	Here, to evaluate the current status of multimorbidity across age groups and examine
53 54 55 56 57	106	its association with clinical outcomes, we analysed a large nationwide medical claims
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4 5	107	cohort. Our findings add to existing knowledge by showing that multimorbidity has a
6 7 8	108	significant impact on health starting from middle age and underscore the need for
9 10 11	109	preventive intervention on the public health care level.
12 13	110	
14 15		
16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

111 Materials and Methods

Data source

0 1 2	113	We used the nationwide medical claims and enrolment data of the Health Insurance
2 3 4 5	114	Association for Architecture and Civil Engineering companies (HIA ² CE), which is one of
6 7	115	the largest social insurance associations in Japan. HIA ² CE is a comprehensive insurer
8 9 0	116	which includes 1700 companies, from small engineering companies to middle and large
1 2 3	117	construction companies across Japan. This claims database covers a total of 400 000
4 5 6	118	insured persons, consisting of employees and their dependents.
7 8 9	119	Japan has maintained a universal health coverage system since 1961. All medical
0 1 2	120	information regarding clinical practice covered by this health insurance is included in the
3 4 5	121	medical claims data, except for self-financed medical care and individuals who receive
6 7 8	122	public assistance. Furthermore, medical facilities have been obliged since 2011 to
9 0 1	123	submit medical claims data as an electronic record. Medical claims data include the
2 3 4	124	names of the diagnosed diseases, the names of medical procedures, and the names of
5 6 7	125	prescribed medications, among others. In the present study, we extracted the age, sex,
, 8 9 0	126	names and ICD-10 codes of diagnosed diseases, and hospitalisations and deaths from
0 1 2 2	127	the medical claims data in HIA ² CE from FY2014 to FY2018 (April 2014 to March 2019).
3 4 5		
5 6 7		

BMJ Open

-1	2
	11
	v

3		
4 5 6	128	The enrolment data from HIA ² CE includes the medical characteristics of insured
6 7 8 9	129	persons as of April 2019.
10 11 12	130	
13 14 15	131	Research design and study population
16 17 18	132	We prepared two data sets for analysis. The first data set contained baseline data of
19 20 21	133	FY2014, which we used to describe the diagnosed disease prevalence in FY2014. The
22 23 24	134	study population for this baseline data set included individuals aged 20 to 74 years
25 26 27	135	insured in FY2014 (April 2014 to March 2015). Participants younger than 20 and older
28 29	136	than 75 years in FY2014 as well as participants who died during FY2014 were excluded
30 31 32	137	(Fig.1). The cohort data set contained longitudinal data for a 5-year period, FY2014 to
33 34 35	138	FY2018 (April 2014 to March 2019). We used this cohort data set to conduct Cox
36 37 38 39	139	regression analysis and calculate hazard ratios (HR)s for clinical events (Fig. 1).
40 41 42	140	
43 44 45	141	Definition of diagnosed diseases and multimorbidity
46 47 48	142	The Charlson Comorbidity Index (CCI) is a validated tool which has been widely used
49 50 51	143	to assess patient comorbidities. ¹⁶ The CCI Canadian version has been reported to be
52 53 54	144	applicable to Japanese claims data. ¹⁷ We therefore defined diagnosed diseases using
55 56 57 58	145	medical claims data following ICD-10 codes of the CCI Canada version. We merged the
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 46

BMJ Open

1 2	
3 4 5	14
6 7 8	14
9 10 11	14
12 13 14	14
15 16 17	15
18 19 20	15
21 22 23	15
24 25 26	15
27 28 29	154
30 31 32	15
33 34 35	15
36 37 38	15
39 40 41	15
42 43 44	15
45 46 47	16
48 49 50	16
51 52 53	16
54 55 56	16
57 58 59	
60	

	146	conditions "diabetes with chronic complication" and "diabetes without chronic
	147	complication" into "diabetes mellitus", and "mild liver disease" and "moderate or severe
)	148	liver disease" into "liver disease". The following 15 chronic conditions were included:
2 3 1	149	AIDS/HIV, any malignancy (including lymphoma and leukaemia), cerebrovascular
5 7	150	disease, chronic pulmonary disease, congestive heart failure, dementia, diabetes
3	151	mellitus, hemiplegia or paraplegia, metastatic solid tumour, liver disease, myocardial
2 2 3	152	infarction, peptic ulcer disease, renal disease, and rheumatologic disease. The ICD-10
+ 5 5	153	codes of these diseases are shown in eTable 1 in the Supplement. Multimorbidity status
7 3 9	154	was defined as the concurrent presence of two or more (≥2) diagnosed diseases among
) <u>)</u>	155	these conditions. ^{18,19}
8 1 5	156	
5 7 8	157	Definition of outcome events; hospitalisation and death
) 	158	We defined two composite outcomes, hospitalisation and death, which occurred
2 3 1	159	during the period from FY2015 to FY2018. Using the medical claims data, both events
5	160	were traced by month. In Japan, the validity of death event information is reported to be
3))	161	less sensitive if derived from medical claims data only. ^{20,21} Therefore, we also used
2 2 3	162	death information from enrolment data recorded by the insurer: if either contained death
+ 5 5	163	information, this was defined as a death event.
/ 3 9		
·		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		12
3 4 5	164	
6 7 8	165	Estimation of diagnosed disease prevalence to nationwide scale
9 10 11	166	Diagnosed disease prevalence from baseline data was standardised to the
12 13 14	167	nationwide Japanese total population. We calculated diagnosed disease prevalence
15 16 17	168	according to 5-year age brackets and gender and applied it to the same age and gender
18 19 20	169	groups of the vital statistics 2014 in Japan. ²²
21 22 23	170	
24 25 26	171	Effect of multimorbidity by age group
27 28 29	172	To examine the effect of multimorbidity by age group, we performed Cox regression
30 31 32	173	analysis using cohort data from four consecutive years (FY2015 to FY2018). To
33 34 35	174	examine the independent and additive effect of multimorbidity and aging, we defined
36 37 38	175	combined categories according to three age groups representing "young", "middle", and
39 40 41 42	176	"old" ages (20-39, 40-59, and \geq 60, respectively) and the binary status of multimorbidity,
42 43 44 45	177	with the reference set as no multimorbidity individuals aged 20-39.
43 46 47 48	178	
40 49 50 51	179	Statistical analysis
52 53	180	Effects of multimorbidity by age groups were analysed using Cox regression as
54 55 56 57 58	181	described under the heading "Effect of multimorbidity by age group". Results were
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		13
3 4 5	182	considered statistically significant at a two-sided <i>P</i> -value of less than 0.05. All analyses
6 7 8	183	were conducted using Stata software version 15.1 (StataCorp LLC; College Station, TX,
9 10 11 12	184	USA).
12 13 14 15	185	
16 17 18	186	Patient and Public involvement
19 20 21	187	Patients or the public were not involved in this research. However, the results of this
22 23 24	188	study will be disseminated to the public through various means including published
24 25 26 27	189	papers and presentations.
28 29 30	190	
31 32 33		
34 35 36		
37 38 39		
40 41 42		
43 44 45		
46 47 48		
49 50 51		
52 53 54		
55 56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	4
	-

1 2		14
3 4 5	191	Results
6 7 8	192	Study participants
9 10 11	193	We analysed $n = 246\ 671$ individuals in the baseline data set in FY2014 and $n = 181$
12 13 14 15	194	959 individuals in the cohort data set FY2014-FY2018. Because follow-up was four
16 17 18	195	years, the cohort data set was slightly smaller than the baseline data set, especially as
19 20 21	196	a number of young individuals aged 20-24 and older individuals aged >60 dropped out.
22 23 24	197	This may be due to raising children or early retirement, and explains the higher
24 25 26 27	198	proportion of men in the cohort data set. Mean age and co-morbidity numbers among
27 28 29 30	199	CCI diseases were mostly comparable between the two data sets, although the
31 32 33	200	prevalence differed for diabetes mellitus, cerebrovascular disease, and chronic
34 35 36	201	pulmonary disease (eTable 2 in the Supplement). In the cohort data set, differences in
37 38 39	202	disease prevalence between genders were observed. Notably, men had a higher
40 41 42	203	prevalence of diabetes mellitus ($P = 0.001$) whereas women had a higher prevalence of
43 44 45	204	chronic pulmonary disease ($P = 0.002$).
46 47 48	205	
49 50 51	206	Estimated prevalence of multimorbidity in the Japanese total population
52 53 54	207	The prevalence of diagnosed diseases in FY2014 was applied to the vital statistics of
54 55 56 57	208	the Japanese population in 2014. The standardised prevalence of multimorbidity was
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 46

209	estimated to 26.1% (26.1% in men, 26.0% in women) in the Japanese total population
210	(Table 1). The prevalence of multimorbidity increased with age, i.e., 25-24 (3.9%), 25-29
211	(7.7%), 30-34 (9.7%), 35-39 (12.5%), 40-44 (14.6%), 45-49 (19.0%), 50-54 (25.9%), 55-
212	59 (33.2%), 60-64 (40.7%), 65-69 (49.9%), and 70-74 (60.1%) (Fig. 2A). Figure 2B
213	shows the types of disease and their prevalence across age groups. The top five
214	diseases across the age groups "young" (20-39), "middle-age (40-59), and "old" (60-74)
215	in order of prevalence were "young": chronic pulmonary disease, peptic ulcer disease,
216	liver disease, diabetes mellitus, and any malignancy; "middle-age": chronic pulmonary
217	disease, diabetes mellitus, liver disease, peptic ulcer disease, and any malignancy; and
218	"old": diabetes mellitus, chronic pulmonary disease, liver disease, peptic ulcer disease,
210	old . diabetes menitus, chronic pumonary disease, inter disease, peptic dicer disease,
219	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age
219	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age
219 220	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age groups from ranking fourth to first. Details of the prevalence of specific diseases are
219220221	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age groups from ranking fourth to first. Details of the prevalence of specific diseases are shown in eTable 3 in the Supplement. In Figure 2C, disease prevalence is shown in
219220221222	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age groups from ranking fourth to first. Details of the prevalence of specific diseases are shown in eTable 3 in the Supplement. In Figure 2C, disease prevalence is shown in comparison to disease prevalence in the 40-44 age group. After the age of 40-44, the
 219 220 221 222 223 	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age groups from ranking fourth to first. Details of the prevalence of specific diseases are shown in eTable 3 in the Supplement. In Figure 2C, disease prevalence is shown in comparison to disease prevalence in the 40-44 age group. After the age of 40-44, the top five accelerating diseases were dementia, cerebrovascular disease, peripheral
 219 220 221 222 223 224 	and cerebrovascular disease. Notably, diabetes mellitus moved up across the age groups from ranking fourth to first. Details of the prevalence of specific diseases are shown in eTable 3 in the Supplement. In Figure 2C, disease prevalence is shown in comparison to disease prevalence in the 40-44 age group. After the age of 40-44, the top five accelerating diseases were dementia, cerebrovascular disease, peripheral

BMJ Open

2**6** 6 **Baseline data in FY2014** Japanese total population 7 Women Overall Men Women Overall Men 8 N=246,671 % N=144.237 % N=102.434 % N=88.923.000 % N=44.288.000 % N=44.640.000 % 9 Men 144,237 58.5 44,288,000 49.8 10 12.9 12.9 12.8 15.3 15.4 Age (Mean, SD) 45.0 44.6 45.7 15.3 47.7 48.4 48.0 11 20-24 7.5 18,524 11.315 7.8 7,209 7.0 6,203,000 7.0 3,192,000 7.2 3,012,000 6.7 12 25-29 17,251 7.0 7.7 7.3 12,014 8.3 5,237 5.1 6,677,000 7.5 3,414,000 3,264,000 13 6,989 30-34 18,093 7.3 11,104 7.7 6.8 7,466,000 8.4 3,788,000 8.6 3,680,000 8.2 14 35-39 23,878 9.7 13,278 9.2 10,600 0.3 8,670,000 9.8 4,394,000 9.9 4,276,000 9.6 15 40-44 39,721 16.1 21,640 15.0 18,081 17.7 9,793,000 11.0 4,956,000 11.2 4,837,000 10.8 16 45-49 40,908 16.6 24,191 16.8 16,717 16.3 8,609,000 9.7 4,329,000 9.8 4,278,000 9.6 17 50-54 29.466 11.9 17,577 12.2 11,889 11.6 7,790,000 8.8 3,903,000 8.8 3,887,000 8.7 18 8.2 55-59 20,149 11,343 7.9 8,806 8.6 7,653,000 8.6 3,802,000 8.6 3,853,000 8.6 19 60-64 21,278 8.6 12,706 8.8 8,572 8.4 8,979,000 0.1 4,406,000 9.9 4,573,000 10.2 20 4.8 10.6 65-69 11,931 6,768 4.7 5.0 10.3 4,414,000 10.0 4,741,000 5.163 9,155,000 21 70-74 5,472 2.2 2,301 1.6 3,171 3.1 7,928,000 8.9 3,690,000 8.3 4,239,000 9.5 22 AIDS/HIV 96 0.0 62 0.0 34 0.0 34,034 0.0 18,979 0.0 15.055 0.0 23 4.9 5.611 3.9 6,436 6.3 Any malignancy^a 12.047 5,775,260 6.5 2,668,349 6.0 3,106,911 7.0 24 Cerebrovascular disease 10,866 4.4 6,510 4.5 4.356 4.3 5,773,295 6.5 3.023.765 6.8 2,749,530 6.2 25 21.5 Chronic pulmonary disease 43,216 17.5 22,484 15.6 20,732 20.2 17,303,735 19.5 7,713,864 17.4 9,589,871 26 Congestive heart failure 8,497 3.4 5,515 3.8 2,982 2.9 4,317,076 4.9 2,459,170 5.6 1,857,906 4.2 27 Dementia 0.5 447 0.2 210 0.1 237 0.2 0.5 179,350 0.4 230,976 410.326 28 5,566,801 **Diabetes mellitus** 27,344 11.1 17,881 12.4 9,463 9.2 12,689,040 14.3 7,122,240 16.1 12.5 29 813 0.3 533 0.4 280 0.3 424,609 0.5 253,040 0.6 171.569 0.4 Hemiplegia or paraplegia 30 Liver disease 27,127 11.0 16,954 11.8 10,173 9.9 11,341,444 2.8 6.031.029 13.6 5,310,415 11.9 31 2,532 Metastatic solid tumor 1.0 1,263 0.9 1,269 1.2 1,235,336 1.4 598,734 1.4 636,601 1.4 32 Myocardial infarction 1.628 0.7 1,325 0.9 303 0.3 769,977 0.9 575,894 1.3 194.083 0.4 33 Peptic ulcer disease 26,047 10.6 14,511 10.1 11,536 11.3 11,238,524 12.6 5,485,994 12.4 5,752,530 12.9 34 Peripheral vascular disease 10,407 4.2 5,723 4.0 4,684 4.6 5,197,644 5.8 2,503,359 5.7 2,694,285 6.0 35 1,261,138 Renal disease 2,573 1.0 1,751 1.2 822 0.8 1.4 784,770 1.8 476,367 1.1 36 Rheumatologic disease 4,146 1.7 1,397 1.0 2.749 2.7 1,928,685 2.2 530,072 1.2 1,398,613 3.1 37 71,880 29.1 ≥1 disease among top 5 40,833 28.3 31,047 30.3 30,041,150 33.8 14,676,045 33.1 15,365,106 34.4 38 Co-morbidity no. among CCI diseases 39 no disease 171,140 69.4 101.857 70.6 69.283 67.6 57,293,691 64.4 29,006,814 65.5 28,286,877 63.4 40 1 disease 22,947 9.3 12,032 8.3 10,915 10.7 8,464,436 9.5 3,702,220 8.4 4,762,216 10.7 41 2 diseases 17,120 6.9 8,994 6.2 8,126 7.9 6,799,080 7.6 3.029.535 6.8 3,769,544 8.4 42 12,822 5.2 7,273 5.0 5,549 5.4 5,534,827 6.2 2,652,231 6.0 2,882,596 6.5 3 diseases 43 3.9 4 diseases 9,588 5,874 4.1 3,714 3.6 4,261,753 4.8 2,242,062 5.1 2,019,691 4.5 44 13,054 ESt Beer review 2010 - http://bmionen8401i cont/Site/aboft5114624ibes xhttpl 8.3 6.5 \geq 5 diseases 3,655,138 2,919,075 45

Table 1. Prevalence of diagnosed diseases in FY2014 applied to the Japanese total population

Values are numbers (%) unless otherwise stated. ^a Any malignancy includes leukemia and lymphoma. FY; fiscal year SD; standard deviation CCI; Charlson Comorbidity Index

For beer review only

1 2		18
3 4 5	229	Effect of multimorbidity by age group
6 7 8	230	Cox regression analysis showed that young individuals aged 20-39 with
9 10 11 12	231	multimorbidity had a higher hazard ratio (HR) compared to the same age group without
12 13 14 15	232	multimorbidity (HR = 2.43 [95% CI, 2.30-2.56]). Further, HRs increased across age
16 17 18	233	groups (HR = 2.55 [95% CI, 2.47-2.63] ages 40-59; HR = 3.41 [95% CI, 3.23-3.53] ages
19 20 21	234	\geq 60) (Fig. 3). The impact of multimorbidity on outcome exceeded that of aging (HR =
22 23 24	235	1.62 [95% CI, 1.56-1.69] ages ≥60 and HR = 1.10 [95% CI, 1.07-1.13] ages 40-59
25 26 27	236	without multimorbidity) (Fig. 3). We also assessed HRs for non-multimorbid and
28 29 30	237	multimorbid women and men separately and found that women had a lower HR than
31 32 33	238	men in the 20-39 age group but a higher HR than men in the ≥60 age group (eTable 4
34 35 36	239	in the Supplement).
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

241 Discussion

5		
6 7 8 9	242	In this study we analysed nationwide medical claims data for 15 chronic diseases in a
10 11	243	large cohort of the general population of Japan. As key findings, standardised
12 13 14	244	prevalence rates for multimorbidity were estimated to 26.1% for men and 26.0% for
15 16 17	245	women. Further, age group-specific prevalence rates for multimorbidity ranged from
18 19 20	246	3.9% (20-24 years) to 14.6% (40-44 years) and 60.1% (70-74 years), showing an
21 22 23	247	accelerating increase after age 40. Importantly, significant differences in the clinical
24 25 26	248	outcomes of multimorbidity versus no multimorbidity were already present in young and
27 28 29	249	middle-aged individuals.
30 31 32	250	The present study drew individuals covering a wide age range from a nationwide
33 34 35	251	general population. This allowed us to examine the burden of multiple co-morbidities in
36 37 38	252	young, middle-aged and old age groups in the real world. In addition, because Japan
39 40 41	253	has a high medical insurance coverage rate, it was possible to comprehensively identify
42 43 44	254	chronic diseases from receipts. Further, longitudinal analysis enabled us to examine the
45 46 47	255	clinical outcomes of multiple co-morbidities. With regard to limitations, the target
48 49 50	256	population comprised regular employees and their families and might accordingly be
51 52	257	healthier than the general population. Also, we did not consider the presence of mental
53 54 55 56	258	or psychosomatic disorders, which have been shown to be increasing, particularly in
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 46

BMJ Open

1 2		20
3 4 5 6 7 8 9 10 11 12	259	individuals already suffering from other chronic diseases, ^{23,24} younger people, ²⁵ and
	260	people with a low socio-economic status. ²⁶ Such diseases often remain undiagnosed or
	261	underreported in health records. ²⁷ These limitations likely contributed to an
13 14	262	underestimation of multimorbidity in our cohort. Further, because we did not manually
15 16 17	263	verify the presence of disease using the physician's medical records data or medication
18 19 20	264	information, disease names extracted from the medical claims data might be incorrect in
21 22 23	265	some cases. In particular, Japanese physicians sometimes change the name of the
24 25 26	266	disease in the medical record to the "correct" disease name for the medication they wish
27 28 29	267	to prescribe, a practice called "disease name for claims data".
30 31 32	268	Because of differences in data sources and study populations, direct comparison of
33 34 35	269	population-based prevalence rates between studies is not straightforward. Nonetheless,
36 37 38	270	the standardised prevalence rates for multimorbidity as reported in the present study -
39 40 41	271	26.1% for men and 26.0% for women - are similar to those reported by recent studies in
42 43 44	272	other high-income countries, such as the United States (25% in men, 25% in women), ²⁸
45 46 47 48	273	England (24.4% in men, 30% in women), ²⁶ Canada (24.3% whole population), ⁵ and
49 50	274	Denmark (19.3% in men, 23.7% in women). ⁶ Many previous studies on multimorbidity
51 52 53 54	275	focused on the older generation, aged 65 and up, because of the larger number of
55 56 57	276	chronic diseases in this age group and the increasing number of people entering it.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		21
3 4 5	277	However, our present data show that already approximately 10% of 30-34-, 19% of 45-
6 7 8	278	49-, and 33% of 55-59-year-olds have ≥2 chronic diseases. Further, 1% of 30-34-, 4%
9 10 11	279	of 45-49-, and 9% of 55-59-year-olds have ≥5 chronic diseases. These results show
12 13 14	280	that multimorbidity is already prominent in the middle-aged population. Recent studies
15 16 17	281	reported similar or slightly higher prevalence rates for ≥2 chronic diseases in an
18 19 20	282	American (8% of 30-, 20% of 45-, and 38% of 55-year-olds) ²⁵ and a Canadian (10.5% of
21 22 23	283	18-44-, 27.4% of 45-54-, and 46.6% of 55-64-year-olds) ⁵ population, although these two
24 25 26	284	studies also included mental diseases and osteoporosis, which our present study did
27 28 29	285	not. Our present study shows that, among 15 chronic diseases, the top five diseases in
30 31 32	286	the 55-64 age group are chronic pulmonary disease (20.4-23.1%), diabetes mellitus
33 34 35	287	(19.3-24.5%), liver disease (17.2-19.9%), peptic ulcer disease (15.6-18.2%), and any
36 37 38	288	malignancy (8.2-10.7%). With regard to diabetes mellitus, prevalence in the present
39 40 41	289	study is similar to that previously reported in an American population (15-30% in
42 43 44	290	individuals aged 55-65) ²⁵ but higher than that in a Canadian population (16.6% in
45 46 47	291	individuals aged 55-64) ⁴ . The prevalence of chronic pulmonary disease in our present
48 49 50	292	55-65-year-olds was almost twice as high as those seen for the combined prevalence of
51 52 53	293	asthma and chronic obstructive pulmonary disease (COPD) in an American population
54 55 56	294	aged 55-65 years (5% for men and 10% for women) ²⁵ and in a Canadian population
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		22
3 4 5	295	aged 55-64 years (13.7%). ⁵ This difference might have arisen due to our inclusion of
$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\end{array}$	296	various other pulmonary diseases besides asthma and COPD. Regarding liver disease,
	297	the prevalence seen for 55-65-year-olds in the present study was comparable to that
	298	seen in an adult population in Northern Italy ²⁹ and in an adult population in Korea, ³⁰
	299	although this comparison requires care since the types of liver disease in these studies
	300	and the age groups included vary.
	301	Analysis of clinical outcomes using Cox regression revealed that the presence of
	302	multimorbidity increased HRs in all age groups, including young individuals. In addition,
	303	comparison of the increased HRs resulting from multimorbidity versus no multimorbidity
	304	showed that the impact of multimorbidity exceeds that of increasing age. These results
	305	indicate that multimorbidity places a burden on all age groups.
	306	Most of the five most prevalent diseases (diabetes mellitus, chronic pulmonary
	307	disease, liver disease, peptic ulcer disease, and any malignancy) in the present study
42 43 44 45	308	are lifestyle-related diseases that develop slowly over time. This trend should be
46 47	309	greeted with alarm. We trust that this study raises awareness of the potential health
48 49 50	310	risks and burden associated with the early onset of multimorbidity in young and middle-
51 52 53	311	age, the period when one is busy working and raising children. Future studies should
54 55 56	312	investigate the specific lifestyle factors associated with an elevated risk of multimorbidity
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		23
3 4 5	313	in the Japanese working population. Ultimately, public health care policies should be
6 7 8	314	aimed at efforts to reverse the trend toward early multimorbidity onset.
9 10 11 12 13	315	In conclusion, the present study revealed that the impact of multimorbidity is already
13 14	316	prominent in middle-aged Japanese, with elevated adverse events such as
15 16 17	317	hospitalisation and death. In addition, the risk posed by multimorbidity exceeds that of
18 19 20	318	aging in all age groups. These results underscore the need to undertake healthcare
21 22 23	319	intervention against the onset of multimorbidity before middle-age, and not to leave it as
24 25 26	320	a problem for geriatricians.
27 28 29	321	
30 31 32 33 34 35 36 37 38 39 40 41	322	Ethical Approval
	323	The present study was approved by the Institutional Review Board (IRB) of Kyoto
	324	University (approval number: R0817). All data were anonymised before analysis and
	325	none of the researchers had access to patient-identifiable information. The IRB waived
42 43 44 45	326	informed consent for this observational study.
46 47 48	327	
49 50 51	328	Data Availability Statement
52 53 54	329	All data are incorporated into the article and its online supplementary material.
54 55 56 57 58	330	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

0	Λ
Z	4

1 2		24
3 4 5	331	Author Contributions
6 7 8	332	Concept and design: YS, SF. Acquisition, analysis, or interpretation of data: all authors.
9 10 11	333	Drafting of the manuscript: YS, SF. Critical revision of the manuscript for important
12 13 14	334	intellectual content: all authors. Statistical analysis: YS, SF. Obtained funding: YS.
15 16 17	335	Administrative, technical, or material support: YS, SF. Study supervision: SF, TN.
18 19 20	336	YS had full access to all the data in the study and takes responsibility for the integrity of
21 22 23	337	the data and the accuracy of the data analysis. All authors gave final approval and
24 25 26	338	agreed to be accountable for all aspects of work.
27 28 29	339	
30 31 32 33 34 35 36	340	Acknowledgements
	341	The authors are grateful to HIA ² CE for providing data for the present study.
37 38	342	
39 40 41	343	Funding
42 43 44	344	This work was supported by Grants-in-Aid from the Japan Society for the Promotion of
45 46 47	345	Science (JSPS) KAKENHI Grant Number 19K19458 (YS). The sponsor had no role in
48 49 50	346	the design of the study; in the collection, analysis and interpretation of data; in the
51 52 53	347	writing of the report; or in the decision to submit the article for publication.
54 55 56	348	
57 58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4 5	349	Competing Interests
6 7 8	350	None declared.
9 10 11	351	
12 13 14	352	Patient Consent for Publication
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 43\\ 44\\ 56\\ 57\\ 58\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	353	Not applicable. Output: Output: Output: Output: Output: <
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			26
2 3 4 5			
6 7	355	Re	ferences
8 9 10	356		
11 12	357	1	Bleich SN, Sherrod C, Chiang A, et al. Systematic Review of Programs Treating
13 14 15 16	358		High-Need and High-Cost People With Multiple Chronic Diseases or Disabilities
	359		in the United States, 2008-2014. Prev Chronic Dis. Nov 12 2015;12:E197.
18 19	360		doi:10.5888/pcd12.150275
20 21	361	2	Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative
22 23 24	362		review. Prev Med Rep. Dec 2018;12:284-293. doi:10.1016/j.pmedr.2018.10.008
25 26	363	3	Prathapan S, Fernando G, Matthias AT, Bentota Mallawa Arachchige Charuni Y,
27 28	364		Abeygunawardhana HMG, Somathilake B. The rising complexity and burden of
29 30 31 32 33 34 35 36	365		multimorbidity in a middle-income country. PLoS One. 2020;15(12):e0243614.
	366		doi:10.1371/journal.pone.0243614
	367	4	Low LL, Kwan YH, Ko MSM, et al. Epidemiologic Characteristics of Multimorbidity
37	368		and Sociodemographic Factors Associated With Multimorbidity in a Rapidly
38 39 40 41 42	369		Aging Asian Country. JAMA Netw Open. Nov 1 2019;2(11):e1915245.
	370		doi:10.1001/jamanetworkopen.2019.15245
43 44 45	371	5	Pefoyo AJ, Bronskill SE, Gruneir A, et al. The increasing burden and complexity of
45 46 47	372		multimorbidity. BMC Public Health. Apr 23 2015;15:415. doi:10.1186/s12889-
48 49	373		015-1733-2
50 51			
52 53 54			
55 56			
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			27
3 4	374	6	Schiotz ML, Stockmarr A, Host D, Glumer C, Frolich A. Social disparities in the
5 6	375		prevalence of multimorbidity - A register-based population study. BMC Public
7 8 9	376		<i>Health</i> . May 10 2017;17(1):422. doi:10.1186/s12889-017-4314-8
9 10 11	377	7	Sum G, Ishida M, Koh GC, Singh A, Oldenburg B, Lee JT. Implications of
12 13	378		multimorbidity on healthcare utilisation and work productivity by socioeconomic
14 15	379		groups: Cross-sectional analyses of Australia and Japan. PLoS One.
16 17 18	380		2020;15(4):e0232281. doi:10.1371/journal.pone.0232281
19 20	381	8	Bahler C, Huber CA, Brungger B, Reich O. Multimorbidity, health care utilization
21 22	382		and costs in an elderly community-dwelling population: a claims data based
23 24 25	383		observational study. BMC Health Serv Res. Jan 22 2015;15:23.
26 27	384		doi:10.1186/s12913-015-0698-2
28 29	385	9	Hu RH, Hsiao FY, Chen LJ, Huang PT, Hsu WW. Increasing age- and gender-
30 31 32	386		specific burden and complexity of multimorbidity in Taiwan, 2003-2013: a cross-
33 34	387		sectional study based on nationwide claims data. BMJ Open. Jun 9
35 36	388		2019;9(6):e028333. doi:10.1136/bmjopen-2018-028333
37 38	389	10	Lenzi J, Avaldi VM, Rucci P, Pieri G, Fantini MP. Burden of multimorbidity in
39 40 41	390		relation to age, gender and immigrant status: a cross-sectional study based on
42 43	391		administrative data. BMJ Open. Dec 21 2016;6(12):e012812.
44 45	392		doi:10.1136/bmjopen-2016-012812
46 47 48	393	11	Picco L, Achilla E, Abdin E, et al. Economic burden of multimorbidity among older
49 50	394		adults: impact on healthcare and societal costs. BMC Health Serv Res. May 10
51 52	395		2016;16:173. doi:10.1186/s12913-016-1421-7
53 54 55			
56 57			
58 59			

Page 29 of 46

BMJ Open

1 2			28
3 4	396	12	van den Bussche H, Schon G, Kolonko T, et al. Patterns of ambulatory medical
5 6 7 8 9 10 11 12 13	397		care utilization in elderly patients with special reference to chronic diseases and
	398		multimorbidityresults from a claims data based observational study in Germany.
	399		BMC Geriatr. Sep 13 2011;11:54. doi:10.1186/1471-2318-11-54
	400	13	Katikireddi SV, Skivington K, Leyland AH, Hunt K, Mercer SW. The contribution of
14 15 16	401		risk factors to socioeconomic inequalities in multimorbidity across the lifecourse:
17 18	402		a longitudinal analysis of the Twenty-07 cohort. BMC Med. Aug 24
19 20	403		2017;15(1):152. doi:10.1186/s12916-017-0913-6
21 22 23	404	14	Kone AP, Mondor L, Maxwell C, Kabir US, Rosella LC, Wodchis WP. Rising
23 24 25	405		burden of multimorbidity and related socio-demographic factors: a repeated
26 27	406		cross-sectional study of Ontarians. Can J Public Health. Apr 13
28 29	407		2021;doi:10.17269/s41997-021-00474-y
30 31 32	408	15	Singer L, Green M, Rowe F, Ben-Shlomo Y, Kulu H, Morrissey K. Trends in
33 34	409		multimorbidity, complex multimorbidity and multiple functional limitations in the
35 36	410		ageing population of England, 2002-2015. J Comorb. Jan-Dec
37 38 39	411		2019;9:2235042X19872030. doi:10.1177/2235042X19872030
40 41	412	16	Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
42 43	413		prognostic comorbidity in longitudinal studies: development and validation. J
44 45 46	414		Chronic Dis. 1987;40(5):373-83. doi:10.1016/0021-9681(87)90171-8
40 47 48	415	17	Quan H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity
49 50	416		index and score for risk adjustment in hospital discharge abstracts using data
51 52	417		from 6 countries. Am J Epidemiol. Mar 15 2011;173(6):676-82.
53 54 55	418		doi:10.1093/aje/kwq433
56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

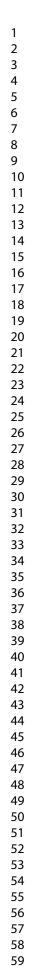
Page 30 of 46

BMJ Open

1

2			
3 4	419	18	Johnston MC, Crilly M, Black C, Prescott GJ, Mercer SW. Defining and measuring
5 6	420		multimorbidity: a systematic review of systematic reviews. Eur J Public Health.
7 8 9	421		Feb 1 2019;29(1):182-189. doi:10.1093/eurpub/cky098
) 10 11	422	19	Le Reste JY, Nabbe P, Manceau B, et al. The European General Practice
12 13	423		Research Network presents a comprehensive definition of multimorbidity in
14 15 16 17 18	424		family medicine and long term care, following a systematic review of relevant
	425		literature. J Am Med Dir Assoc. May 2013;14(5):319-25.
19 20	426		doi:10.1016/j.jamda.2013.01.001
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	427	20	Ooba N, Setoguchi S, Ando T, et al. Claims-based definition of death in Japanese
	428		claims database: validity and implications. <i>PLoS One</i> . 2013;8(5):e66116.
	429		doi:10.1371/journal.pone.0066116
	430	21	Sakai M, Ohtera S, Iwao T, et al. Validation of claims data to identify death among
	431		aged persons utilizing enrollment data from health insurance unions. Environ
	432		<i>Health Prev Med</i> . Nov 23 2019;24(1):63. doi:10.1186/s12199-019-0819-3
	433	22	Statistics Bureau of Japan. Preliminary count of the Japanese population.
	434		Accessed March, 2014. http://www.stat.go.jp/data/jinsui/index.html
	435	23	Aoki T, Yamamoto Y, Shimizu S, Fukuhara S. Physical multimorbidity patterns
	436		and depressive symptoms: a nationwide cross-sectional study in Japan. Fam
44 45	437		Med Community Health. 2020;8(1):e000234. doi:10.1136/fmch-2019-000234
46 47 48	438	24	Egede LE. Major depression in individuals with chronic medical disorders:
49 50	439		prevalence, correlates and association with health resource utilization, lost
51 52	440		productivity and functional disability. Gen Hosp Psychiatry. Sep-Oct
53 54 55	441		2007;29(5):409-16. doi:10.1016/j.genhosppsych.2007.06.002
56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31 of 46


BMJ Open

1 2			3
2 3 4	442	25	Rocca WA, Boyd CM, Grossardt BR, et al. Prevalence of multimorbidity in a
5 6 7	443		geographically defined American population: patterns by age, sex, and
7 8 9 10	444		race/ethnicity. <i>Mayo Clin Proc</i> . Oct 2014;89(10):1336-49.
10 11	445		doi:10.1016/j.mayocp.2014.07.010
12 13	446	26	Cassell A, Edwards D, Harshfield A, et al. The epidemiology of multimorbidity in
14 15 16	447		primary care: a retrospective cohort study. Br J Gen Pract. Apr
17 18 19 20 21 22 23	448		2018;68(669):e245-e251. doi:10.3399/bjgp18X695465
	449	27	Violan C, Foguet-Boreu Q, Hermosilla-Perez E, et al. Comparison of the
22	450		information provided by electronic health records data and a population health
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	451		survey to estimate prevalence of selected health conditions and multimorbidity.
	452		BMC Public Health. Mar 21 2013;13:251. doi:10.1186/1471-2458-13-251
	453	28	St Sauver JL, Boyd CM, Grossardt BR, et al. Risk of developing multimorbidity
	454		across all ages in an historical cohort study: differences by sex and ethnicity.
	455		BMJ Open. Feb 3 2015;5(2):e006413. doi:10.1136/bmjopen-2014-006413
	456	29	Bellentani S, Tiribelli C, Saccoccio G, et al. Prevalence of chronic liver disease in
	457		the general population of northern Italy: the Dionysos Study. Hepatology. Dec
	458		1994;20(6):1442-9. doi:10.1002/hep.1840200611
42 43	459	30	Park SH, Plank LD, Suk KT, et al. Trends in the prevalence of chronic liver
44 45 46	460		disease in the Korean adult population, 1998-2017. Clin Mol Hepatol. Apr
40 47 48	461		2020;26(2):209-215. doi:10.3350/cmh.2019.0065
49 50	462		
51 52			
53 54 55			
56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	1
ა	I

2		
3 4	463	Figure Legends
5 6	464	Figure 1. Participant selection flowchart. FY; fiscal year
7 8 9	465	
10 11	466	Figure 2. Multimorbidity across age groups in the Japanese total population aged 20-
12 13	467	74. A) Percentage of the population having 0 to ≥5 chronic diseases by age group. B)
14 15 16	468	Prevalence of the top ten chronic diseases by age group. ${f C}$) The top ten chronic
10 17 18	469	diseases with the steepest increase after age 40-44 years.
19 20	470	
21 22	471	Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity (≥2
23 24 25	472	diagnosed diseases) in three age groups in a 5-year cohort of $n = 181959$ Japanese
26 27	473	aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval
28 29	474	
30 31 32	475	
33 34	476	Supplementary Information
35 36	477	Supplementary eTable 1. List of diseases and their ICD-10 codes used to define
37 38 39	478	diseases in medical claims data
40 41	479	Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and
42 43	480	cohort data
44 45	481	Supplementary eTable 3. Diagnosed disease prevalence in fiscal year 2014 applied to
46 47 48	482	the Japanese total population by age group
49 50		Supplementary eTable 4. Hazard ratios in multimorbid individuals based on
51 52		hospitalisation and death rates in a 5-year cohort of $n = 111088$ men and
53 54 55		<i>n</i> = 70 871 women. Cox regression analysis
56 57		
58 59		For poor rovious only http://bmionon.hmi.com/site/shout/swidelines.uktral
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4				
3 4	483			
5 6 7 8 9				
7 8				
10				
11 12				
13 14				
15 16				
17				
18 19				
20 21				
22 23				
24 25				
26 27				
28 29				
30 31				
32 33				
34 35				
36 37				
38				
39 40				
41 42				
43 44				
45 46				
47 48				
49 50				
51 52				
53				
54 55				
56 57				
58 59				

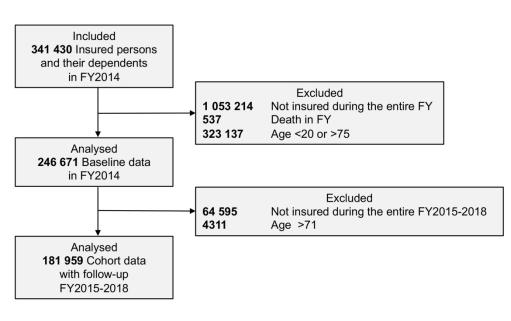
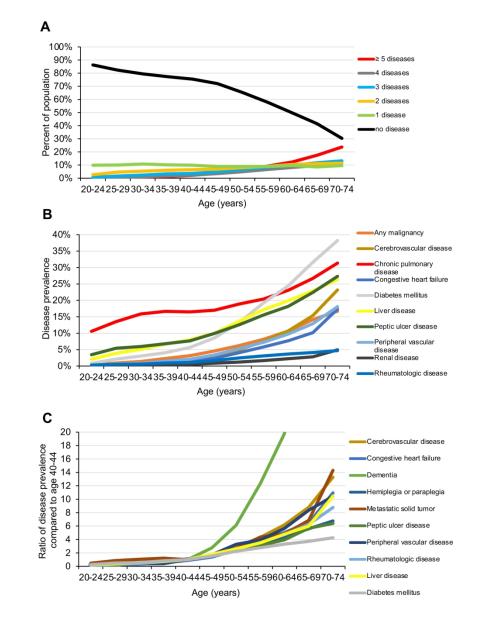
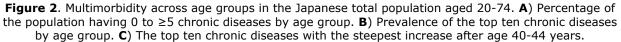
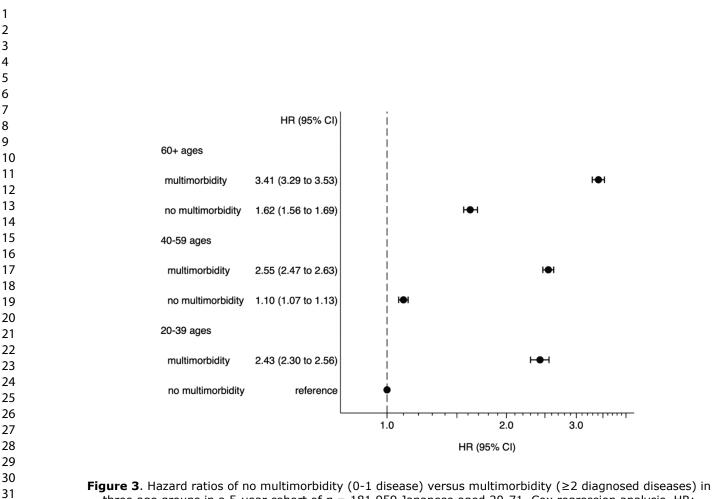





Figure 1. Participant selection flowchart. FY; fiscal year

161x230mm (300 x 300 DPI)

three age groups in a 5-year cohort of n = 181959 Japanese aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval

139x103mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Supplementary material

Title: The burden of multimorbidity across generations in Japan 2014-2019 - a historical cohort study using nationwide medical claims data

Authors: Yoshiyuki Saito PharmD, Ataru Igarashi PhD, Takeo Nakayama MD PhD, Shingo Fukuma MD

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and cohort data

Supplementary eTable 3. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation and death rates in a 5-year cohort of $n = 111\ 088$ men and $n = 70\ 871$ women. Cox regression analysis

Diseases	ICD-10 codes
AIDS/HIV	B20.x-B22.x, B24.x
Any malignancy, incl. leukemia and lymphoma	C00.x-C26.x, C30.x-C34.x, C37.x-C41x, C45.x-C58.x, C60.x-C76.x, C81.x-C85.x, C88.3, C88.7, C88.9, C90.0, C90.1, C91.x- C93.x, C94.0-C94.3, C94.5, C94.7, C95.x, C96.x, C43.x C88.0-C88.2, C90.2, C94.4, C97.x
Cerebrovascular disease	I69.x, G45.x, G46.x, H34.0, I60.x-I68.x
Chronic pulmonary disease	J41.x-J47.x, J60.x-J66.x, I27.8, I27.9, J40.x, J67.x, J68.4, J70.1, J70.3
Congestive heart failure	150.x, 109.9, 111.0, 113.0, 113.2, 125.5, 142.0, 142.5- 142.9, 143.x, P29.0
Dementia	F00.x-F02.x, F03.x, F05.1, G30.x, G31.1
Diabetes with chronic complication	E10.2-E10.4, E11.2-E11.4, E13.2-E13.4, E14.2-E14.4, E10.5, E10.7, E11.5, E11.7, E12.2-E12.5, E12.7, E13.5, E13.7, E14.5, E14.7
Diabetes without chronic complication	E10.1, E10.9, E11.1, E11.9, E13.1, E13.9, E14.1, E14.9, E10.0, E10.6, E10.8, E11.0, E11.6, E11.8, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.6, E13.8, E14.0, E14.6, E14.8
Hemiplegia or paraplegia	G81.x, G82.0-G82.2, G04.1, G11.4, G80.1, G80.2, G82.3-G82.5, G83.0-G83.4, G83.9
Metastatic solid tumor	C77.x-C79.x, C80.x
Mild liver disease	K70.3, K71.7, K73.x, K74.3- K74.6, B18.x, K70.0-K70.2, K70.9, K71.3-K71.5, K74.0-K74.2, K76.0, K76.2-K76.4, K76.8, K76.9, Z94.4
Moderate or severe liver disease	K72.1, K72.9, K76.6, K76.7, I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K76.5
Myocardial infarction	I25.2, I21.x, I22.x
Peptic ulcer disease	K25.4-K25.7, K26.4-K26.7, K27.4-K27.7, K28.4-K28.7, K25.0-K25.3, K25.9, K26.0-K26.3, K26.9, K27.0-K27.3, K27.9, K28.0-K28.3, K28.9
Peripheral vascular disease	I71.x, I73.9, Z95.8, Z95.9, I70.x, I73.1, I73.8, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9
Renal disease	N18.x, I12.0, I13.1, N03.2-N03.7, N05.2-N05.7, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2
Rheumatology disease	M05.x, M06.0, M32.x, M33.2, M34.x, M35.3, M06.1-M06.4, M06.8, M06.9, M31.5, M33.0, M33.1, M33.9, M35.1, M36.0

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Page 39 of 46

BMJ Open

	Baseline data	a in FY2014	Cohort data	P-value	
Ν	242,360	(100%)	181,959	(100%)	
Men	142,471	(58.8%)	111,088	(61.1%)	<0.01
Age (Mean, SD)	44.5	(12.5)	44.7	(10.6)	<0.01
20-24	18,524	(7.6%)	5,052	(2.8%)	<0.01
25-29	17,251	(7.1%)	12,675	(7.0%)	
30-34	18,093	(7.5%)	14,784	(8.1%)	
35-39	23,878	(9.9%)	20,508	(11.3%)	
40-44	39,721	(16.4%)	35,168	(19.3%)	
45-49	40,908	(16.9%)	37,124	(20.4%)	
50-54	29,466	(12.2%)	25,906	(14.2%)	
55-59	20,149	(8.3%)	13,052	(7.2%)	
60-64	21,278	(8.8%)	10,735	(5.9%)	
65-69	11,931	(4.9%)	6,246	(3.4%)	
70-71	1,161	(0.5%)	709	(0.4%)	
AIDS/HIV	94	(0.0%)	74	(0.0%)	0.76
Any malignancy ^a	11,343	(4.7%)	8,377	(4.6%)	0.24
Cerebrovascular disease	9,860	(4.1%)	6,971	(3.8%)	<0.01
Chronic pulmonary disease	41,866	(17.3%)	32,093	(17.6%)	<0.01
Congestive heart failure	7,751	(3.2%)	5,710	(3.1%)	0.27
Dementia	291	(0.1%)	190	(0.1%)	0.13
Diabetes mellitus	25,716	(10.6%)	18,755	(10.3%)	<0.01
Hemiplegia or paraplegia	729	(0.3%)	507	(0.3%)	0.19
Liver disease	25,999	(10.7%)	19,725	(10.8%)	0.24
Metastatic solid tumor	2,381	(1.0%)	1,823	(1.0%)	0.53
Myocardial infarction	1,526	(0.6%)	1,092	(0.6%)	0.22
Peptic ulcer disease	24,859	(10.3%)	18,594	(10.2%)	0.68
Peripheral vascular disease	9,623	(4.0%)	7,083	(3.9%)	0.20

	Baseline data	in FY2014	Cohort data	a	P-value	
Ν	242,360	(100%)	181,959	(100%)		
Renal disease	2,350	(1.0%)	1,747	(1.0%)	0.75	
Rheumatologic disease	3,931	(1.6%)	2,926	(1.6%)	0.72	
At least one disease among the top five ^b	69,014	(28.5%)	50,660	(27.8%)	<0.01	
Co-morbidity no. among CCI diseases (Mean, SD)	0.8	(1.6)	0.8	(1.6)	0.16	
0 disease	169,872	(70.1%)	129,037	(70.9%)	<0.01	
1 disease	22,514	(9.3%)	15,532	(8.5%)		
2 diseases	16,605	(6.9%)	12,375	(6.8%)		
3 diseases	12,242	(5.1%)	9,046	(5.0%)		
4 diseases	9,076	(3.7%)	6,816	(3.7%)		
5 diseases	12,051	(5.0%)	9,153	(5.0%)		
Composite outcomes	36,893	(15.2%)	31,224	(17.2%)	<0.01	
Death	1,507	(0.6%)	1,507	(0.8%)		
Hospitalisation	36,495	(15.1%)	30,826	(16.9%)		

 ^b Top 5 diseases include chronic pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and cerebrovascular disease.

SD; standard deviation, CCI; Charlson Comorbidity Index

^c Age (Mean) and Co-morbidity no. (Mean): Student's t-test. All other variables: Pearson's chi-square test.

	Overall		20-24		25-29		30-34	
	88,923,000	(100%)	6,204,000	(100%)	6,678,000	(100%)	7,468,000	(100%)
Men	44,288,000	(49.8%)	3,192,000	(51.5%)	3,414,000	(51.1%)	3,788,000	(50.7%)
AIDS/HIV	34,034	(0.0%)	1,400	(0.0%)	1,137	(0.0%)	1,394	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	24,047	(0.4%)	60,604	(0.9%)	103,907	(1.4%)
Cerebrovascular disease	5,773,295	(6.5%)	12,484	(0.2%)	23,767	(0.4%)	40,440	(0.5%)
Chronic pulmonary disease	17,303,735	(19.5%)	656,012	(10.6%)	901,156	(13.5%)	1,184,702	(15.9%)
Congestive heart failure	4,317,076	(4.9%)	21,322	(0.3%)	34,950	(0.5%)	52,469	(0.7%)
Dementia	410,326	(0.5%)	418	(0.0%)	0	(0.0%)	1,053	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	50,290	(0.8%)	141,852	(2.1%)	228,348	(3.1%)
Hemiplegia or paraplegia	424,609	(0.5%)	3,782	(0.1%)	7,489	(0.1%)	10,227	(0.1%)
Liver disease	11,341,444	(12.8%)	129,091	(2.1%)	259,190	(3.9%)	380,993	(5.1%)
Metastatic solid tumor	1,235,336	(1.4%)	6,706	(0.1%)	9,643	(0.1%)	15,804	(0.2%)
Myocardial infarction	769,977	(0.9%)	3,510	(0.1%)	3,859	(0.1%)	7,438	(0.1%)
Peptic ulcer disease	11,238,524	(12.6%)	213,860	(3.4%)	364,164	(5.5%)	444,445	(6.0%)
Peripheral vascular disease	5,197,644	(5.8%)	20,276	(0.3%)	42,759	(0.6%)	60,055	(0.8%)
Renal disease	1,261,138	(1.4%)	6,164	(0.1%)	11,118	(0.2%)	19,957	(0.3%)
Rheumatologic disease	1,928,685	(2.2%)	17,602	(0.3%)	35,051	(0.5%)	43,777	(0.6%)
no disease	57,293,691	(64.4%)	5,352,990	(86.3%)	5,500,039	(82.4%)	5,935,225	(79.5%)
1 disease	8,464,436	(9.5%)	609,768	(9.8%)	666,087	(10.0%)	805,022	(10.8%)
2 diseases	6,799,080	(7.6%)	163,269	(2.6%)	310,407	(4.6%)	399,222	(5.3%)
3 diseases	5,534,827	(6.2%)	45,066	(0.7%)	104,758	(1.6%)	178,423	(2.4%)
4 diseases	4,261,753	(4.8%)	19,190	(0.3%)	52,301	(0.8%)	77,876	(1.0%)
≥ 5 diseases	6,574,213	(7.4%)	13,716	(0.2%)	44,409	(0.7%)	72,233	(1.0%)

Supplementary eTable 3 Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese

^aAny malignancy includes leukemia and lymphoma.

	Overall		35-39		40-44		45-49	
-	88,923,000	(100%)	8,670,000	(100%)	9,793,000	(100%)	8,607,000	(100%
Men	44,288,000	(49.8%)	4,394,000	(50.7%)	4,956,000	(50.6%)	4,329,000	(50.3%)
AIDS/HIV	34,034	(0.0%)	4,592	(0.1%)	4,124	(0.0%)	3,069	(0.0%
Any malignancy ^a	5,775,260	(6.5%)	198,069	(2.3%)	308,591	(3.2%)	393,299	(4.6%
Cerebrovascular disease	5,773,295	(6.5%)	93,413	(1.1%)	170,645	(1.7%)	265,098	(3.1%
Chronic pulmonary disease	17,303,735	(19.5%)	1,446,109	(16.7%)	1,613,639	(16.5%)	1,462,084	(17.0%
Congestive heart failure	4,317,076	(4.9%)	90,394	(1.0%)	155,193	(1.6%)	201,862	(2.3%
Dementia	410,326	(0.5%)	734	(0.0%)	1,490	(0.0%)	3,606	(0.0%
Diabetes mellitus	12,689,040	(14.3%)	352,333	(4.1%)	553,455	(5.7%)	737,731	(8.6%
Hemiplegia or paraplegia	424,609	(0.5%)	13,621	(0.2%)	12,793	(0.1%)	19,669	(0.2%
Liver disease	11,341,444	(12.8%)	577,316	(6.7%)	784,095	(8.0%)	858,769	(10.0%
Metastatic solid tumor	1,235,336	(1.4%)	29,912	(0.3%)	56,656	(0.6%)	78,055	(0.9%
Myocardial infarction	769,977	(0.9%)	8,925	(0.1%)	25,198	(0.3%)	37,793	(0.4%
Peptic ulcer disease	11,238,524	(12.6%)	589,633	(6.8%)	749,581	(7.7%)	856,494	(10.0%
Peripheral vascular disease	5,197,644	(5.8%)	127,339	(1.5%)	201,866	(2.1%)	288,167	(3.3%
Renal disease	1,261,138	(1.4%)	30,634	(0.4%)	46,209	(0.5%)	73,397	(0.9%
Rheumatologic disease	1,928,685	(2.2%)	79,300	(0.9%)	108,081	(1.1%)	143,756	(1.7%
no disease	57,293,691	(64.4%)	6,707,086	(77.4%)	7,389,249	(75.5%)	6,205,507	(72.1%
1 disease	8,464,436	(9.5%)	879,686	(10.1%)	969,263	(9.9%)	762,446	(8.9%
2 diseases	6,799,080	(7.6%)	529,075	(6.1%)	633,182	(6.5%)	588,650	(6.8%
3 diseases	5,534,827	(6.2%)	284,566	(3.3%)	352,334	(3.6%)	416,546	(4.8%
4 diseases	4,261,753	(4.8%)	152,965	(1.8%)	232,087	(2.4%)	297,143	(3.5%
≥ 5 diseases	6,574,213	(7.4%)	116,621	(1.3%)	216,885	(2.2%)	336,707	(3.9%

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

^aAny malignancy includes leukemia and lymphoma.

55-59

60-64

1 2 3 4 5 6 7	Sup Japa
8 9	Men
10	AIDS
11	Any
12 13	Cere
14	Chro
15	Con
16 17	Dem
18	Diab
19	Herr
20 21	Live
22	Meta
23	Муо
24 25	Pept
26	Peri
27	Ren
28 29	Rhe
30	no d
31	1 dis
32 33	2 dis
34	3 dis
35	4 dis
36 37	≥50
38	aAny
39	7 (1)
40 41	
42	
43	
44 45	

45 46 47

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

Overall

50-54

	88,923,000	(100%)	7,790,000	(100%)	7,655,000	(100%)	8,979,000	(100%)
Men	44,288,000	(49.8%)	3,903,000	(50.1%)	3,802,000	(49.7%)	4,406,000	(49.1%)
AIDS/HIV	34,034	(0.0%)	2,979	(0.0%)	3,324	(0.0%)	5,281	(0.1%)
Any malignancy ^a	5,775,260	(6.5%)	483,592	(6.2%)	624,101	(8.2%)	958,696	(10.7%
Cerebrovascular disease	5,773,295	(6.5%)	387,663	(5.0%)	573,513	(7.5%)	965,151	(10.7%
Chronic pulmonary disease	17,303,735	(19.5%)	1,469,169	(18.9%)	1,565,078	(20.4%)	2,074,822	(23.1%
Congestive heart failure	4,317,076	(4.9%)	316,491	(4.1%)	443,956	(5.8%)	694,542	(7.7%
Dementia	410,326	(0.5%)	7,254	(0.1%)	14,375	(0.2%)	27,048	(0.3%
Diabetes mellitus	12,689,040	(14.3%)	1,028,899	(13.2%)	1,477,049	(19.3%)	2,197,472	(24.5%
Hemiplegia or paraplegia	424,609	(0.5%)	26,826	(0.3%)	43,702	(0.6%)	56,416	(0.6%
Liver disease	11,341,444	(12.8%)	1,063,948	(13.7%)	1,316,086	(17.2%)	1,785,515	(19.9%
Metastatic solid tumor	1,235,336	(1.4%)	104,654	(1.3%)	136,279	(1.8%)	204,377	(2.3%
Myocardial infarction	769,977	(0.9%)	65,457	(0.8%)	76,970	(1.0%)	130,757	(1.5%
Peptic ulcer disease	11,238,524	(12.6%)	977,192	(12.5%)	1,190,533	(15.6%)	1,633,285	(18.2%
Peripheral vascular disease	5,197,644	(5.8%)	411,839	(5.3%)	554,776	(7.2%)	876,673	(9.8%
Renal disease	1,261,138	(1.4%)	95,578	(1.2%)	126,432	(1.7%)	202,057	(2.3%
Rheumatologic disease	1,928,685	(2.2%)	191,910	(2.5%)	235, <mark>3</mark> 32	(3.1%)	326,918	(3.6%
no disease	57,293,691	(64.4%)	5,087,646	(65.3%)	4,435,684	(57.9%)	4,468,987	(49.8%
1 disease	8,464,436	(9.5%)	687,805	(8.8%)	680,727	(8.9%)	859,388	(9.6%
2 diseases	6,799,080	(7.6%)	631,794	(8.1%)	687,732	(9.0%)	933,542	(10.4%
3 diseases	5,534,827	(6.2%)	510,570	(6.6%)	638,438	(8.3%)	881,741	(9.8%
4 diseases	4,261,753	(4.8%)	382,265	(4.9%)	509,123	(6.7%)	729,058	(8.1%
≥ 5 diseases	6,574,213	(7.4%)	489,921	(6.3%)	703,297	(9.2%)	1,106,284	(12.3%

^aAny malignancy includes leukemia and lymphoma.

_	Overall		65-69		70-74	
	88,923,000	(100%)	9,155,000	(100%)	7,929,000	(100%)
Men	44,288,000	(49.8%)	4,414,000	(48.2%)	3,690,000	(46.5%)
AIDS/HIV	34,034	(0.0%)	3,793	(0.0%)	2,940	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	1,296,908	(14.2%)	1,323,445	(16.7%)
Cerebrovascular disease	5,773,295	(6.5%)	1,404,663	(15.3%)	1,836,456	(23.2%)
Chronic pulmonary disease	17,303,735	(19.5%)	2,445,425	(26.7%)	2,485,540	(31.3%)
Congestive heart failure	4,317,076	(4.9%)	931,107	(10.2%)	1,374,790	(17.3%)
Dementia	410,326	(0.5%)	83,286	(0.9%)	271,063	(3.4%)
Diabetes mellitus	12,689,040	(14.3%)	2,891,848	(31.6%)	3,029,762	(38.2%)
Hemiplegia or paraplegia	424,609	(0.5%)	81,998	(0.9%)	148,087	(1.9%)
Liver disease	11,341,444	(12.8%)	2,094,406	(22.9%)	2,092,035	(26.4%)
Metastatic solid tumor	1,235,336	(1.4%)	300,280	(3.3%)	292,970	(3.7%)
Myocardial infarction	769,977	(0.9%)	197,033	(2.2%)	213,037	(2.7%)
Peptic ulcer disease	11,238,524	(12.6%)	2,053,538	(22.4%)	2,165,800	(27.3%)
Peripheral vascular disease	5,197,644	(5.8%)	1,181,335	(12.9%)	1,432,557	(18.1%)
Renal disease	1,261,138	(1.4%)	257,988	(2.8%)	391,604	(4.9%)
Rheumatologic disease	1,928,685	(2.2%)	374,826	(4.1%)	372,134	(4.7%)
no disease	57,293,691	(64.4%)	3,803,485	(41.5%)	2,407,794	(30.4%)
1 disease	8,464,436	(9.5%)	785,842	(8.6%)	758,403	(9.6%)
2 diseases	6,799,080	(7.6%)	1,013,307	(11.1%)	908,900	(11.5%)
3 diseases	5,534,827	(6.2%)	1,074,487	(11.7%)	1,047,899	(13.2%)
4 diseases	4,261,753	(4.8%)	886,159	(9.7%)	923,584	(11.6%)
≥ 5 diseases	6,574,213	(7.4%)	1,591,721	(17.4%)	1,882,418	(23.7%)

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

^aAny malignancy includes leukemia and lymphoma.

 BMJ Open

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation and death rates in a 5-year cohort of *n* = 111 088 men and *n* = 70 871 women. Cox regression analysis

Overall ^a

	Fi	ull Mode	el	20	20-39 years			40-59 years			60-71 years		
	HR	95%	6CI	HR	95%	6CI	HR	95%	6CI	HR	95%	6CI	
Age	1.02	1.01	1.02										
Sex	0.97	0.95	0.99	0.36	0.34	0.37	1.29	1.25	1.33	1.44	1.38	1.51	
≥2 diseases	2.17	2.12	2.21	2.17	2.05	2.29	2.31	2.24	2.38	2.05	1.97	2.14	
Men ^b				h									
Age	1.03	1.03	1.04		0								
≥2 diseases	2.04	1.98	2.10	2.81	2.56	3.07	2.25	2.17	2.34	1.94	1.84	2.04	
Women ^b													
Age	0.99	0.99	1.00										
≥2 diseases	2.22	2.15	2.30	1.91	1.78	2.04	2.42	2.30	2.54	2.28	2.12	2.44	
^a References are fema variables	ale for sex, no	disease fo	or morbidi	ty				10					
^b Reference is no dise	ease for morbio	dity variabl	es										
HR; hazard ratio, CI;	confidence int	erval											

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	7
Objectives	3	State specific objectives, including any prespecified hypotheses	7-8
Methods			
Study design	4	Present key elements of study design early in the paper	10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	10
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	9-10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	9-12
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cohort studies*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Fig. 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	Fig. 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Suppl. Table 2
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	14
Outcome data	15*	Report numbers of outcome events or summary measures over time	Table 1, Suppl. Tables 3-4
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16, Fig. 3
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12, Fig. 3
Discussion		· Cl.	
Key results	18	Summarise key results with reference to study objectives	14-16
Limitations			17-18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	20-23
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	24

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The prevalence of multimorbidity and its associations with hospitalisation or death in Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in the middle-aged generation

Journal:BMJ OpenManuscript IDbmjopen-2022-063216.R1Article Type:Original researchDate Submitted by the Author02-Sep-2022Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Economics & Outcomes Research; Yokohama City University School of Public Health, Department of Health Informatics Economics & Outcomes Research; Yokohama City University School of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University, Department of Human Health Sciences Secondary Subject HeadingEpidemiologyKeywords:PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC		
Article Type:Original researchDate Submitted by the Author:02-Sep-2022Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject Heading EpidemiologySecondary Subject HeadingHealth economics, Health informatics, Health policyKeywords:PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Journal:	BMJ Open
Date Submitted by the Author:02-Sep-2022Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject HeadingEpidemiologySecondary Subject Heading:Health economics, Health informatics, Health policyKewwords:PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Manuscript ID	bmjopen-2022-063216.R1
Author:02-Sep-2022Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject Heading EpidemiologySecondary Subject Heading:Health economics, Health informatics, Health policyKeywords:PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Article Type:	Original research
Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject Heading EpidemiologySecondary Subject HeadingHealth economics, Health informatics, Health policyPREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC		02-Sep-2022
Heading: Epidemiology Secondary Subject Heading: Health economics, Health informatics, Health policy Keywords: PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Complete List of Authors:	Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health
Keywords: PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	· -	Epidemiology
	Secondary Subject Heading:	Health economics, Health informatics, Health policy
HEALTH	Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The prevalence of multimorbidity and its associations with hospitalisation or death in

Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in

Yoshiyuki Saito^{1,2*} PharmD, Ataru Igarashi^{1,3} PhD, Takeo Nakayama² MD PhD, Shingo

¹Department of Health Economics & Outcomes Research, Graduate School of

Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

²Department of Health Informatics, School of Public Health, Graduate School of

Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

³Unit of Public Health and Preventive Medicine, Yokohama City University School of

⁴School of Human Health Sciences, Graduate School of Medicine, Kyoto University,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
4 5	1
3 4 5 6 7 8 9	2
10 11	3
12 13 14	4
15 16 17	5
18 19 20	6
21 22 23 24 25 26 27	7
24 25 26	8
28 29	9
30 31 32 33 34 35	10
33 34 35	11
36 37 38	12
39 40 41	13
42 43 44	14
45 46 47	15
48 49 50	16
51 52 53	17
54 55 56	18
57 58 59	
59 60	

1

Title

Authors

Fukuma⁴ MD

Author Affiliations

113-0033, Japan

Medicine, Kanagawa 236-0027, Japan

Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

the middle-aged generation

1		
2 3		
4	19	
5	19	
6		
7 8	20	Running head
9		
10	21	The burden of multimorbidity in Japan 2014-2019
11	<u> </u>	
12		
13 14	22	
15		
16	23	*Corresponding author
17	25	
18		
19 20	24	Yoshiyuki Saito, PharmD
20		
22	25	Department of Health Economics & Outcomes Research, Graduate School of
23	23	Department of realth Economics & Outcomes Research, Graduate School of
24		
25 26	26	Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
20		
28	27	113-0033, Japan
29	21	
30		
31 32	28	E-mail: saito.yoshiyuki.86x@kyoto-u.jp
33		
34	29	Tel: +81-3-5841-4828
35	2)	
36		
37 38	30	
39		
40	31	Word count: 3492 (incl. abstract)
41	51	
42 42		
43 44	32	Tables: 1
45		
46	33	Figures: 3
47	55	
48 40		
49 50	34	Supplementary Tables: 4
51		
52	35	
53	50	
54 55		
56	36	
57		
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		is perioden any integration interaction site about guidelines. And

1 2		3
2 3 4 5	37	Abstract
6 7 8	38	Objective
9 10 11 12	39	To describe the prevalence of multimorbidity and its associations with clinical outcomes
13 14 15	40	across age groups.
16 17 18	41	Design
19 20 21	42	Retrospective cohort study using nationwide medical claims data.
22 23 24	43	Setting
25 26 27	44	Carried out in Japan between April 2014 and March 2019.
28 29 30	45	Participants
31 32 33	46	N = 246 671 Japanese individuals aged 20-74 enrolled in the Health Insurance
34 35 36	47	Association for Architecture and Civil Engineering companies (HIA ² CE) were included
37 38 39	48	into the baseline data set for fiscal year (FY) 2014. Of those, N = 181 959 individuals
40 41 42	49	were included into the cohort data set spanning FY2014-FY2018.
43 44 45	50	Exposures
46 47 48	51	Multimorbidity was defined as having ≥2 of 15 chronic conditions according to the ICD-
49 50 51	52	10 codes of the Charlson Comorbidity Index.
52 53 54 55 56 57 58 59	53	Primary and Secondary Outcomes
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4 5 6	54	Primary outcome: The standardised prevalence of multimorbidity across age groups
7 8 9	55	was evaluated using data from FY 2014 and extrapolated to the Japanese total
10 11	56	population. Secondary Outcome: Hospitalisation or death events were traced by month
12 13 14	57	using medical claims data and insurer enrolment data. Associations between
15 16 17	58	multimorbidity and 5-year hospitalisation and/or death events across age groups were
18 19 20	59	analysed using a Cox regression model.
21 22 23	60	Results
24 25 26	61	The standardised prevalence rate of multimorbidity in nationwide Japanese total
27 28 29	62	population was approximately 5% (ages 25-24 (3.9%), 25-29 (7.7%)), 10% (30-34
30 31 32	63	(9.7%), 35-39 (12.5%)), 20% (40-44 (14.6%), 45-49 (19.0%)), 30% (50-54 (25.9%), 55-
33 34 35 36	64	59 (33.2%)), 50% (60-64 (40.7%), 65-69 (49.9%),), and 60% (70-74).
30 37 38 39	65	Compared to individuals aged 20-39 without multimorbidity, those with multimorbidity
40 41 42	66	had a higher incidence of clinical events in any age group (HR = 2.43 [95% CI, 2.30-
43 44 45	67	2.56] in ages 20-39, HR = 2.55 [95% CI, 2.47-2.63] in ages 40-59, and HR = 3.41 [95%
46 47 48	68	CI, 3.23-3.53] in ages \geq 60). The difference in the incidence of clinical events between
49 50 51	69	multimorbidity and no-multimorbidity was larger than that between age groups.
52 53 54	70	Conclusions
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	71	Multimorbidity is already prevalent in the middle-aged generation and is associated with
6 7 8	72	poor clinical outcomes. These findings underscore the significance of multimorbidity and
9 10 11	73	highlight the urgent need for preventive intervention at the public health care level.
12 13	74	
14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 31 22 33 34 35 36 37 8 9 40 41 42 34 45 46 47 48 9 50 51 52 35 4 55 67 89 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.html
00		

1 2		
3 4 5	75	Article Summary
6 7 8	76	
9 10 11	77	Strengths and limitations of this study
12 13 14	78	• The current study covers a wide age range of individuals from a nationwide
15 16 17	79	general population.
18 19 20	80	 Japan's high medical insurance coverage rate made it possible to
21 22 23	81	comprehensively identify chronic diseases from receipts.
24 25 26	82	 Longitudinal analysis enabled the examination of clinical outcomes of multiple
27 28 29	83	co-morbidities.
30 31 32	84	• The prevalence of multimorbidity may be underestimated because the target
33 34 35	85	population comprised regular employees and their families and might
36 37 38	86	accordingly be healthier than the general population.
39 40 41	87	accordingly be healther than the general population.
42 43 44	88	Keywords
45 46 47	89	chronic disease, insurance claims, middle age, multimorbidity, preventive medicine
48 49 50 51	90	
52 53 54 55		
56 57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

7 8	92	Aging societies worldwide face the problem of how to provide adequate and
9 10 11	93	affordable health care for a growing number of patients with multiple chronic conditions,
12 13 14	94	termed multimorbidity. ^{1,2} Managing multimorbidity is becoming a global challenge on the
15 16 17	95	clinical and public healthcare level not only in high-, but also in low- and middle-income
18 19 20	96	countries. ³ Many epidemiological studies on multimorbidity have shown its association
21 22 23	97	with age, socio-demographic and socio-economic factors.4-7 In addition, numerous
24 25 26	98	studies have shown that multiple comorbidities are common in older people.8-11 It has
27 28 29	99	been reported that multimorbid older patients had more than twice as many contacts per
30 31 32	100	year with physicians than those without multimorbidity ¹² and that the likelihood of being
33 34 35	101	hospitalised was increased by a factor of 5.6 due to multiple co-morbidities.8 On the
36 37 38	102	other hand, the accumulation of chronic diseases occurs continuously from middle age.
39 40 41	103	A number of recent studies conducted in various countries have reported that the onset
42 43 44	104	of multimorbidity is shifting towards younger age groups. ^{6, 13-15} However, multimorbidity
45 46 47	105	studies tend to focus on older people, and in-depth knowledge on multimorbidity in
48 49 50	106	younger age groups is lacking.
51 52 53	107	Here, to evaluate the current status of multimorbidity across age groups and examine
54 55 56	108	its association with clinical outcomes, we analysed a large nationwide medical claims
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	109	cohort. Our findings add to existing knowledge by showing that multimorbidity has a
6 7 8	110	significant impact on health starting from middle age and underscore the need for
9 10 11	111	preventive intervention on the public health care level.
12 13 14	112	
14 15 16		
17 18		
19 20		
21 22		
23 24		
25 26 27		
27 28 29		
30 31		
32 33		
34 35		
36 37		
38 39 40		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

113 Materials and Methods

Data source

0 1	115	We used the nationwide medical claims and enrolment data of the Health Insurance
2 3 4	116	Association for Architecture and Civil Engineering companies (HIA ² CE), which is one of
5 6 7	117	the largest social insurance associations in Japan. HIA ² CE is a comprehensive insurer
8 9 0	118	which includes 1700 companies, from small engineering companies to middle and large
1 2 3	119	construction companies across Japan. This claims database covers a total of 400 000
4 5 6	120	insured persons, consisting of employees and their dependents.
7 8 9	121	Insured-based data base is used widely and one of the popular real-world data in
0 1 2	122	Japan. ¹⁶ Japan has maintained a universal health coverage system since 1961. All
3 4 5	123	medical information regarding clinical practice covered by this health insurance is
6 7 8	124	included in the medical claims data, except for self-financed medical care and
9 0 1	125	individuals who receive public assistance. Furthermore, medical facilities have been
2 3 4	126	obliged since 2011 to submit medical claims data as an electronic record. Medical
5 6 7	127	claims data include the names of the diagnosed diseases, the names of medical
8 9 0	128	procedures, and the names of prescribed medications, among others. In the present
1 2 3	129	study, we extracted the age, sex, names and ICD-10 codes of diagnosed diseases, and
4 5 6	130	hospitalisations and deaths from the medical claims data in HIA ² CE from FY2014 to
7 8		

BMJ Open

1 2		1
3 4 5	131	FY2018 (April 2014 to March 2019). The enrolment data from HIA ² CE includes the
6 7 8	132	medical characteristics and in-out information of insured persons as of April 2019.
9 10 11	133	
12 13 14	134	Research design and study population
15 16 17	135	We prepared two data sets for analysis. The first was cross-sectional data set
18 19 20	136	contained baseline data of FY2014, which we used to describe the diagnosed disease
21 22 23	137	prevalence in FY2014. The study population for this baseline data set included
24 25 26 27	138	individuals aged 20 to 74 years insured in FY2014 (April 2014 to March 2015). Since
28 29 30	139	HIA2CE is a type of insurance for workers in Japan, database include only under 75
31 32 33	140	years individuals. Therefore, maximum age in this cohort was 74 years. Participants
34 35 36	141	younger than 20 in FY2014 as well as participants who died during FY2014 were
37 38 39	142	excluded (Fig.1). The cohort data set contained longitudinal data for a 5-year period,
40 41 42	143	FY2014 to FY2018 (April 2014 to March 2019). Second data set contained participants
43 44 45	144	insured in whole period. We used this cohort data set to conduct Cox regression
46 47 48	145	analysis and calculate hazard ratios (HR)s for clinical events (Fig. 1).
49 50 51	146	
52 53 54 55 56 57 58	147	Definition of diagnosed diseases and multimorbidity
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 49

3		
4 5 6	148	There are a variety of definitions for chronic conditions in multimorbidity studies. ¹⁷⁻¹⁹
7 8 9	149	We used the Charlson Comorbidity Index (CCI) which is a validated tool to assess the
10 11 12	150	diseases associated with a significant risk of clinical events. ²⁰ The reason, we used CCI,
13 14 15	151	was that we focused on describing the prevalence of each disease and also assessing
16 17 18	152	the association of multimorbidity on hospitalisation or death. The CCI Canadian version
19 20 21	153	has been reported to be applicable to Japanese claims data. ²¹ We therefore defined
22 23 24	154	diagnosed diseases using medical claims data following ICD-10 codes of the CCI
25 26 27	155	Canada version. We merged the conditions "diabetes with chronic complication" and
28 29 30	156	"diabetes without chronic complication" into "diabetes mellitus", and "mild liver disease"
31 32 33	157	and "moderate or severe liver disease" into "liver disease". The following 15 chronic
34 35 36	158	conditions were included: AIDS/HIV, any malignancy (including lymphoma and
37 38 39	159	leukaemia), cerebrovascular disease, chronic pulmonary disease, congestive heart
40 41 42	160	failure, dementia, diabetes mellitus, hemiplegia or paraplegia, metastatic solid tumour,
43 44 45	161	liver disease, myocardial infarction, peptic ulcer disease, renal disease, and
46 47 48	162	rheumatologic disease. The ICD-10 codes of these diseases are shown in eTable 1 in
49 50 51	163	the Supplement. Multimorbidity status was defined as the concurrent presence of two or
52 53 54	164	more (≥2) diagnosed diseases among these conditions. ^{22, 23} We only used confirmed
55 56 57	165	diagnoses, not including suspected diagnoses, in Japanese claims data.
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		12
3 4 5 6	166	
6 7 8 9	167	Definition of outcome events; hospitalisation or death
9 10 11 12	168	We defined two composite outcomes, hospitalisation or death, which occurred during
13 14 15	169	the period from FY2015 to FY2018. Using the medical claims data, both events were
16 17 18	170	traced by month. In Japan, the validity of death event information is reported to be less
19 20 21	171	sensitive if derived from medical claims data only. ^{24, 25} Therefore, we also used death
22 23 24	172	information from enrolment data recorded by the insurer: if either contained death
25 26 27	173	information, this was defined as a death event.
28 29 30	174	
31 32 33	175	Estimation of diagnosed disease prevalence to nationwide scale
33 34 35 36	176	Diagnosed disease prevalence from baseline data was standardised to the
37 38 39	177	nationwide Japanese total population. We calculated prevalence rates according to
40 41 42	178	groups by 5-year age brackets and sex. Then, we estimated the prevalence rates
43 44 45	179	standardized to Japanese total population (age-sex standardized prevalence rate),
46 47 48	180	using the number from the vital statistics 2014 in Japan. ²⁶
49 50 51	181	
52 53 54 55 56 57 58	182	The association of multimorbidity with outcome by age group
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 14 of 49

3		
4 5 6	183	To examine the association of multimorbidity with outcome by age group, we
7 8 9	184	performed Cox regression analysis adjusted by sex using cohort data from four
10 11 12	185	consecutive years (FY2015 to FY2018). The independent and additive effect of
13 14	186	multimorbidity and aging, we defined combined categories according to three age
15 16 17	187	groups representing "young", "middle", and "old" ages (20-39, 40-59, and \geq 60,
18 19 20	188	respectively) and the binary status of multimorbidity, with the reference set as no
21 22 23	189	multimorbidity individuals aged 20-39. This model was able to show HR for aging alone
24 25 26	190	(e.g., HR for 40-59 ages without multimorbidity vs 20-39 ages without multimorbidity
27 28 29	191	and complex of aging and morbidity(e.g., HR for 40-59 ages with multimorbidity vs 20-
30 31 32	192	39 ages without multimorbidity).
33 34 35	193	
36 37 38	194	Statistical analysis
39 40 41	195	Cox regression was conducted for the association of multimorbidity with outcome by
42 43 44	196	age group. Results were considered statistically significant at a two-sided <i>P</i> -value of
45 46 47	197	less than 0.05. All analyses were conducted using Stata software version 15.1
48 49 50	198	(StataCorp LLC; College Station, TX, USA).
51 52 53	199	
54 55 56 57	200	Patient and Public involvement
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4 5	201	Patients or the public were not involved in this research. However, the results of this
6 7 8	202	study will be disseminated to the public through various means including published
9 10 11	203	papers and presentations.
12 13 14 15	204	
16 17 18		
19 20 21 22		
23 24 25		
26 27 28 29		
30 31 32		
33 34 35		
36 37 38 39		
40 41 42		
43 44 45 46		
40 47 48 49		
50 51 52		
53 54 55		
56 57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		15
3 4 5	205	Results
6 7 8 9	206	Study participants
9 10 11 12	207	We analysed $n = 246\ 671$ individuals in the baseline data set in FY2014 (Table1) and
12 13 14 15	208	n = 181959 individuals in the cohort data set FY2014-FY2018. Because follow-up was
16 17	209	four years, the cohort data set was slightly smaller than the baseline data set, especially
18 19 20 21 22 23 24	210	as a number of young individuals aged 20-24 and older individuals aged >60 dropped
	211	out. This may be due to raising children or early retirement, and explains the higher
24 25 26 27	212	proportion of men in the cohort data set. Mean age and co-morbidity numbers among
28 29 30	213	CCI diseases were mostly comparable between the two data sets, although the
31 32 33	214	prevalence differed for diabetes mellitus, cerebrovascular disease, and chronic
34 35 36 37 38 39 40 41 42	215	pulmonary disease (eTable 2 in the Supplement). In the cohort data set, differences in
	216	disease prevalence between genders were observed. Notably, men had a higher
	217	prevalence of diabetes mellitus ($P = 0.001$) whereas women had a higher prevalence of
43 44 45	218	chronic pulmonary disease ($P = 0.002$).
46 47	219	
48 49 50 51	220	Estimated prevalence of multimorbidity in the Japanese total population
52 53 54	221	The prevalence of diagnosed diseases in FY2014 was applied to the vital statistics of
55 56 57	222	the Japanese population in 2014. The standardised prevalence of multimorbidity was
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 49

BMJ Open

1 2		16
3 4 5	223	estimated to 26.1% (26.1% in men, 26.0% in women) in the Japanese total population
6 7 8 9	224	(eTable 3A in the Supplement). The prevalence rate of multimorbidity increased with
9 10 11 12	225	age, i.e., approximately 5% (25-24 (3.9%), 25-29 (7.7%)), 10% (30-34 (9.7%), 35-39
13 14 15	226	(12.5%)), 20% (40-44 (14.6%), 45-49 (19.0%)), 30% (50-54 (25.9%), 55-59 (33.2%)),
16 17 18	227	50% (60-64 (40.7%), 65-69 (49.9%)), and 60% (70-74).(Fig. 2A. Details of the
19 20	228	prevalence of diseases as well as below results are shown in eTable 3B in the
21 22 23	229	Supplement). Figure 2B shows the types of disease and their prevalence across age
24 25 26	230	groups. The top five diseases across the age groups "young" (20-39), "middle-age (40-
27 28 29 30	231	59), and "old" (60-74) in order of prevalence were "young": chronic pulmonary disease,
31 32 33	232	peptic ulcer disease, liver disease, diabetes mellitus, and any malignancy; "middle-age":
34 35 36	233	chronic pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and
37 38 39	234	any malignancy; and "old": diabetes mellitus, chronic pulmonary disease, liver disease,
40 41 42	235	peptic ulcer disease, and cerebrovascular disease. Notably, diabetes mellitus moved up
42 43 44 45	236	across the age groups from ranking fourth to first. In Figure 2C, disease prevalence is
43 46 47 48	237	shown in comparison to disease prevalence in the 40-44 age group. After the age of 40-
49 50 51	238	44, the top five accelerating diseases were dementia, cerebrovascular disease,
51 52 53 54	239	peripheral vascular disease, metastatic tumour, and congestive heart failure.
55 56	240	
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 49

		17
	241	The association of multimorbidity with outcome by age group.
	242	Cox regression analysis showed that young individuals aged 20-39 with
)	243	multimorbidity had a higher hazard ratio (HR) compared to the same age group without
2 3 4 -	244	multimorbidity (HR = 2.43 [95% CI, 2.30-2.56]). Further, HRs increased across age
5 7	245	groups (HR = 2.55 [95% Cl, 2.47-2.63] ages 40-59; HR = 3.41 [95% Cl, 3.23-3.53] ages
3))	246	\geq 60) (Fig. 3). The impact of multimorbidity on outcome exceeded that of aging (HR =
1 2 3	247	1.62 [95% CI, 1.56-1.69] ages ≥60 and HR = 1.10 [95% CI, 1.07-1.13] ages 40-59
+ 5 5 7	248	without multimorbidity) (Fig. 3). That was to say, even in aged 20-39 with multimorbidity
, 3 9	249	has a risk more than ages ≥60 without multimorbidity.
) <u>2</u>	250	We also assessed HRs for non-multimorbid and multimorbid women and men
2 1 5	251	separately and found that women had a lower HR than men in the 20-39 age group but
5 7 3	252	a higher HR than men in the ≥60 age group (eTable 4 in the Supplement).
*) 		
2 3 1 5		
5 7 2		
))		
<u>2</u> 3		

1 2		18
3 4 5	254	Discussion
6 7 8 9	255	In this study we analysed nationwide medical claims data for 15 chronic diseases in a
10 11 12	256	large cohort of the general population of Japan. As key findings, standardised
13 14 15	257	prevalence rates for multimorbidity were estimated to 26.1% for men and 26.0% for
16 17 18	258	women. Further, age group-specific prevalence rates for multimorbidity ranged from
19 20 21	259	3.9% (20-24 years) to 14.6% (40-44 years) and 60.1% (70-74 years), showing an
22 23 24	260	accelerating increase after age 40. Importantly, significant differences in the clinical
24 25 26 27	261	outcomes of multimorbidity versus no multimorbidity were already present in young and
28 29 30	262	middle-aged individuals.
31 32 33	263	The present study drew individuals covering a wide age range from a nationwide
34 35 36	264	general population. This allowed us to examine the burden of multiple co-morbidities in
37 38 39	265	young, middle-aged and old age groups in the real world. In addition, because Japan
40 41 42	266	has a high medical insurance coverage rate, it was possible to comprehensively identify
43 44 45	267	chronic diseases from receipts. Further, longitudinal analysis enabled us to examine the
46 47 48	268	clinical outcomes of multiple co-morbidities. With regard to limitations, the target
49 50 51	269	population comprised regular employees and their families and might accordingly be
52 53 54	270	healthier than the general population. Also, we defined multimorbidity by disease list
55 56 57	271	included in CCI most likely to lead to death, hence, we were not able to consider other
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Page 20 of 49

1 2		19
3 4 5 6 7 8	272	diseases associated with health-related quality of life loss. The presence of mental or
	273	psychosomatic disorders, which have been shown to be increasing, particularly in
9 10 11	274	individuals already suffering from other chronic diseases, ²⁷ younger people, ²⁸ and
12 13 14	275	people with a low socio-economic status. ²⁹ Such diseases often remain undiagnosed or
15 16 17	276	underreported in health records. ³⁰ These limitations likely contributed to an
18 19 20	277	underestimation of multimorbidity in our cohort. Further, because we did not manually
21 22 23	278	verify the presence of disease using the physician's medical records data or medication
24 25 26	279	information, disease names extracted from the medical claims data might be incorrect in
27 28 29	280	some cases. In particular, Japanese physicians sometimes change the name of the
30 31 32	281	disease in the medical record to the "correct" disease name for the medication they wish
33 34 35	282	to prescribe, a practice called "disease name for claims data".
36 37 38	283	Because of differences in data sources and study populations, direct comparison of
39 40 41	284	population-based prevalence rates between studies is not straightforward. Nonetheless,
42 43 44	285	the standardised prevalence rates for multimorbidity as reported in the present study -
45 46 47	286	26.1% for men and 26.0% for women - are similar to those reported by recent studies in
48 49 50	287	other high-income countries, such as the United States (25% in men, 25% in women), 31
51 52 53	288	England (24.4% in men, 30% in women), ³² Canada (24.3% whole population), ⁵ and
54 55 56	289	Denmark (19.3% in men, 23.7% in women). ⁶ Also recently some Asian countries
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 49

BMJ Open

1 2		20
3 4 5 6 7 8 9	290	reported similar prevalence, Iran (13.4% in men, 25.0% in women), ³³ India, Bangladesh
	291	(53.7% - 56.5% in both gender, over aged 60). ³⁴ Many previous studies on
10 11	292	multimorbidity focused on the older generation, aged 65 and up, because of the larger
12 13 14	293	number of chronic diseases in this age group and the increasing number of people
15 16 17 18	294	entering it. However, our present data show that already approximately 10% of 30-34-,
19 20 21	295	19% of 45-49-, and 33% of 55-59-year-olds have ≥2 chronic diseases. Further, 1% of
21 22 23 24	296	30-34-, 4% of 45-49-, and 9% of 55-59-year-olds have ≥5 chronic diseases. These
24 25 26 27	297	results show that multimorbidity is already prominent in the middle-aged population.
27 28 29 30	298	Recent studies reported similar or slightly higher prevalence rates for ≥2 chronic
31 32 33	299	diseases in an American (8% of 30-, 20% of 45-, and 38% of 55-year-olds) ²⁹ and a
34 35 36	300	Canadian (10.5% of 18-44-, 27.4% of 45-54-, and 46.6% of 55-64-year-olds) ⁵
37 38 39	301	population, although these two studies also included mental diseases and osteoporosis,
40 41 42	302	which our present study did not. Our present study shows that, among 15 chronic
42 43 44 45	303	diseases, the top five diseases in the 55-64 age group are chronic pulmonary disease
43 46 47 48	304	(20.4-23.1%), diabetes mellitus (19.3-24.5%), liver disease (17.2-19.9%), peptic ulcer
48 49 50 51	305	disease (15.6-18.2%), and any malignancy (8.2-10.7%). With regard to diabetes
52 53	306	mellitus, prevalence in the present study is similar to that previously reported in an
54 55 56	307	American population (15-30% in individuals aged 55-65) ²⁹ but higher than that in a
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 49

BMJ Open

1

1 2		21
3 4 5	308	Canadian population (16.6% in individuals aged 55-64) ⁴ . The prevalence of chronic
6 7 8	309	pulmonary disease in our present 55-65-year-olds was almost twice as high as those
9 10 11	310	seen for the combined prevalence of asthma and chronic obstructive pulmonary disease
12 13 14	311	(COPD) in an American population aged 55-65 years (5% for men and 10% for
15 16 17	312	women) ²⁹ and in a Canadian population aged 55-64 years (13.7%). ⁵ This difference
18 19 20	313	might have arisen due to our inclusion of various other pulmonary diseases besides
21 22 23	314	asthma and COPD. Regarding liver disease, the prevalence seen for 55-65-year-olds in
24 25 26	315	the present study was comparable to that seen in an adult population in Northern Italy ³⁵
27 28 29	316	and in an adult population in Korea, ³⁶ although this comparison requires care since the
30 31 32 33 34 35 26	317	types of liver disease in these studies and the age groups included vary.
	318	Analysis of clinical outcomes using Cox regression revealed that the presence of
36 37 38	319	multimorbidity increased HRs in all age groups, including young individuals. In addition,
39 40 41	320	comparison of the increased HRs resulting from multimorbidity versus no multimorbidity
42 43 44	321	showed that the impact of multimorbidity exceeds that of increasing age. These results
45 46 47	322	indicate that multimorbidity places a burden on all age groups.
48 49 50	323	Most of the five most prevalent diseases (diabetes mellitus, chronic pulmonary
51 52 53	324	disease, liver disease, peptic ulcer disease, and any malignancy) in the present study
54 55 56	325	are lifestyle-related diseases that develop slowly over time. This trend should be
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2		22
3 4 5	326	greeted with alarm. We trust that this study raises awareness of the potential health
6 7 8	327	risks and burden associated with the early onset of multimorbidity in young and middle-
9 10 11	328	age, the period when one is busy working and raising children. Future studies should
12 13 14	329	investigate the specific lifestyle factors associated with an elevated risk of multimorbidity
15 16 17	330	in the Japanese working population. Ultimately, public health care policies should be
18 19 20	331	aimed at efforts to reverse the trend toward early multimorbidity onset.
21 22 23	332	In conclusion, the present study revealed that the impact of multimorbidity is already
24 25 26	333	prominent in middle-aged Japanese, with elevated adverse events such as
27 28 29	334	hospitalisation or death. In addition, the risk posed by multimorbidity exceeds that of
30 31 32	335	aging in all age groups. These results underscore the need to undertake healthcare
33 34 35	336	intervention against the onset of multimorbidity before middle-age, and not to leave it as
36 37 38	337	a problem for geriatricians.
39 40 41	338	
42 43 44	339	Ethical Approval
45 46 47	340	The present study was approved by the Institutional Review Board (IRB) of Kyoto
48 49 50	341	University (approval number: R0817). All data were anonymised before analysis and
51 52 53	342	none of the researchers had access to patient-identifiable information. The IRB waived
54 55 56 57	343	informed consent for this observational study.
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

of

2		-
3 4	344	
5 6	344	
7 8 9	345	Data Availability Statement
10 11	346	All data are incorporated into the article and its online supplementary material.
12 13 14	347	
15 16 17	348	Author Contributions
18 19 20	349	Concept and design: YS, SF. Acquisition, analysis, or interpretation of data: all authors.
21 22 23	350	Drafting of the manuscript: YS, SF. Critical revision of the manuscript for important
24 25 26 27	351	intellectual content: all authors. Statistical analysis: YS, SF. Obtained funding: YS.
27 28 29 30	352	Administrative, technical, or material support: YS, SF. Study supervision: SF, AI, TN.
31 32 33	353	YS had full access to all the data in the study and takes responsibility for the integrity of
34 35 36	354	the data and the accuracy of the data analysis. All authors gave final approval and
37 38 39	355	agreed to be accountable for all aspects of work.
40 41 42	356	
43 44 45	357	Acknowledgements
46 47 48	358	The authors are grateful to HIA ² CE for providing data for the present study.
49 50 51	359	
52 53 54 55 56 57	360	Funding
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	This work was supported by Grants-in-Aid from the Japan Society for the Promotion of
2	Science (JSPS) KAKENHI Grant Number 19K19458 (YS). The sponsor had no role in
3	the design of the study; in the collection, analysis and interpretation of data; in the
4	writing of the report; or in the decision to submit the article for publication.
5	
6	Competing Interests
7	None declared.
8	
9	Patient Consent for Publication
0	Not applicable.
1	
2	
373	Figure Legends
374	Figure 1. Participant selection flowchart. FY; fiscal year
375	
376	Figure 2. Multimorbidity across age groups in the Japanese total population aged 20-
377	74. A) Percentage of the population having 0 to ≥5 chronic diseases by age group. B)
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4		
5 6 7	378	
8 9 10	379	(
11 12 13 14	380	
15 16 17	381	
18 19 20	382	(
21 22	383	
23 24	384	
25 26	385	
27 28	386	
29 30 21	387	
31 32 33	388	
34 35	389	
36 37 38	390	
38 39 40	391	
41 42	392	
43 44	393	
45 46 47	394	
48 49	395	
50 51	396	
52 53 54	397	
55		
56 57		
58 59		
60		

Prevalence of the top ten chronic diseases by age group. **C**) The top ten chronic diseases with the steepest increase after age 40-44 years. Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity (≥2 diagnosed diseases) in three age groups in a 5-year cohort of n = 181959 Japanese aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval References 1 Bleich SN, Sherrod C, Chiang A, et al. Systematic Review of Programs Treating High-Need and High-Cost People With Multiple Chronic Diseases or Disabilities in the United States, 2008-2014. Prev Chronic Dis. Nov 12 2015;12:E197. doi:10.5888/pcd12.150275 2 Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative review. Prev Med Rep. Dec 2018;12:284-293. doi:10.1016/j.pmedr.2018.10.008 Prathapan S, Fernando G, Matthias AT, Bentota Mallawa Arachchige Charuni Y, 3 Abeygunawardhana HMG, Somathilake B. The rising complexity and burden of multimorbidity in a middle-income country. PLoS One. 2020;15(12):e0243614. doi:10.1371/journal.pone.0243614 4 Low LL, Kwan YH, Ko MSM, et al. Epidemiologic Characteristics of Multimorbidity and Sociodemographic Factors Associated With Multimorbidity in a Rapidly Aging Page 27 of 49

1

BMJ Open

n	2
/	n
_	•

2			
3 4	398		Asian Country. JAMA Netw Open. Nov 1 2019;2(11):e1915245.
5 6 7	399		doi:10.1001/jamanetworkopen.2019.15245
7 8 9	400	5	Pefoyo AJ, Bronskill SE, Gruneir A, et al. The increasing burden and complexity of
10 11	401		multimorbidity. BMC Public Health. Apr 23 2015;15:415. doi:10.1186/s12889-015-
12 13	402		1733-2
14 15	403	6	Schiotz ML, Stockmarr A, Host D, Glumer C, Frolich A. Social disparities in the
16 17 18	404		prevalence of multimorbidity - A register-based population study. BMC Public
19 20	405		<i>Health</i> . May 10 2017;17(1):422. doi:10.1186/s12889-017-4314-8
21 22	406	7	Sum G, Ishida M, Koh GC, Singh A, Oldenburg B, Lee JT. Implications of
23 24 25	407		multimorbidity on healthcare utilisation and work productivity by socioeconomic
26 27	408		groups: Cross-sectional analyses of Australia and Japan. PLoS One.
28 29	409		2020;15(4):e0232281. doi:10.1371/journal.pone.0232281
30 31 32	410	8	Bahler C, Huber CA, Brungger B, Reich O. Multimorbidity, health care utilization
33 34	411		and costs in an elderly community-dwelling population: a claims data based
35 36	412		observational study. BMC Health Serv Res. Jan 22 2015;15:23.
37 38	413		doi:10.1186/s12913-015-0698-2
39 40 41	414	9	Hu RH, Hsiao FY, Chen LJ, Huang PT, Hsu WW. Increasing age- and gender-
42 43	415		specific burden and complexity of multimorbidity in Taiwan, 2003-2013: a cross-
44 45	416		sectional study based on nationwide claims data. BMJ Open. Jun 9
46 47 48	417		2019;9(6):e028333. doi:10.1136/bmjopen-2018-028333
49 50	418	10	Lenzi J, Avaldi VM, Rucci P, Pieri G, Fantini MP. Burden of multimorbidity in
51 52	419		relation to age, gender and immigrant status: a cross-sectional study based on
53 54 55			
56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2			27
- 3 4	420		administrative data. BMJ Open. Dec 21 2016;6(12):e012812.
5 6 7 8 9	421		doi:10.1136/bmjopen-2016-012812
	422	11	Picco L, Achilla E, Abdin E, et al. Economic burden of multimorbidity among older
10 11	423		adults: impact on healthcare and societal costs. BMC Health Serv Res. May 10
12 13 14 15 16 17 18	424		2016;16:173. doi:10.1186/s12913-016-1421-7
	425	12	van den Bussche H, Schon G, Kolonko T, et al. Patterns of ambulatory medical
	426		care utilization in elderly patients with special reference to chronic diseases and
19 20	427		multimorbidityresults from a claims data based observational study in Germany.
21 22 22	428		BMC Geriatr. Sep 13 2011;11:54. doi:10.1186/1471-2318-11-54
23 24 25	429	13	Katikireddi SV, Skivington K, Leyland AH, Hunt K, Mercer SW. The contribution of
25 26 27	430		risk factors to socioeconomic inequalities in multimorbidity across the lifecourse: a
28 29	431		longitudinal analysis of the Twenty-07 cohort. BMC Med. Aug 24 2017;15(1):152.
30 31 32	432		doi:10.1186/s12916-017-0913-6
33 34	433	14	Kone AP, Mondor L, Maxwell C, Kabir US, Rosella LC, Wodchis WP. Rising
35 36	434		burden of multimorbidity and related socio-demographic factors: a repeated
30 37 38 39	435		cross-sectional study of Ontarians. Can J Public Health. Apr 13
40 41	436		2021;doi:10.17269/s41997-021-00474-y
42 43	437	15	Singer L, Green M, Rowe F, Ben-Shlomo Y, Kulu H, Morrissey K. Trends in
44 45 46	438		multimorbidity, complex multimorbidity and multiple functional limitations in the
40 47 48	439		ageing population of England, 2002-2015. J Comorb. Jan-Dec
49 50	440		2019;9:2235042X19872030. doi:10.1177/2235042X19872030
51 52	441	16	Katsutoshi H, Annabel B, Yasuhiko M, et al. Current Status, Challenges, and
52 53 54 55 56 57 58 59	442		Future Perspectives of Real-World Data and Real-World Evidence in Japan.

Page 29 of 49

60

BMJ Open

1 2			28
2 3 4	443		Drugs - Real World Outcomes. 2021;8:459–480. doi:org/10.1007/s40801-021-
5 6 7	444		00266-3
7 8 9	445	17	Eng SL, Hui LK, Elaine QY H, Sok HT, et al. Systematic review on the instruments
10 11	446		used for measuring the association of the level of multimorbidity and clinically
12 13	447		important outcomes. <i>BMJ Open</i> . 2021;May
14 15 16	448		5;11(5):e041219. doi:10.1136/bmjopen-2020-041219.
17 18	449	18	Karen B, Stewart WM, Michael N, et al. Epidemiology of multimorbidity and
19 20	450		implications for health care, research, and medical education: a cross-sectional
21 22 23	451		study. <i>Lancet</i> . 2012;Jul 7;380(9836):37-43. doi:10.1016/S0140-6736(12)60240-2.
24 25	452	19	Mikk J, Heti P, Anneli U, et al. Prevalence of chronic conditions and multimorbidity
26 27 28	453		in Estonia: a population-based cross-sectional study. BMJ Open. 2021;Oct
20 29 30	454		5;11(10):e049045. doi:10.1136/bmjopen-2021-049045.
31 32 33 34 35 36 37 38 39	455	20	Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
	456		prognostic comorbidity in longitudinal studies: development and validation. J
	457		Chronic Dis. 1987;40(5):373-83. doi:10.1016/0021-9681(87)90171-821 Quan
	458		H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index
40 41	459		and score for risk adjustment in hospital discharge abstracts using data from 6
42 43 44	460		countries. Am J Epidemiol. Mar 15 2011;173(6):676-82. doi:10.1093/aje/kwq433
45 46	461	21	Vijaya S, Hude Q, Patricia H, Kiyohide F. Cross-National Comparative
47 48	462		Performance of Three Versions of the ICD-10 Charlson Index. Medical Care.
	463		2007 Dec;45(12):1210-5. doi: 10.1097/MLR.0b013e3181484347.

Page 30 of 49

BMJ Open

1 2			29
3 4	464	22	Johnston MC, Crilly M, Black C, Prescott GJ, Mercer SW. Defining and measuring
5 6	465		multimorbidity: a systematic review of systematic reviews. Eur J Public Health.
7 8 9	466		Feb 1 2019;29(1):182-189. doi:10.1093/eurpub/cky098
10 11	467	23	Le Reste JY, Nabbe P, Manceau B, et al. The European General Practice
12 13	468		Research Network presents a comprehensive definition of multimorbidity in family
14 15 16	469		medicine and long term care, following a systematic review of relevant literature.
17 18	470		<i>J Am Med Dir Assoc</i> . May 2013;14(5):319-25. doi:10.1016/j.jamda.2013.01.001
19 20	471	24	Ooba N, Setoguchi S, Ando T, et al. Claims-based definition of death in Japanese
21 22 23	472		claims database: validity and implications. <i>PLoS One</i> . 2013;8(5):e66116.
23 24 25	473		doi:10.1371/journal.pone.0066116
26 27	474	25	Sakai M, Ohtera S, Iwao T, et al. Validation of claims data to identify death among
28 29	475		aged persons utilizing enrollment data from health insurance unions. Environ
30 31 32	476		<i>Health Prev Med</i> . Nov 23 2019;24(1):63. doi:10.1186/s12199-019-0819-3
33 34	477	26	Statistics Bureau of Japan. Preliminary count of the Japanese population.
35 36	478		Accessed March, 2014. http://www.stat.go.jp/data/jinsui/index.html
37 38 39	479	27	Aoki T, Yamamoto Y, Shimizu S, Fukuhara S. Physical multimorbidity patterns and
40 41	480		depressive symptoms: a nationwide cross-sectional study in Japan. Fam Med
42 43	481		Community Health. 2020;8(1):e000234. doi:10.1136/fmch-2019-000234
44 45 46	482	28	Egede LE. Major depression in individuals with chronic medical disorders:
47 48	483		prevalence, correlates and association with health resource utilization, lost
49 50	484		productivity and functional disability. Gen Hosp Psychiatry. Sep-Oct
51 52 53	485		2007;29(5):409-16. doi:10.1016/j.genhosppsych.2007.06.002
53 54 55			
56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31 of 49

59

60

BMJ Open

1 2				30
3 4	486	29	Rocca WA, Boyd CM, Grossardt BR, et al. Prevalence of multimorbidity in a	
5 6 7	487		geographically defined American population: patterns by age, sex, and	
7 8 9	488		race/ethnicity. <i>Mayo Clin Proc</i> . Oct 2014;89(10):1336-49.	
10 11	489		doi:10.1016/j.mayocp.2014.07.010	
12 13	490	30	Cassell A, Edwards D, Harshfield A, et al. The epidemiology of multimorbidity in	
14 15 16	491		primary care: a retrospective cohort study. Br J Gen Pract. Apr	
17 18	492		2018;68(669):e245-e251. doi:10.3399/bjgp18X695465	
19 20	493	31	Violan C, Foguet-Boreu Q, Hermosilla-Perez E, et al. Comparison of the	
21 22 23	494		information provided by electronic health records data and a population health	
24 25	495		survey to estimate prevalence of selected health conditions and multimorbidity.	
26 27	496		BMC Public Health. Mar 21 2013;13:251. doi:10.1186/1471-2458-13-251	
28 29 30	497	32	St Sauver JL, Boyd CM, Grossardt BR, et al. Risk of developing multimorbidity	
30 31 32	498		across all ages in an historical cohort study: differences by sex and ethnicity. Bl	ИJ
33 34	499		<i>Open</i> . Feb 3 2015;5(2):e006413. doi:10.1136/bmjopen-2014-006413	
35 36 27	500	33	Masoomeh A, Azam M, Mehdi Y. et al. Multimorbidity as an important issue amo	ng
37 38 39	501		women: results of a gender difference investigation in a large population-based	
40 41	502		cross-sectional study in West Asia. <i>BMJ Open</i> . 2017;May 9;7(5):e013548. doi:	
42 43	503		10.1136/bmjopen-2016-013548.	
44 45 46	504	34	Sanghamitra P, Subhashisa S, Mohammad AH, et al. Prevalence and outcomes	of
47 48	505		multimorbidity in South Asia: a systematic review bmj open. BMJ Open. 2015 O	ct
49 50	506		7;5(10):e007235. doi:10.1136/bmjopen-2014-007235.	
51 52 53				
53 54 55				
56 57				
58				

BMJ Open

31

2			
3 4	507	35	Bellentani S, Tiribelli C, Saccoccio G, et al. Prevalence of chronic liver disease in
5 6	508		the general population of northern Italy: the Dionysos Study. Hepatology. Dec
7 8 9	509		1994;20(6):1442-9. doi:10.1002/hep.1840200611
9 10 11	510	36	Park SH, Plank LD, Suk KT, et al. Trends in the prevalence of chronic liver
12 13	511		disease in the Korean adult population, 1998-2017. Clin Mol Hepatol. Apr
14 15	512		2020;26(2):209-215. doi:10.3350/cmh.2019.0065
16 17 18	513		
19 20	514		
21 22			
23 24			
25 26			
27 28			
29 30			
31 32			
33 34			
35 36			
37 38 30			
39 40 41			
41 42 43			
45 44 45			
45 46 47			
47 48 49			
49 50 51			
52 53			
53 54 55			
56			
57 58			
59			

\mathbf{a}	^
.۲	7
v	~

2 3 4	515	Supplementary Information
5 6	516	
7 8 9	517	Supplementary eTable 1. List of diseases and their ICD-10 codes used to define
9 10 11	518	diseases in medical claims data
12 13	519	Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and
14 15 16	520	cohort data
17 18	521	Supplementary eTable 3A. Diagnosed disease prevalence in fiscal year 2014 applied
19 20	522	to the Japanese total population by gender
21 22 23	523	Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied
23 24 25	524	to the Japanese total population by age group
26 27		Supplementary eTable 4. Hazard ratios in multimorbid individuals based on
28 29 30		hospitalisation or death rates in a 5-year cohort of $n = 111088$ men and
30 31 32		<i>n</i> = 70 871 women. Cox regression analysis
33 34	525	
35 36 27		
37 38 39		
40 41		
42 43		
44 45 46		
40 47 48		
49 50		
51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

526 Table 1. Prevalence of diagnosed diseases in FY2014 applied to the Japanese

527 total population

			Baseline dat	a in FY2		
-	Overall		Men		Women	
	<i>N</i> =246,671	%	<i>N</i> =144,237	%	<i>N</i> =102,434	(
Men	144,237	58.5	-	-	-	
Age (Mean, SD)	45.0	12.9	44.6	12.9	45.7	12
20-24	18,524	7.5	11,315	7.8	7,209	7
25-29	17,251	7.0	12,014	8.3	5,237	5
30-34	18,093	7.3	11,104	7.7	6,989	6
35-39	23,878	9.7	13,278	9.2	10,600	0
40-44	39,721	16.1	21,640	15.0	18,081	17
45-49	40,908	16.6	24,191	16.8	16,717	16
50-54	29,466	11.9	17,577	12.2	11,889	11
55-59	20,149	8.2	11,343	7.9	8,806	8
60-64	21,278	8.6	12,706	8.8	8,572	8
65-69	11,931	4.8	6,768	4.7	5,163	5
70-74	5,472	2.2	2,301	1.6	3,171	3
AIDS/HIV	96	0.0	62	0.0	34	C
Any malignancy ^a	12,047	4.9	5,611	3.9	6,436	6
Cerebrovascular disease	10,866	4.4	6,510	4.5	4,356	4
Chronic pulmonary disease	43,216	17.5	22,484	15.6	20,732	20
Congestive heart failure	8,497	3.4	5,515	3.8	2,982	2
Dementia	447	0.2	210	0.1	237	0
Diabetes mellitus	27,344	11.1	17,881	12.4	9,463	g
Hemiplegia or paraplegia	813	0.3	533	0.4	280	C
Liver disease	27,127	11.0	16,954	11.8	10,173	ę
Metastatic solid tumor	2,532	1.0	1,263	0.9	1,269	-
Myocardial infarction	1,628	0.7	1,325	0.9	303	C
Peptic ulcer disease	26,047	10.6	14,511	10.1	11,536	11
Peripheral vascular disease	10,407	4.2	5,723	4.0	4,684	2
Renal disease	2,573	1.0	1,751	1.2	822	C
Rheumatologic disease	4,146	1.7	1,397	1.0	2,749	2
≥1 disease among top 5	71,880	29.1	40,833	28.3	31,047	30
Disease no. among CCI	,		,		01,011	
no disease	171,140	69.4	101,857	70.6	69,283	67
1 disease	22,947	9.3	12,032	8.3	10,915	10
2 diseases	17,120	6.9	8,994	6.2	8,126	7
3 diseases	12,822	5.2	7,273	5.0	5,549	5
4 diseases	9,588	3.9	5,874	4.1	3,714	3
≥ 5 diseases	13,054	5.3	8,207	5.7	4,847	4
Multimorbidity						
(≥2 diseases among CCI)	52,584	21.3	30,348	21.0	22,236	21

Values are numbers (%) unless otherwise stated.

^a Any malignancy includes leukemia and lymphoma.

FY; fiscal year

SD; standard deviation

CCI; Charlson Comorbidity Index

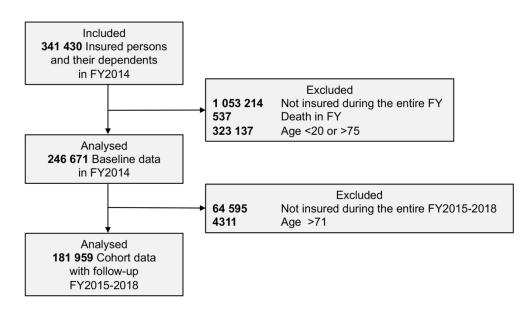
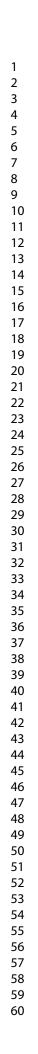



Figure 1. Participant selection flowchart. FY; fiscal year

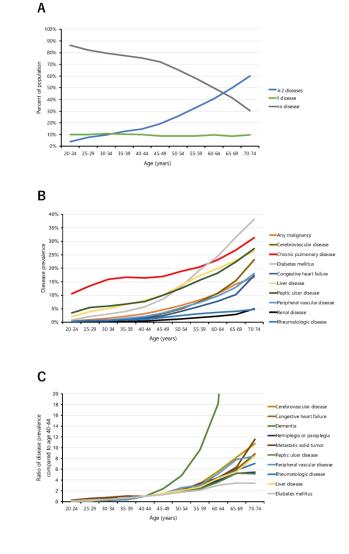
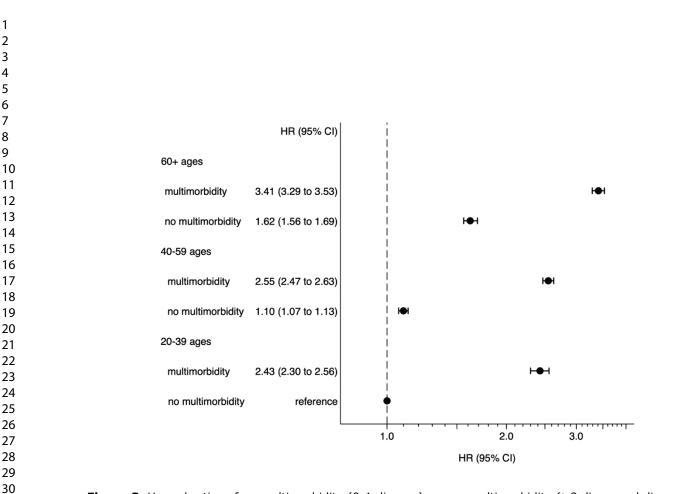



Figure 2. Multimorbidity across age groups in the Japanese total population aged 20-74. A) Percentage of the population having 0 to ≥5 chronic diseases by age group. B) Prevalence of the top ten chronic diseases by age group. C) The top ten chronic diseases with the steepest increase after age 40-44 years.

297x420mm (200 x 200 DPI)

Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity (≥ 2 diagnosed diseases) in three age groups in a 5-year cohort of n = 181 959 Japanese aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval

Supplementary material

Title: The prevalence of multimorbidity and its associations with hospitalisation or death in Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in the middle-aged generation

Authors: Yoshiyuki Saito PharmD, Ataru Igarashi PhD, Takeo Nakayama MD PhD, Shingo Fukuma MD

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and cohort data

Supplementary eTable 3A. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by gender

Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation or death rates in a 5-year cohort of $n = 111\ 088$ men and $n = 70\ 871$ women. Cox regression analysis

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Diseases	ICD-10 codes
AIDS/HIV	B20.x-B22.x, B24.x
Any malignancy, incl. leukemia and lymphoma	C00.x-C26.x, C30.x-C34.x, C37.x-C41x, C45.x-C58.x, C60.x-C76.x, C81.x-C85.x, C88.3, C88.7, C88.9, C90.0, C90.1, C91.x- C93.x, C94.0-C94.3, C94.5, C94.7, C95.x, C96.x, C43.x, C88.0-C88.2, C90.2, C94.4, C97.x
Cerebrovascular disease	169.x, G45.x, G46.x, H34.0, I60.x-I68.x
Chronic pulmonary //	J41.x-J47.x, J60.x-J66.x, I27.8, I27.9, J40.x, J67.x, J68.4, J70.1, J70.3
Congestive heart failure	150.x, 109.9, 111.0, 113.0, 113.2, 125.5, 142.0, 142.5- 142.9, 143.x, P29.0
Dementia	F00.x-F02.x, F03.x, F05.1, G30.x, G31.1
Diabetes with chronic complication	E10.2-E10.4, E11.2-E11.4, E13.2-E13.4, E14.2-E14.4, E10.5, E10.7, E11.5, E11.7, E12.2-E12.5, E12.7, E13.5, E13.7, E14.5, E14.7
Diabetes without chronic complication	E10.1, E10.9, E11.1, E11.9, E13.1, E13.9, E14.1, E14.9, E10.0, E10.6, E10.8, E11.0, E11.6, E11.8, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.6, E13.8, E14.0, E14.6, E14.8
Hemiplegia or paraplegia	G81.x, G82.0-G82.2, G04.1, G11.4, G80.1, G80.2, G82.3-G82.5, G83.0-G83.4, G83.9
Metastatic solid tumor	C77.x-C79.x, C80.x
Mild liver disease	K70.3, K71.7, K73.x, K74.3- K74.6, B18.x, K70.0-K70.2, K70.9, K71.3-K71.5, K74.0-K74.2, K76.0, K76.2-K76.4, K76.8, K76.9, Z94.4
Moderate or severe liver disease	K72.1, K72.9, K76.6, K76.7, I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K76.5
Myocardial infarction	125.2, 121.x, 122.x
Peptic ulcer disease	K25.4-K25.7, K26.4-K26.7, K27.4-K27.7, K28.4-K28.7, K25.0-K25.3, K25.9, K26.0-K26.3, K26.9, K27.0-K27.3, K27.9, K28.0-K28.3, K28.9
Peripheral vascular disease	I71.x, I73.9, Z95.8, Z95.9, I70.x, I73.1, I73.8, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9

Renal disease	N18.x, I12.0, I13.1, N03.2-N03.7, N05.2-N05.7, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2
Rheumatology disease	M05.x, M06.0, M32.x, M33.2, M34.x, M35.3, M06.1-M06.4, M06.8, M06.9, M31.5, M33.0, M33.1, M33.9, M35.1, M36.0

Supplementary eTable 2. Characteristics of baseline data in fiscal ye	ear 2014 and cohort data
---	--------------------------

	Baseline data	in FY2014	Cohort data	a	<i>P</i> -value ^c	
N	242,360	(100%)	181,959	(100%)		
Men	142,471	(58.8%)	111,088	(61.1%)	<0.01	
Age (Mean, SD)	44.5	(12.5)	44.7	(10.6)	<0.01	
20-24	18,524	(7.6%)	5,052	(2.8%)	<0.01	
25-29	17,251	(7.1%)	12,675	(7.0%)		
30-34	18,093	(7.5%)	14,784	(8.1%)		
35-39	23,878	(9.9%)	20,508	(11.3%)		
40-44	39,721	(16.4%)	35,168	(19.3%)		
45-49	40,908	(16.9%)	37,124	(20.4%)		
50-54	29,466	(12.2%)	25,906	(14.2%)		
55-59	20,149	(8.3%)	13,052	(7.2%)		
60-64	21,278	(8.8%)	10,735	(5.9%)		
65-69	11,931	(4.9%)	6,246	(3.4%)		
70-71	1,161	(0.5%)	709	(0.4%)		
AIDS/HIV	94	(0.0%)	74	(0.0%)	0.76	
Any malignancy ^a	11,343	(4.7%)	8,377	(4.6%)	0.24	
Cerebrovascular disease	9,860	(4.1%)	6,971	(3.8%)	<0.01	
Chronic pulmonary disease	41,866	(17.3%)	32,093	(17.6%)	<0.01	
Congestive heart failure	7,751	(3.2%)	5,710	(3.1%)	0.27	
Dementia	291	(0.1%)	190	(0.1%)	0.13	
Diabetes mellitus	25,716	(10.6%)	18,755	(10.3%)	<0.01	
Hemiplegia or paraplegia	729	(0.3%)	507	(0.3%)	0.19	

BMJ Open

Liver disease	25,999	(10.7%)	19,725	(10.8%)	0.24
Metastatic solid tumor	2,381	(1.0%)	1,823	(1.0%)	0.53
Myocardial infarction	1,526	(0.6%)	1,092	(0.6%)	0.22
Peptic ulcer disease	24,859	(10.3%)	18,594	(10.2%)	0.68
Peripheral vascular disease	9,623	(4.0%)	7,083	(3.9%)	0.20
	Baseline data	in FY2014	Cohort data	1	P-valu
N	242,360	(100%)	181,959	(100%)	
Renal disease	2,350	(1.0%)	1,747	(1.0%)	0.75
Rheumatologic disease	3,931	(1.6%)	2,926	(1.6%)	0.72
At least one disease among the top five ^b	69,014	(28.5%)	50,660	(27.8%)	<0.01
Disease no. among CCI (Mean, SD)	0.8	(1.6)	0.8	(1.6)	0.16
0 disease	169,872	(70.1%)	129,037	(70.9%)	<0.01
1 disease	22,514	(9.3%)	15,532	(8.5%)	
2 diseases	16,605	(6.9%)	12,375	(6.8%)	
3 diseases	12,242	(5.1%)	9,046	(5.0%)	
4 diseases	9,076	(3.7%)	6,816	(3.7%)	
≥ 5 diseases	12,051	(5.0%)	9,153	(5.0%)	
Multimorbidity (≥2 diseases among CCI)	49,974	(20.6%)	37,390	(20.5%)	
Composite outcomes	36,893	(15.2%)	31,224	(17.2%)	<0.01
Death	1,507	(0.6%)	1,507	(0.8%)	
Hospitalisation	36,495	(15.1%)	30,826	(16.9%)	

^a Any malignancy includes leukemia and lymphoma.

^b Top 5 diseases include chronic pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and cerebrovascular disease.

SD; standard deviation, CCI; Charlson Comorbidity Index

° Age (Mean) and Co-morbidity no. (Mean): Student's t-test. All other variables: Pearson's chi-square

test.

Supplementary eTable 3A. Prevalence of diagnosed diseases in FY2014 applied to the Japanese total population by gender

			Baseline dat	a in FY2	2014				Japanese tota	al popu	lation	
	Overall		Men		Women		Overall		Men		Women	
	<i>N</i> =246,671	%	N=144,237	%	<i>N</i> =102,434	%	<i>N</i> =88,923,000	%	<i>N</i> =44,288,000	%	<i>N</i> =44,640,000	
Men	144,237	58.5	-	-	-	-	44,288,000	49.8	-	-	-	
Age (Mean, SD)	45.0	12.9	44.6	12.9	45.7	12.8	48.0	15.3	47.7	15.3	48.4	
20-24	18,524	7.5	11,315	7.8	7,209	7.0	6,203,000	7.0	3,192,000	7.2	3,012,000	
25-29	17,251	7.0	12,014	8.3	5,237	5.1	6,677,000	7.5	3,414,000	7.7	3,264,000	
30-34	18,093	7.3	11,104	7.7	6,989	6.8	7,466,000	8.4	3,788,000	8.6	3,680,000	
35-39	23,878	9.7	13,278	9.2	10,600	0.3	8,670,000	9.8	4,394,000	9.9	4,276,000	
40-44												
	39,721	16.1	21,640	15.0	18,081	17.7	9,793,000	11.0	4,956,000	11.2	4,837,000	
45-49	40,908	16.6	24,191	16.8	16,717	16.3	8,609,000	9.7	4,329,000	9.8	4,278,000	
50-54	29,466	11.9	17,577	12.2	11,889	11.6	7,790,000	8.8	3,903,000	8.8	3,887,000	
55-59	20,149	8.2	11,343	7.9	8,806	8.6	7,653,000	8.6	3,802,000	8.6	3,853,000	
60-64	21,278	8.6	12,706	8.8	8,572	8.4	8,979,000	0.1	4,406,000	9.9	4,573,000	
65-69	11,931	4.8	6,768	4.7	5,163	5.0	9,155,000	10.3	4,414,000	10.0	4,741,000	
70-74	5,472	2.2	2,301	1.6	3,171	3.1	7,928,000	8.9	3,690,000	8.3	4,239,000	
AIDS/												
HIV	96	0.0	62	0.0	34	0.0	34,034	0.0	18,979	0.0	15,055	,
Any malignancy ^a	12,047	4.9	5,611	3.9	6,436	6.3	5,775,260	6.5	2,668,349	6.0	3,106,911	
Cerebrovascular disease	10,866	4.4	6,510	4.5	4,356	4.3	5,773,295	6.5	3,023,765	6.8	2,749,530	
Chronic pulmonary	10,000	7.7	0,010	4.0	4,000	4.0	0,110,200	0.0	0,020,700	0.0	2,140,000	
disease	43,216	17.5	22,484	15.6	20,732	20.2	17,303,735	19.5	7,713,864	17.4	9,589,871	
	8,497	3.4	5,515	3.8	2,982	20.2	4,317,076	4.9	2,459,170	5.6	1,857,906	
Congestive heart failure	0,497	5.4	5,515	3.0	2,902	2.9	4,317,070	4.9	2,459,170	5.0	1,007,900	
Deme	4.47	0.0	040	0.4	007		440.000	0.5	470.050	0.4	000 070	
ntia	447	0.2	210	0.1	237	0.2	410,326	0.5	179,350	0.4	230,976	
Diabetes mellitus	27,344	11.1	17,881	12.4	9,463	9.2	12,689,040	14.3	7,122,240	16.1	5,566,801	
Hemiplegia or paraplegia	813	0.3	533	0.4	280	0.3	424,609	0.5	253,040	0.6	171,569	
Liver disease	27,127	11.0	16,954	11.8	10,173	9.9	11,341,444	2.8	6,031,029	13.6	5,310,415	
Metastatic solid tumor	2,532	1.0	1,263	0.9	1,269	1.2	1,235,336	1.4	598,734	1.4	636,601	
Myocardial infarction	1,628	0.7	1,325	0.9	303	0.3	769,977	0.9	575,894	1.3	194,083	
Peptic ulcer disease	26,047	10.6	14,511	10.1	11,536	11.3	11,238,524	12.6	5,485,994	12.4	5,752,530	
Peripheral vascular												
disease	10,407	4.2	5,723	4.0	4,684	4.6	5,197,644	5.8	2,503,359	5.7	2,694,285	
Renal disease	2,573	1.0	1,751	1.2	822	0.8	1,261,138	1.4	784,770	1.8	476,367	
Rheumatologic disease	4,146	1.7	1,397	1.0	2,749	2.7	1,928,685	2.2	530,072	1.2	1,398,613	
≥1 disease among top 5	71,880	29.1	40,833	28.3	31,047	30.3	30,041,150	33.8	14,676,045	33.1	15,365,106	
• •	71,000	23.1	40,000	20.5	51,047	50.5	50,041,150	55.0	14,070,045	55.1	13,303,100	
Disease no. among CCI	171 140	60.4	101 057	70.6	60.202	67.6	57 202 601	64.4	20,006,914	65 F	20 206 077	
no disease	171,140	69.4	101,857	70.6	69,283		57,293,691		29,006,814	65.5		
1 disease	22,947	9.3	12,032	8.3	10,915		8,464,436	9.5	3,702,220	8.4		
2 diseases	17,120	6.9	8,994	6.2	8,126	7.9	6,799,080	7.6	3,029,535	6.8		
3 diseases	12,822	5.2	7,273	5.0	5,549	5.4	5,534,827	6.2	2,652,231	6.0		
4 diseases	9,588	3.9	5,874	4.1	3,714	3.6	4,261,753	4.8	2,242,062	5.1	2,019,691	
≥ 5 diseases	13,054	5.3	8,207	5.7	4,847	4.7	6,574,213	7.4	3,655,138	8.3	2,919,075	
Multimorbidity	52,584	21.3	30,348	21.0	22,236	21.7	23,169,873	26.1	11,578,966	26.1	11,590,906	

Pa

Page 43 of 49	BMJ Open
(≥2 diseases among CCI)	
 (≥2 diseases among CCI) Values are numbers (%) unless other ^a Any malignancy includes leukemia a lymphoma 	wise
39 40 41 42 43	
44	For poor review only http://bmienen.hmi.com/site/about/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

	Overall		20-24		25-29		30-34	
	88,923,000	(100%)	6,204,000	(100%)	6,678,000	(100%)	7,468,000	(100%)
Men	44,288,000	(49.8%)	3,192,000	(51.5%)	3,414,000	(51.1%)	3,788,000	(50.7%)
AIDS/HIV	34,034	(0.0%)	1,400	(0.0%)	1,137	(0.0%)	1,394	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	24,047	(0.4%)	60,604	(0.9%)	103,907	(1.4%)
Cerebrovascular disease	5,773,295	(6.5%)	12,484	(0.2%)	23,767	(0.4%)	40,440	(0.5%)
Chronic pulmonary disease	17,303,735	(19.5%)	656,012	(10.6%)	901,156	(13.5%)	1,184,702	(15.9%)
Congestive heart failure	4,317,076	(4.9%)	21,322	(0.3%)	34,950	(0.5%)	52,469	(0.7%)
Dementia	410,326	(0.5%)	418	(0.0%)	0	(0.0%)	1,053	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	50,290	(0.8%)	141,852	(2.1%)	228,348	(3.1%)
Hemiplegia or paraplegia	424,609	(0.5%)	3,782	(0.1%)	7,489	(0.1%)	10,227	(0.1%)
Liver disease	11,341,444	(12.8%)	129,091	(2.1%)	259,190	(3.9%)	380,993	(5.1%)
Metastatic solid tumor	1,235,336	(1.4%)	6,706	(0.1%)	9,643	(0.1%)	15,804	(0.2%)
Myocardial infarction	769,977	(0.9%)	3,510	(0.1%)	3,859	(0.1%)	7,438	(0.1%)
Peptic ulcer disease	11,238,524	(12.6%)	213,860	(3.4%)	364,164	(5.5%)	444,445	(6.0%)
Peripheral vascular disease	5,197,644	(5.8%)	20,276	(0.3%)	42,759	(0.6%)	60,055	(0.8%)
Renal disease	1,261,138	(1.4%)	6,164	(0.1%)	11,118	(0.2%)	19,957	(0.3%)
Rheumatologic disease	1,928,685	(2.2%)	17,602	(0.3%)	35,051	(0.5%)	43,777	(0.6%)
no disease	57,293,691	(64.4%)	5,352,990	(86.3%)	5,500,039	(82.4%)	5,935,225	(79.5%)
1 disease	8,464,436	(9.5%)	609,768	(9.8%)	666,087	(10.0%)	805,022	(10.8%)
2 diseases	6,799,080	(7.6%)	163,269	(2.6%)	310,407	(4.6%)	399,222	(5.3%)
3 diseases	5,534,827	(6.2%)	45,066	(0.7%)	104,758	(1.6%)	178,423	(2.4%)
4 diseases	4,261,753	(4.8%)	19,190	(0.3%)	52,301	(0.8%)	77,876	(1.0%)
≥ 5 diseases	6,574,213	(7.4%)	13,716	(0.2%)	44,409	(0.7%)	72,233	(1.0%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	241,241	(3.9%)	511,875	(7.7%)	727,754	(9.7%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

-	Overall		35-39		40-44		45-49	
	88,923,000	(100%)	8,670,000	(100%)	9,793,000	(100%)	8,607,000	(100%)
Men	44,288,000	(49.8%)	4,394,000	(50.7%)	4,956,000	(50.6%)	4,329,000	(50.3%)
AIDS/HIV	34,034	(0.0%)	4,592	(0.1%)	4,124	(0.0%)	3,069	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	198,069	(2.3%)	308,591	(3.2%)	393,299	(4.6%)
Cerebrovascular disease	5,773,295	(6.5%)	93,413	(1.1%)	170,645	(1.7%)	265,098	(3.1%)
Chronic pulmonary disease	17,303,735	(19.5%)	1,446,109	(16.7%)	1,613,639	(16.5%)	1,462,084	(17.0%)
Congestive heart failure	4,317,076	(4.9%)	90,394	(1.0%)	155,193	(1.6%)	201,862	(2.3%)
Dementia	410,326	(0.5%)	734	(0.0%)	1,490	(0.0%)	3,606	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	352,333	(4.1%)	553,455	(5.7%)	737,731	(8.6%)
Hemiplegia or paraplegia	424,609	(0.5%)	13,621	(0.2%)	12,793	(0.1%)	19,669	(0.2%)
Liver disease	11,341,444	(12.8%)	577,316	(6.7%)	784,095	(8.0%)	858,769	(10.0%)
Metastatic solid tumor	1,235,336	(1.4%)	29,912	(0.3%)	56,656	(0.6%)	78,055	(0.9%)
Myocardial infarction	769,977	(0.9%)	8,925	(0.1%)	25,198	(0.3%)	37,793	(0.4%)
Peptic ulcer disease	11,238,524	(12.6%)	589,633	(6.8%)	749,581	(7.7%)	856,494	(10.0%)
Peripheral vascular disease	5,197,644	(5.8%)	127,339	(1.5%)	201,866	(2.1%)	288,167	(3.3%)
Renal disease	1,261,138	(1.4%)	30,634	(0.4%)	46,209	(0.5%)	73,397	(0.9%)
Rheumatologic disease	1,928,685	(2.2%)	79,300	(0.9%)	108,081	(1.1%)	143,756	(1.7%)
no disease	57,293,691	(64.4%)	6,707,086	(77.4%)	7,389,249	(75.5%)	6,205,507	(72.1%)
1 disease	8,464,436	(9.5%)	879,686	(10.1%)	969,263	(9.9%)	762,446	(8.9%)
2 diseases	6,799,080	(7.6%)	529,075	(6.1%)	633,182	(6.5%)	588,650	(6.8%)
3 diseases	5,534,827	(6.2%)	284,566	(3.3%)	352,334	(3.6%)	416,546	(4.8%)
4 diseases	4,261,753	(4.8%)	152,965	(1.8%)	232,087	(2.4%)	297,143	(3.5%)
≥ 5 diseases	6,574,213	(7.4%)	116,621	(1.3%)	216,885	(2.2%)	336,707	(3.9%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	1,083,227	(12.5%)	1,434,488	(14.6%)	1,639,046	(19.0%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the
Japanese total population by age group

_	Overall		50-54		55-59		60-64	
	88,923,000	(100%)	7,790,000	(100%)	7,655,000	(100%)	8,979,000	(100%)
Men	44,288,000	(49.8%)	3,903,000	(50.1%)	3,802,000	(49.7%)	4,406,000	(49.1%)
AIDS/HIV	34,034	(0.0%)	2,979	(0.0%)	3,324	(0.0%)	5,281	(0.1%)
Any malignancy ^a	5,775,260	(6.5%)	483,592	(6.2%)	624,101	(8.2%)	958,696	(10.7%)
Cerebrovascular disease	5,773,295	(6.5%)	387,663	(5.0%)	573,513	(7.5%)	965,151	(10.7%)
Chronic pulmonary disease	17,303,735	(19.5%)	1,469,169	(18.9%)	1,565,078	(20.4%)	2,074,822	(23.1%
Congestive heart failure	4,317,076	(4.9%)	316,491	(4.1%)	443,956	(5.8%)	694,542	(7.7%
Dementia	410,326	(0.5%)	7,254	(0.1%)	14,375	(0.2%)	27,048	(0.3%
Diabetes mellitus	12,689,040	(14.3%)	1,028,899	(13.2%)	1,477,049	(19.3%)	2,197,472	(24.5%
Hemiplegia or paraplegia	424,609	(0.5%)	26,826	(0.3%)	43,702	(0.6%)	56,416	(0.6%
Liver disease	11,341,444	(12.8%)	1,063,948	(13.7%)	1,316,086	(17.2%)	1,785,515	(19.9%
Metastatic solid tumor	1,235,336	(1.4%)	104,654	(1.3%)	136,279	(1.8%)	204,377	(2.3%
Myocardial infarction	769,977	(0.9%)	65,457	(0.8%)	76,970	(1.0%)	130,757	(1.5%
Peptic ulcer disease	11,238,524	(12.6%)	977,192	(12.5%)	1,190,533	(15.6%)	1,633,285	(18.2%
Peripheral vascular disease	5,197,644	(5.8%)	411,839	(5.3%)	554,776	(7.2%)	876,673	(9.8%
Renal disease	1,261,138	(1.4%)	95,578	(1.2%)	126,432	(1.7%)	202,057	(2.3%
Rheumatologic disease	1,928,685	(2.2%)	191,910	(2.5%)	235,332	(3.1%)	326,918	(3.6%
no disease	57,293,691	(64.4%)	5,087,646	(65.3%)	4,435,684	(57.9%)	4,468,987	(49.8%
1 disease	8,464,436	(9.5%)	687,805	(8.8%)	680,727	(8.9%)	859,388	(9.6%
2 diseases	6,799,080	(7.6%)	631,794	(8.1%)	687,732	(9.0%)	933,542	(10.4%
3 diseases	5,534,827	(6.2%)	510,570	(6.6%)	638,438	(8.3%)	881,741	(9.8%
4 diseases	4,261,753	(4.8%)	382,265	(4.9%)	509,123	(6.7%)	729,058	(8.1%
≥ 5 diseases	6,574,213	(7.4%)	489,921	(6.3%)	703,297	(9.2%)	1,106,284	(12.3%

 BMJ Open

Multimorbidity	23,169,873	(26.1%)	2,014,550	(25.9%)	2,538,590	(33.2%)	3,650,625	(40.7%)
(≥2 diseases among CCI)	23,109,073	(20.176)	2,014,550	(23.976)	2,330,390	(33.2 %)	3,030,023	(40.7 %)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

_	Overall		65-69		70-74	
	88,923,000	(100%)	9,155,000	(100%)	7,929,000	(100%)
Men	44,288,000	(49.8%)	4,414,000	(48.2%)	3,690,000	(46.5%)
AIDS/HIV	34,034	(0.0%)	3,793	(0.0%)	2,940	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	1,296,908	(14.2%)	1,323,445	(16.7%)
Cerebrovascular disease	5,773,295	(6.5%)	1,404,663	(15.3%)	1,836,456	(23.2%)
Chronic pulmonary disease	17,303,735	(19.5%)	2,445,425	(26.7%)	2,485,540	(31.3%)
Congestive heart failure	4,317,076	(4.9%)	931,107	(10.2%)	1,374,790	(17.3%)
Dementia	410,326	(0.5%)	83,286	(0.9%)	271,063	(3.4%)
Diabetes mellitus	12,689,040	(14.3%)	2,891,848	(31.6%)	3,029,762	(38.2%)
Hemiplegia or paraplegia	424,609	(0.5%)	81,998	(0.9%)	148,087	(1.9%)
Liver disease	11,341,444	(12.8%)	2,094,406	(22.9%)	2,092,035	(26.4%)
Metastatic solid tumor	1,235,336	(1.4%)	300,280	(3.3%)	292,970	(3.7%)
Myocardial infarction	769,977	(0.9%)	197,033	(2.2%)	213,037	(2.7%)
Peptic ulcer disease	11,238,524	(12.6%)	2,053,538	(22.4%)	2,165,800	(27.3%)
Peripheral vascular disease	5,197,644	(5.8%)	1,181,335	(12.9%)	1,432,557	(18.1%)
Renal disease	1,261,138	(1.4%)	257,988	(2.8%)	391,604	(4.9%)
Rheumatologic disease	1,928,685	(2.2%)	374,826	(4.1%)	372,134	(4.7%)
no disease	57,293,691	(64.4%)	3,803,485	(41.5%)	2,407,794	(30.4%)
1 disease	8,464,436	(9.5%)	785,842	(8.6%)	758,403	(9.6%)
2 diseases	6,799,080	(7.6%)	1,013,307	(11.1%)	908,900	(11.5%)
3 diseases	5,534,827	(6.2%)	1,074,487	(11.7%)	1,047,899	(13.2%)
4 diseases	4,261,753	(4.8%)	886,159	(9.7%)	923,584	(11.6%)

≥ 5 diseases	6,574,213	(7.4%)	1,591,721	(17.4%)	1,882,418	(23.7%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	4,565,674	(49.9%)	4,762,801	(60.1%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation or death rates in a 5-year cohort of *n* = 111 088 men and *n* = 70 871 women. Cox regression analysis

Overall ^a												
	Fu	ull Mode	el	20	-39 yea	rs	40-59 years			60-71 years		
	HR	95%	6CI	HR	95%	6CI	HR	95%	6CI	HR	95%	^b Cl
Age	1.02	1.01	1.02		Y							
Sex	0.97	0.95	0.99	0.36	0.34	0.37	1.29	1.25	1.33	1.44	1.38	1.51
≥2 diseases	2.17	2.12	2.21	2.17	2.05	2.29	2.31	2.24	2.38	2.05	1.97	2.14
Men ^b							5					
Age	1.03	1.03	1.04									
≥2 diseases	2.04	1.98	2.10	2.81	2.56	3.07	2.25	2.17	2.34	1.94	1.84	2.04
Women ^b												
Age	0.99	0.99	1.00							0.		
≥2 diseases	2.22	2.15	2.30	1.91	1.78	2.04	2.42	2.30	2.54	2.28	2.12	2.44
^a References are fema variables	ale for sex, no	disease fo	or morbidit	у								
^b Reference is no dise	ease for morbid	dity variab	les									

^oReference is no disease for morbidity variables

HR; hazard ratio, CI; confidence interval

Page 49 of 49

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	7
Objectives	3	State specific objectives, including any prespecified hypotheses	7-8
Methods			
Study design	4	Present key elements of study design early in the paper	10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	10
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	9-10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	9-12
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed	Fig. 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	Fig. 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Suppl. Table 2
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	14
Outcome data	15*	Report numbers of outcome events or summary measures over time	Table 1, Suppl. Tables 3-4
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16, Fig. 3
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12, Fig. 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-16
Limitations			17-18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	20-23
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	24

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

The prevalence of multimorbidity and its associations with hospitalisation or death in Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in the middle-aged generation

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063216.R2
Article Type:	Original research
Date Submitted by the Author:	18-Dec-2022
Complete List of Authors:	Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Health economics, Health informatics, Health policy
Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

The prevalence of multimorbidity and its associations with hospitalisation or death in

Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in

Yoshiyuki Saito^{1,2*} PharmD, Ataru Igarashi^{1,3} PhD, Takeo Nakayama² MD PhD, Shingo

¹Department of Health Economics & Outcomes Research, Graduate School of

Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

²Department of Health Informatics, School of Public Health, Graduate School of

Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

³Unit of Public Health and Preventive Medicine, Yokohama City University School of

⁴School of Human Health Sciences, Graduate School of Medicine, Kyoto University,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
4 5	1
3 4 5 6 7 8 9	2
10 11	3
12 13 14	4
15 16 17	5
18 19 20	6
21 22 23 24 25 26 27	7
24 25 26	8
28 29	9
30 31 32 33 34 35	10
33 34 35	11
36 37 38	12
39 40 41	13
42 43 44	14
45 46 47	15
48 49 50	16
51 52 53	17
54 55 56	18
57 58 59	
59 60	

1

Title

Authors

Fukuma⁴ MD

Author Affiliations

113-0033, Japan

Medicine, Kanagawa 236-0027, Japan

Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

the middle-aged generation

1		
2		
3 4	10	
5	19	
6		
7	20	Running head
8		5
9 10		
10	21	The burden of multimorbidity in Japan 2014-2019
12		
13	22	
14		
15		
16	23	*Corresponding author
17 18		
19	~ /	
20	24	Yoshiyuki Saito, PharmD
21		
22	25	Department of Health Economics & Outcomes Research, Graduate School of
23	20	
24 25		
25 26	26	Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
20		
28	27	113-0033, Japan
29	21	
30		
31	28	E-mail: saito.yoshiyuki.86x@kyoto-u.jp
32 33		
34	•	
35	29	Tel: +81-3-5841-4828
36		
37	30	
38		
39 40		Word count: 3669 (incl. abstract)
41	31	Word count: 3669 (incl. abstract)
42		
43	32	Tables: 1
44	52	
45		
46 47	33	Figures: 3
48		
49	34	Supplementary Tables: 4
50	54	Supplementary Tables: 4
51		
52	35	
53 54		
55	26	
56	36	
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

1 2		3
2 3 4 5	37	Abstract
6 7 8	38	Objective
9 10 11 12	39	To describe the prevalence of multimorbidity and its associations with clinical outcomes
13 14 15	40	across age groups.
16 17 18	41	Design
19 20 21	42	Retrospective cohort study using nationwide medical claims data.
22 23 24	43	Setting
25 26 27	44	Carried out in Japan between April 2014 and March 2019.
28 29 30	45	Participants
31 32 33	46	N = 246 671 Japanese individuals aged 20-74 enrolled in the Health Insurance
34 35 36	47	Association for Architecture and Civil Engineering companies (HIA ² CE) were included
37 38 39	48	into the baseline data set for fiscal year (FY) 2014. Of those, N = 181 959 individuals
40 41 42	49	were included into the cohort data set spanning FY2014-FY2018.
43 44 45	50	Exposures
46 47 48	51	Multimorbidity was defined as having ≥2 of 15 chronic conditions according to the ICD-
49 50 51	52	10 codes of the Charlson Comorbidity Index.
52 53 54 55 56 57 58 59	53	Primary and Secondary Outcomes
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 49

BMJ Open

1 2		4
3 4 5	54	Primary outcome for descriptive analysis: The standardised prevalence of multimorbidity
6 7 8 9 10 11	55	across age groups was evaluated using data from FY 2014 and extrapolated to the
	56	Japanese total population. Secondary Outcome for Cox regression model:
12 13 14	57	Hospitalisation or death events were traced by month using medical claims data and
15 16 17	58	insurer enrolment data. Associations between multimorbidity and 5-year hospitalisation
18 19 20	59	and/or death events across age groups were analysed using a Cox regression model.
21 22 23	60	Results
24 25 26 27 28 29 30 31 32	61	The standardised prevalence rate of multimorbidity in the nationwide Japanese total
	62	population was approximately 5% (ages 25-24 (3.9%), 25-29 (7.7%)), 10% (30-34
	63	(9.7%), 35-39 (12.5%)), 20% (40-44 (14.6%), 45-49 (19.0%)), 30% (50-54 (25.9%), 55-
33 34 35	64	59 (33.2%)), 50% (60-64 (40.7%), 65-69 (49.9%),), and 60% (70-74).
36 37 38	65	Compared to individuals aged 20-39 without multimorbidity, those with multimorbidity
39 40 41	66	had a higher incidence of clinical events in any age group (HR = 2.43 [95% CI, 2.30-
42 43 44	67	2.56] in ages 20-39, HR = 2.55 [95% CI, 2.47-2.63] in ages 40-59, and HR = 3.41 [95%
45 46 47	68	CI, 3.23-3.53] in ages \geq 60). The difference in the incidence of clinical events between
48 49 50	69	multimorbidity and no-multimorbidity was larger than that between age groups.
51 52 53	70	Conclusions
54 55 56		
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3 4 5	71	Multimorbidity is already prevalent in the middle-aged generation and is associated with
6 7 8	72	poor clinical outcomes. These findings underscore the significance of multimorbidity and
9 10 11	73	highlight the urgent need for preventive intervention at the public health care level.
12 13	74	
14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 31 22 33 34 35 36 37 8 9 40 41 42 34 45 46 47 48 9 50 51 52 35 4 55 67 89 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.html
00		

1 2		
3 4 5	75	Article Summary
6 7 8	76	
9 10 11 12	77	Strengths and limitations of this study
12 13 14	78	• The current study covers a wide age range of individuals from a nationwide
15 16 17	79	general population.
18 19 20	80	 Japan's high medical insurance coverage rate made it possible to
21 22 23	81	comprehensively identify chronic diseases from receipts.
24 25 26	82	The longitudinal analysis enabled the examination of clinical outcomes of
27 28 29	83	multiple co-morbidities.
30 31 32	84	• The prevalence of multimorbidity may be underestimated because the target
33 34 35	85	population comprised regular employees and their families and might
36 37 38	86	accordingly be healthier than the general population.
39 40 41	87	accordingly be healthier than the general population.
42 43 44	88	Keywords
45 46 47	89	chronic disease, insurance claims, middle age, multimorbidity, preventive medicine
48 49 50	90	
51 52 53		
54 55 56		
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

7 8	92	Aging societies worldwide face the problem of how to provide adequate and
9 10 11	93	affordable health care for a growing number of patients with multiple chronic conditions,
12 13 14	94	termed multimorbidity. ^{1,2} Managing multimorbidity is becoming a global challenge on the
15 16 17	95	clinical and public healthcare level not only in high-, but also in low- and middle-income
18 19 20	96	countries. ³ Many epidemiological studies on multimorbidity have shown its association
21 22 23	97	with age, socio-demographic and socio-economic factors.4-7 In addition, numerous
24 25 26	98	studies have shown that multiple comorbidities are common in older people.8-11 It has
27 28 29	99	been reported that multimorbid older patients had more than twice as many contacts per
30 31 32	100	year with physicians than those without multimorbidity ¹² and that the likelihood of being
33 34 35	101	hospitalised was increased by a factor of 5.6 due to multiple co-morbidities.8 On the
36 37 38	102	other hand, the accumulation of chronic diseases occurs continuously from middle age.
39 40 41	103	A number of recent studies conducted in various countries have reported that the onset
42 43 44	104	of multimorbidity is shifting towards younger age groups. ^{6, 13-15} However, multimorbidity
45 46 47	105	studies tend to focus on older people, and in-depth knowledge on multimorbidity in
48 49 50	106	younger age groups is lacking.
51 52 53	107	Here, to evaluate the current status of multimorbidity across age groups and examine
54 55 56	108	its association with clinical outcomes, we analysed a large nationwide medical claims
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	109	cohort. Our findings add to existing knowledge by showing that multimorbidity has a
6 7 8	110	significant impact on health starting from middle age and underscore the need for
9 10 11	111	preventive intervention on the public health care level.
12 13 14	112	
14 15 16		
17 18		
19 20		
21 22		
23 24		
25 26 27		
27 28 29		
30 31		
32 33		
34 35		
36 37		
38 39 40		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

113 Materials and Methods

Data source

)	115	We used the nationwide medical claims and enrolment data of the Health Insurance
- } - -	116	Association for Architecture and Civil Engineering companies (HIA ² CE), which is one of
) ;; ;	117	the largest social insurance associations in Japan. HIA ² CE is a comprehensive insurer
))	118	which includes 1700 companies, from small engineering companies to middle and large
<u>}</u> }	119	construction companies across Japan. This claims database covers a total of 400 000
- 5 5	120	insured persons, consisting of employees and their dependents.
, 3)	121	The insured-based data base is used widely and one of the popular real-world data in
))	122	Japan. ¹⁶ Japan has maintained a universal health coverage system since 1961. All
5 - -	123	medical information regarding clinical practice covered by this health insurance is
5 7 8	124	included in the medical claims data, except for self-financed medical care and
)	125	individuals who receive public assistance. Furthermore, medical facilities have been
<u>?</u> } }	126	obliged since 2011 to submit medical claims data as an electronic record. Medical
)) 7	127	claims data include the names of the diagnosed diseases, the names of medical
3))	128	procedures, and the names of prescribed medications, among others. In the present
<u>)</u> }	129	study, we extracted the age, sex, names and ICD-10 codes of diagnosed diseases, and
5	130	hospitalisations and deaths from the medical claims data in HIA ² CE from FY2014 to
7 }		

BMJ Open

1 2		10
3 4 5	131	FY2018 (April 2014 to March 2019). The enrolment data from HIA ² CE includes the
6 7 8	132	medical characteristics and in-out information of insured persons as of April 2019.
9 10 11	133	
12 13 14	134	Research design and study population
15 16 17	135	We prepared two data sets for analysis. The first was a cross-sectional data set
18 19 20	136	containing baseline data of FY2014, which we used to describe the diagnosed disease
21 22 23	137	prevalence in FY2014. The study population for this baseline data set included
24 25 26	138	individuals aged 20 to 74 years insured in FY2014 (April 2014 to March 2015). Since
27 28 29 30	139	HIA2CE is a type of insurance for workers in Japan, the database include only under 75
31 32 33	140	years individuals. Therefore, the maximum age in this cohort was 74 years. Participants
34 35 36	141	younger than 20 in FY2014 as well as participants who died during FY2014 were
37 38 39	142	excluded (Fig.1). The cohort data set contained longitudinal data for a 5-year period,
40 41 42	143	FY2014 to FY2018 (April 2014 to March 2019). The second data set contained
43 44 45	144	participants insured in whole period. We used this cohort data set to conduct Cox
46 47 48	145	regression analysis and calculate hazard ratios (HR)s for clinical events (Fig. 1).
49 50 51	146	
52 53 54 55 56 57 58	147	Definition of diagnosed diseases and multimorbidity
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 12 of 49

3		
4 5 6	148	There are a variety of definitions for chronic conditions in multimorbidity studies. ¹⁷⁻¹⁹
7 8 9	149	We used the Charlson Comorbidity Index (CCI) which is a validated tool to assess the
10 11 12	150	diseases associated with a significant risk of clinical events. ²⁰ The reason, we used CCI,
13 14 15	151	was that we focused on describing the prevalence of each disease and also assessing
16 17 18	152	the association of multimorbidity on hospitalisation or death. The CCI Canadian version
19 20 21	153	has been reported to be applicable to Japanese claims data. ²¹ We therefore defined
22 23 24	154	diagnosed diseases using medical claims data following ICD-10 codes of the CCI
25 26 27	155	Canada version. We merged the conditions "diabetes with chronic complication" and
28 29 30	156	"diabetes without chronic complication" into "diabetes mellitus", and "mild liver disease"
31 32 33	157	and "moderate or severe liver disease" into "liver disease". The following 15 chronic
34 35 36	158	conditions were included: AIDS/HIV, any malignancy (including lymphoma and
37 38 39	159	leukaemia), cerebrovascular disease, chronic pulmonary disease, congestive heart
40 41 42	160	failure, dementia, diabetes mellitus, hemiplegia or paraplegia, metastatic solid tumour,
43 44 45	161	liver disease, myocardial infarction, peptic ulcer disease, renal disease, and
46 47 48	162	rheumatologic disease. The ICD-10 codes of these diseases are shown in eTable 1 in
49 50 51	163	the Supplement. Multimorbidity status was defined as the concurrent presence of two or
52 53 54	164	more (≥2) diagnosed diseases among these conditions. ^{22, 23} We only used confirmed
55 56 57	165	diagnoses, not including suspected diagnoses, in Japanese claims data.
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		12
3 4 5	166	
6 7 8	167	Definition of outcome events; hospitalisation or death
9 10 11 12	168	We defined two composite outcomes, hospitalisation or death, which occurred during
12 13 14 15	169	the period from FY2015 to FY2018. Using the medical claims data, both events were
16 17 18	170	traced by month. In Japan, the validity of death event information is reported to be less
19 20 21	171	sensitive if derived from medical claims data only. ^{24, 25} Therefore, we also used death
22 23 24	172	information from enrolment data recorded by the insurer: if either contained death
24 25 26 27	173	information, this was defined as a death event.
28 29	174	
30 31 32	175	Estimation of diagnosed disease prevalence to a nationwide scale
33 34 35 36	176	Diagnosed disease prevalence from baseline data was standardised to the
37 38 39	177	nationwide Japanese total population. We calculated prevalence rates according to
40 41 42	178	groups by 5-year age brackets and sex. Then, we estimated the prevalence rates
42 43 44 45	179	standardized to Japanese total population (age-sex standardized prevalence rate),
46 47 48	180	using the number from the vital statistics 2014 in Japan. ²⁶
49 50	181	
51 52 53 54 55 56 57 58	182	The association of multimorbidity with outcome by age group
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 14 of 49

3 4 5	183	To examine the association of multimorbidity with outcome by age group, we
6 7 8	184	performed Cox regression analysis adjusted by sex using cohort data from four
9 10 11 12	185	consecutive years (FY2015 to FY2018). The independent and additive effect of
12 13 14 15	186	multimorbidity and aging, we defined combined categories according to three age
16 17 18	187	groups representing "young", "middle", and "old" ages (20-39, 40-59, and \geq 60,
19 20 21	188	respectively) and the binary status of multimorbidity, with the reference set as no
22 23 24	189	multimorbidity individuals aged 20-39. This model was able to show HR for aging alone
25 26 27	190	(e.g., HR for 40-59 ages without multimorbidity vs 20-39 ages without multimorbidity
28 29 30	191	and complex of aging and morbidity(e.g., HR for 40-59 ages with multimorbidity vs 20-
31 32 33	192	39 ages without multimorbidity).
34 35 36	193	39 ages without multimorbidity).
37 38 39	194	Statistical analysis
40 41 42	195	Cox regression was conducted for the association of multimorbidity with outcome by
43 44 45	196	age group. Our hypothesis was aging and MM or these combination leads to worsen
46 47 48	197	clinical events. Therefore, we defined 6 groups which were a combination of 3
49 50		
51	198	categories of generation and MM, and we estimated HR in each group in reference of
51 52 53 54	198 199	categories of generation and MM, and we estimated HR in each group in reference of young (aged 20-39) without MM. Regarding this model, we interpreted both the
52		

1 2		14
3 4 5	201	generation. Results were considered statistically significant at a two-sided <i>P</i> -value of
6 7 8	202	less than 0.05. All analyses were conducted using Stata software version 15.1
9 10 11	203	(StataCorp LLC; College Station, TX, USA).
12 13 14	204	
15 16 17	205	Patient and Public involvement
18 19 20	206	Patients or the public were not involved in this research. However, the results of this
21 22 23	207	study will be disseminated to the public through various means including published
24 25 26	208	papers and presentations.
27 28 29	209	
30 31 32		
33 34 35 36		
37 38 39		
40 41 42		
43 44		
45 46 47		
48 49		
50 51 52		
52 53 54		
55 56		
57 58		
59		

1 2		15
3 4 5	210	Results
6 7 8	211	Study participants
9 10 11 12	212	We analysed $n = 246\ 671$ individuals in the baseline data set in FY2014 (Table1) and
13 14 15	213	n = 181959 individuals in the cohort data set FY2014-FY2018. Because the follow-up
16 17	214	was four years, the cohort data set was slightly smaller than the baseline data set,
18 19 20	215	especially as a number of young individuals aged 20-24 and older individuals aged >60
21 22 23 24	216	dropped out. This may be due to raising children or early retirement, and explains the
24 25 26 27	217	higher proportion of men in the cohort data set. Mean age and co-morbidity numbers
28 29 30	218	among CCI diseases were mostly comparable between the two data sets, although the
31 32 33	219	prevalence differed for diabetes mellitus, cerebrovascular disease, and chronic
34 35 36	220	pulmonary disease (eTable 2 in the Supplement). In the cohort data set, differences in
37 38 39	221	disease prevalence between genders were observed. Notably, men had a higher
40 41 42	222	prevalence of diabetes mellitus ($P = 0.001$) whereas women had a higher prevalence of
43 44 45	223	chronic pulmonary disease ($P = 0.002$).
46 47	224	
48 49 50 51	225	Estimated prevalence of multimorbidity in the Japanese total population
52 53 54	226	The prevalence of diagnosed diseases in FY2014 was applied to the vital statistics of
55 56 57	227	the Japanese population in 2014. The standardised prevalence of multimorbidity was
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 49

BMJ Open

1 2		16
3 4 5 6 7 8 9	228	estimated to 26.1% (26.1% in men, 26.0% in women) in the Japanese total population
	229	(eTable 3A in the Supplement). The prevalence rate with age was increased , i.e.,
10 11	230	approximately 5% (25-24 (3.9%), 25-29 (7.7%)), 10% (30-34 (9.7%), 35-39 (12.5%)),
12 13 14	231	20% (40-44 (14.6%), 45-49 (19.0%)), 30% (50-54 (25.9%), 55-59 (33.2%)), 50% (60-64
15 16 17	232	(40.7%), 65-69 (49.9%)), and 60% (70-74).(Fig. 2A. Details of the prevalence of
18 19 20	233	diseases as well as the below results are shown in eTable 3B in the Supplement).
21 22 23	234	Figure 2B shows the types of diseases and their prevalence across age groups. The top
24 25 26	235	five diseases across the age groups "young" (20-39), "middle-aged (40-59), and "old"
27 28 29	236	(60-74) in order of prevalence were "young": chronic pulmonary disease, peptic ulcer
30 31 32 33	237	disease, liver disease, diabetes mellitus, and any malignancy; "middle-aged": chronic
33 34 35 36	238	pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and any
37 38 39	239	malignancy; and "old": diabetes mellitus, chronic pulmonary disease, liver disease,
40 41 42	240	peptic ulcer disease, and cerebrovascular disease. Notably, diabetes mellitus moved up
42 43 44 45	241	across the age groups from ranking fourth to first. In Figure 2C, disease prevalence is
43 46 47 48	242	shown in comparison to disease prevalence in the 40-44 age group. After the age of 40-
48 49 50 51	243	44, the top five accelerating diseases were dementia, cerebrovascular disease,
52 53 54	244	peripheral vascular disease, metastatic tumour, and congestive heart failure.
55 56 57	245	
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 49

	246	The association of multimorbidity with outcome by age group.
	247	The composite outcomes occurred 17.2% (death 0.8%, hospitalisation 16.9%) in the
)	248	follow-up period (eTable2). Cox regression analysis showed that young individuals aged
2 3 1	249	20-39 with multimorbidity had a higher hazard ratio (HR) compared to the same age
5 7	250	group without multimorbidity (HR = 2.43 [95% CI, 2.30-2.56]). Further, HRs increased
3))	251	across age groups (HR = 2.55 [95% CI, 2.47-2.63] ages 40-59; HR = 3.41 [95% CI,
 <u>2</u> 3	252	3.23-3.53] ages \geq 60) (Fig. 3). The impact of multimorbidity on outcome exceeded that of
1 5 5	253	aging (HR = 1.62 [95% CI, 1.56-1.69] ages ≥60 and HR = 1.10 [95% CI, 1.07-1.13] ages
7 3 9	254	40-59 without multimorbidity) (Fig. 3). That was to say, even in aged 20-39 with
) <u>2</u>	255	multimorbidity has a risk more than ages ≥60 without multimorbidity.
3 1 5	256	We also assessed HRs for non-multimorbid and multimorbid women and men
5 7 3	257	separately and found that women had a lower HR than men in the 20-39 age group but
) 	258	a higher HR than men in the ≥60 age group (eTable 4 in the Supplement).
2 3 1		
5		
3 9)		
 <u>2</u> 3		
1 5		

1 2		18
3 4 5	260	Discussion
6 7 8 9	261	In this study we analysed nationwide medical claims data for 15 chronic diseases in a
10 11 12	262	large cohort of the general population of Japan. As key findings, standardised
13 14 15	263	prevalence rates for multimorbidity were estimated to 26.1% for men and 26.0% for
16 17 18	264	women. Further, age group-specific prevalence rates for multimorbidity ranged from
19 20 21	265	3.9% (20-24 years) to 14.6% (40-44 years) and 60.1% (70-74 years), showing an
22 23 24	266	accelerating increase after age 40. Importantly, significant differences in the clinical
25 26 27	267	outcomes of multimorbidity versus no multimorbidity were already present in young and
28 29 30	268	middle-aged individuals.
31 32 33	269	The present study drew individuals covering a wide age range from a nationwide
34 35 36	270	general population. This allowed us to examine the burden of multiple co-morbidities in
37 38 39	271	young, middle-aged and old age groups in the real world. In addition, because Japan
40 41 42	272	has a high medical insurance coverage rate, it was possible to comprehensively identify
43 44 45	273	chronic diseases from receipts. Further, longitudinal analysis enabled us to examine the
46 47 48	274	clinical outcomes of multiple co-morbidities. With regard to limitations, the target
49 50 51	275	population comprised regular employees and their families and might accordingly be
52 53 54	276	healthier than the general population. Also, we defined multimorbidity by disease list
55 56 57	277	included in CCI most likely to lead to death, hence, we were not able to consider other
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 49

1 2		19
3 4 5 6 7 8 9 10 11 12 13 14 15	278	diseases associated with health-related quality of life loss. CCI originally includes
	279	comorbidities that have a strong impact on mortality, not quality of life and well-being.
	280	The presence of mental or psychosomatic disorders, which have been shown to be
	281	increasing, particularly in individuals already suffering from other chronic diseases, ²⁷
16 17	282	younger people, ²⁸ and people with a low socio-economic status. ²⁹ Such diseases often
18 19 20	283	remain undiagnosed or underreported in health records. ³⁰ Also, we collected diseases
21 22 23	284	which were occurred during the year (FY2014). Therefore, patients who were untreated,
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	285	undiagnosed, or discontinued treatment cannot be picked up. These limitations likely
	286	contributed to an underestimation of multimorbidity in our cohort. Further, because we
	287	did not manually verify the presence of disease using the physician's medical records
	288	data or medication information, disease names extracted from the medical claims data
	289	might be incorrect in some cases. In particular, Japanese physicians sometimes change
	290	the name of the disease in the medical record to the "correct" disease name for the
43 44	291	medication they wish to prescribe, a practice called "disease name for claims data".
45 46 47	292	Because of differences in data sources and study populations, direct comparison of
48 49 50	293	population-based prevalence rates between studies is not straightforward. Nonetheless,
51 52 53	294	the standardised prevalence rates for multimorbidity as reported in the present study -
54 55 56 57	295	26.1% for men and 26.0% for women - are similar to those reported by recent studies in
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 49

BMJ Open

1 2		20
3 4 5	296	other high-income countries, such as the United States (25% in men, 25% in women), 31
$\begin{array}{c} 6\\7\\8\\9\\10\\11\\23\\14\\15\\16\\17\\18\\19\\20\\21\\22\\32\\4\\25\\26\\27\\28\\29\\30\\31\\23\\34\\536\\37\\38\\90\\41\\243\\44\\56\\47\\48\\9\\50\\55\\56\end{array}$	297	England (24.4% in men, 30% in women), 32 Canada (24.3% whole population), 5 and
	298	Denmark (19.3% in men, 23.7% in women). ⁶ Also recently some Asian countries
	299	reported similar prevalence, Iran (13.4% in men, 25.0% in women), ³³ India, and
	300	Bangladesh (53.7% - 56.5% in both genders, over aged 60). ³⁴ Many previous studies on
	301	multimorbidity focused on the older generation, aged 65 and up, because of the larger
	302	number of chronic diseases in this age group and the increasing number of people
	303	entering it. However, our present data show that already approximately 10% of 30-34-,
	304	19% of 45-49-, and 33% of 55-59-year-olds have ≥2 chronic diseases. Further, 1% of
	305	30-34-, 4% of 45-49-, and 9% of 55-59-year-olds have ≥5 chronic diseases. These
	306	results show that multimorbidity is already prominent in the middle-aged population.
	307	Recent studies reported similar or slightly higher prevalence rates for ≥2 chronic
	308	diseases in an American (8% of 30-, 20% of 45-, and 38% of 55-year-olds) ²⁹ and a
	309	Canadian (10.5% of 18-44-, 27.4% of 45-54-, and 46.6% of 55-64-year-olds) ⁵
	310	population, although these two studies also included mental diseases and osteoporosis,
	311	which our present study did not. Our present study shows that, among 15 chronic
	312	diseases, the top five diseases in the 55-64 age group are chronic pulmonary disease
	313	(20.4-23.1%), diabetes mellitus (19.3-24.5%), liver disease (17.2-19.9%), peptic ulcer
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 49

3 4 5	314	disease (15.6-18.2%), and any malignancy (8.2-10.7%). With regard to diabetes
6 7 8 9 10 11 12	315	mellitus, the prevalence in the present study is similar to that previously reported in an
	316	American population (15-30% in individuals aged 55-65) ²⁹ but higher than that in a
13 14 15	317	Canadian population (16.6% in individuals aged 55-64) ⁴ . The prevalence of chronic
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	318	pulmonary disease in our present 55-65-year-olds was almost twice as high as those
	319	seen for the combined prevalence of asthma and chronic obstructive pulmonary disease
	320	(COPD) in an American population aged 55-65 years (5% for men and 10% for
	321	women) ²⁹ and in a Canadian population aged 55-64 years (13.7%). ⁵ This difference
	322	might have arisen due to our inclusion of various other pulmonary diseases besides
	323	asthma and COPD. Regarding liver disease, the prevalence seen for 55-65-year-olds in
	324	the present study was comparable to that seen in an adult population in Northern Italy ³⁵
	325	and in an adult population in Korea, ³⁶ although this comparison requires care since the
	326	types of liver disease in these studies and the age groups included vary.
	327	Analysis of clinical outcomes using Cox regression revealed that the presence of
	328	multimorbidity increased HRs in all age groups, including young individuals. In addition,
49 50 51	329	the comparison of the increased HRs resulting from multimorbidity versus no
52 53 54	330	multimorbidity showed that the impact of multimorbidity exceeds that of increasing age.
55 56 57	331	These results indicate that multimorbidity places a burden on all age groups.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 49

BMJ Open

1 2		22
3 4 5	332	Most of the five most prevalent diseases (diabetes mellitus, chronic pulmonary
6 7 8 9 10 11 12 13 14 15 16 17 18	333	disease, liver disease, peptic ulcer disease, and any malignancy) in the present study
	334	are lifestyle-related diseases that develop slowly over time. This trend should be
	335	greeted with alarm. We trust that this study raises awareness of the potential health
	336	risks and burden associated with the early onset of multimorbidity in young and middle-
19 20 21	337	aged, the period when one is busy working and raising children. Future studies should
22 23	338	investigate the specific lifestyle factors associated with an elevated risk of multimorbidity
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	339	in the Japanese working population. Ultimately, public health care policies should be
	340	aimed at efforts to reverse the trend toward early multimorbidity onset.
	341	In conclusion, the present study confirmed the prevalence of MM by including in the
	342	denominator those who did not have the receipt of medical claims and to estimate the
	343	prevalence of MM in the general population. Furthermore, we revealed that the impact
	344	of multimorbidity is already clinically significant in middle-aged Japanese, with elevated
42 43 44 45	345	adverse events such as hospitalisation or death. In addition, the risk posed by
46 47	346	multimorbidity exceeds that of aging in all age groups. These results underscore the
48 49 50 51 52 53	347	need to undertake healthcare intervention against the onset of multimorbidity before
	348	middle-aged, and not to leave it as a problem for geriatricians.
54 55 56 57	349	
57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2				
3 4	250			
5	350	Ethical Approval		
6				
7 8	351	The present study was approved by the Institutional Review Board (IRB) of Kyoto		
8 9				
10	352	University (approval number: R0817). All data were anonymised before analysis and		
11	552	Oniversity (approval number: 10017). All data were anonymised before analysis and		
12 13				
14	353	none of the researchers had access to patient-identifiable information. The IRB waived		
15				
16	354	informed consent for this observational study.		
17 18				
19	355			
20	555			
21 22				
23	356	Data Availability Statement		
24				
25 26	357	All data are incorporated into the article and its online supplementary material.		
26 27				
28	358			
29	550			
30 31				
32	359	Author Contributions		
33				
34 35	360	Concept and design: YS, SF. Acquisition, analysis, or interpretation of data: all authors.		
36				
37	361	Drafting of the manuscript: YS, SF. Critical revision of the manuscript for important		
38	001			
39 40	2(2	intellectual contents all outhors. Statistical analysis, VS, SE, Obtained funding, VS		
41	362	intellectual content: all authors. Statistical analysis: YS, SF. Obtained funding: YS.		
42				
43 44	363	Administrative, technical, or material support: YS, SF. Study supervision: SF, AI, TN.		
45				
46	364	YS had full access to all the data in the study and takes responsibility for the integrity of		
47 48				
40 49	265	the date and the ecouracy of the date analysis. All outhers gave final enproved and		
50	365	the data and the accuracy of the data analysis. All authors gave final approval and		
51				
52 53	366	agreed to be accountable for all aspects of work.		
54				
55	367			
56 57				
58				
59				
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1 2		24
3 4 5	368	Acknowledgements
6 7 8	369	The authors are grateful to HIA ² CE for providing data for the present study.
9 10 11	370	
12 13 14	371	Funding
15 16 17	372	This work was supported by Grants-in-Aid from the Japan Society for the Promotion of
18 19 20	373	Science (JSPS) KAKENHI Grant Number 19K19458 (YS). The sponsor had no role in
21 22 23	374	the design of the study; in the collection, analysis and interpretation of data; in the
24 25 26	375	writing of the report; or in the decision to submit the article for publication.
27 28 29	376	
30 31 32	377	Competing Interests None declared.
33 34 35	378	None declared.
36 37 38	379	
39 40 41	380	Patient Consent for Publication
42 43 44	381	Not applicable.
45 46 47 48	382	
49 50 51	383	
52 53 54	384	Figure Legends
54 55 56 57	385	Figure 1. Participant selection flowchart. FY; fiscal year
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

387 Figure 2. Multimorbidity across age groups in the Japanese total population aged 20-388 74. A) Percentage of the population having 0 to ≥ 5 chronic diseases by age group. B) 389 Prevalence of the top ten chronic diseases by age group. C) The top ten chronic 390 diseases with the steepest increase after age 40-44 years. 392 Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity (≥2 393 diagnosed diseases) in three age groups in a 5-year cohort of *n* = 181 959 Japanese 394 aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval References Bleich SN, Sherrod C, Chiang A, et al. Systematic Review of Programs Treating High-Need and High-Cost People With Multiple Chronic Diseases or Disabilities in the United States, 2008-2014. Prev Chronic Dis. Nov 12 2015;12:E197. doi:10.5888/pcd12.150275 Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative review. Prev Med Rep. Dec 2018;12:284-293. doi:10.1016/j.pmedr.2018.10.008 Prathapan S, Fernando G, Matthias AT, Bentota Mallawa Arachchige Charuni Y, Abeygunawardhana HMG, Somathilake B. The rising complexity and burden of

Page 27 of 49

BMJ Open

1 2			26
3 4	405		multimorbidity in a middle-income country. PLoS One. 2020;15(12):e0243614.
5 6	406		doi:10.1371/journal.pone.0243614
7 8 9	407	4	Low LL, Kwan YH, Ko MSM, et al. Epidemiologic Characteristics of Multimorbidity
10 11	408		and Sociodemographic Factors Associated With Multimorbidity in a Rapidly Aging
12 13	409		Asian Country. JAMA Netw Open. Nov 1 2019;2(11):e1915245.
14 15 16	410		doi:10.1001/jamanetworkopen.2019.15245
17 18	411	5	Pefoyo AJ, Bronskill SE, Gruneir A, et al. The increasing burden and complexity of
19 20	412		multimorbidity. BMC Public Health. Apr 23 2015;15:415. doi:10.1186/s12889-015-
21 22	413		1733-2
23 24 25	414	6	Schiotz ML, Stockmarr A, Host D, Glumer C, Frolich A. Social disparities in the
26 27	415		prevalence of multimorbidity - A register-based population study. BMC Public
28 29	416		<i>Health</i> . May 10 2017;17(1):422. doi:10.1186/s12889-017-4314-8
30 31 32	417	7	Sum G, Ishida M, Koh GC, Singh A, Oldenburg B, Lee JT. Implications of
33 34	418		multimorbidity on healthcare utilisation and work productivity by socioeconomic
35 36	419		groups: Cross-sectional analyses of Australia and Japan. PLoS One.
37 38 39	420		2020;15(4):e0232281. doi:10.1371/journal.pone.0232281
40 41	421	8	Bahler C, Huber CA, Brungger B, Reich O. Multimorbidity, health care utilization
42 43	422		and costs in an elderly community-dwelling population: a claims data based
44 45 46	423		observational study. BMC Health Serv Res. Jan 22 2015;15:23.
40 47 48	424		doi:10.1186/s12913-015-0698-2
49 50	425	9	Hu RH, Hsiao FY, Chen LJ, Huang PT, Hsu WW. Increasing age- and gender-
51 52	426		specific burden and complexity of multimorbidity in Taiwan, 2003-2013: a cross-
53 54 55			
56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00			

1 2			27
3 4	427		sectional study based on nationwide claims data. BMJ Open. Jun 9
5 6 7 8 9 10 11	428		2019;9(6):e028333. doi:10.1136/bmjopen-2018-028333
	429	10	Lenzi J, Avaldi VM, Rucci P, Pieri G, Fantini MP. Burden of multimorbidity in
	430		relation to age, gender and immigrant status: a cross-sectional study based on
12 13	431		administrative data. BMJ Open. Dec 21 2016;6(12):e012812.
14 15 16	432		doi:10.1136/bmjopen-2016-012812
17 18	433	11	Picco L, Achilla E, Abdin E, et al. Economic burden of multimorbidity among older
19 20	434		adults: impact on healthcare and societal costs. BMC Health Serv Res. May 10
21 22 23	435		2016;16:173. doi:10.1186/s12913-016-1421-7
23 24 25	436	12	van den Bussche H, Schon G, Kolonko T, et al. Patterns of ambulatory medical
26 27	437		care utilization in elderly patients with special reference to chronic diseases and
28 29	438		multimorbidityresults from a claims data based observational study in Germany.
30 31 32	439		BMC Geriatr. Sep 13 2011;11:54. doi:10.1186/1471-2318-11-54
33 34	440	13	Katikireddi SV, Skivington K, Leyland AH, Hunt K, Mercer SW. The contribution of
35 36	441		risk factors to socioeconomic inequalities in multimorbidity across the lifecourse: a
37 38 39	442		longitudinal analysis of the Twenty-07 cohort. BMC Med. Aug 24 2017;15(1):152.
40 41	443		doi:10.1186/s12916-017-0913-6
42 43	444	14	Kone AP, Mondor L, Maxwell C, Kabir US, Rosella LC, Wodchis WP. Rising
44 45 46	445		burden of multimorbidity and related socio-demographic factors: a repeated
40 47 48	446		cross-sectional study of Ontarians. Can J Public Health. Apr 13
49 50	447		2021;doi:10.17269/s41997-021-00474-y
51 52	448	15	Singer L, Green M, Rowe F, Ben-Shlomo Y, Kulu H, Morrissey K. Trends in
53 54 55	449		multimorbidity, complex multimorbidity and multiple functional limitations in the
56 57			
58 59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			For peer review only - http://bhijopen.bhij.com/site/about/guidelines.xhtml

2	8

2			20
2 3 4	450		ageing population of England, 2002-2015. J Comorb. Jan-Dec
5 6	451		2019;9:2235042X19872030. doi:10.1177/2235042X19872030
7 8 9	452	16	Katsutoshi H, Annabel B, Yasuhiko M, et al. Current Status, Challenges, and
10 11	453		Future Perspectives of Real-World Data and Real-World Evidence in Japan.
12 13	454		Drugs - Real World Outcomes. 2021;8:459–480. doi:org/10.1007/s40801-021-
14 15 16	455		00266-3
17 18	456	17	Eng SL, Hui LK, Elaine QY H, Sok HT, et al. Systematic review on the instruments
19 20	457		used for measuring the association of the level of multimorbidity and clinically
21 22	458		important outcomes. BMJ Open. 2021;May
23 24 25	459		5;11(5):e041219. doi:10.1136/bmjopen-2020-041219.
26 27	460	18	Karen B, Stewart WM, Michael N, et al. Epidemiology of multimorbidity and
28 29	461		implications for health care, research, and medical education: a cross-sectional
30 31 32	462		study. <i>Lancet</i> . 2012;Jul 7;380(9836):37-43. doi:10.1016/S0140-6736(12)60240-2.
33 34	463	19	Jürisson M, Heti P, Anneli U, et al. Prevalence of chronic conditions and
35 36 37	464		multimorbidity in Estonia: a population-based cross-sectional study. BMJ Open.
38 39	465		2021;Oct 5;11(10):e049045. doi:10.1136/bmjopen-2021-049045.
40 41	466	20	Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
42 43 44	467		prognostic comorbidity in longitudinal studies: development and validation. J
44 45 46	468		Chronic Dis. 1987;40(5):373-83. doi:10.1016/0021-9681(87)90171-821 Quan
47 48	469		H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index
49 50	470		and score for risk adjustment in hospital discharge abstracts using data from 6
51 52 53	471		countries. <i>Am J Epidemiol</i> . Mar 15 2011;173(6):676-82. doi:10.1093/aje/kwq433
54 55			
56 57 58			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 30 of 49

BMJ Open

1

2			
3 4	472	21	Vijaya S, Hude Q, Patricia H, Kiyohide F. Cross-National Comparative
5 6	473		Performance of Three Versions of the ICD-10 Charlson Index. Medical Care.
7 8 9	474		2007 Dec;45(12):1210-5. doi: 10.1097/MLR.0b013e3181484347.
10 11	475	22	Johnston MC, Crilly M, Black C, Prescott GJ, Mercer SW. Defining and measuring
12 13	476		multimorbidity: a systematic review of systematic reviews. Eur J Public Health.
14 15	477		Feb 1 2019;29(1):182-189. doi:10.1093/eurpub/cky098
16 17 18	478	23	Le Reste JY, Nabbe P, Manceau B, et al. The European General Practice
19 20	479		Research Network presents a comprehensive definition of multimorbidity in family
21 22	480		medicine and long term care, following a systematic review of relevant literature.
23 24 25	481		<i>J Am Med Dir Assoc</i> . May 2013;14(5):319-25. doi:10.1016/j.jamda.2013.01.001
26 27	482	24	Ooba N, Setoguchi S, Ando T, et al. Claims-based definition of death in Japanese
28 29	483		claims database: validity and implications. PLoS One. 2013;8(5):e66116.
30 31 32	484		doi:10.1371/journal.pone.0066116
33 34	485	25	Sakai M, Ohtera S, Iwao T, et al. Validation of claims data to identify death among
35 36	486		aged persons utilizing enrollment data from health insurance unions. Environ
37 38 39	487		<i>Health Prev Med</i> . Nov 23 2019;24(1):63. doi:10.1186/s12199-019-0819-3
39 40 41	488	26	Statistics Bureau of Japan. Preliminary count of the Japanese population.
42 43	489		Accessed March, 2014. http://www.stat.go.jp/data/jinsui/index.html
44 45	490	27	Aoki T, Yamamoto Y, Shimizu S, Fukuhara S. Physical multimorbidity patterns and
46 47 48	491		depressive symptoms: a nationwide cross-sectional study in Japan. Fam Med
49 50	492		Community Health. 2020;8(1):e000234. doi:10.1136/fmch-2019-000234
51 52	493	28	Egede LE. Major depression in individuals with chronic medical disorders:
53 54 55	494		prevalence, correlates and association with health resource utilization, lost
56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31 of 49

1

2	\mathbf{n}
.۲	U
υ	U.

2			50
3 4	495		productivity and functional disability. Gen Hosp Psychiatry. Sep-Oct
5 6	496		2007;29(5):409-16. doi:10.1016/j.genhosppsych.2007.06.002
7 8 9	497	29	Rocca WA, Boyd CM, Grossardt BR, et al. Prevalence of multimorbidity in a
10 11	498		geographically defined American population: patterns by age, sex, and
12 13	499		race/ethnicity. Mayo Clin Proc. Oct 2014;89(10):1336-49.
14 15	500		doi:10.1016/j.mayocp.2014.07.010
16 17 18	501	30	Cassell A, Edwards D, Harshfield A, et al. The epidemiology of multimorbidity in
19 20	502		primary care: a retrospective cohort study. Br J Gen Pract. Apr
21 22	503		2018;68(669):e245-e251. doi:10.3399/bjgp18X695465
23 24 25	504	31	Violan C, Foguet-Boreu Q, Hermosilla-Perez E <i>, et al</i> . Comparison of the
26 27	505		information provided by electronic health records data and a population health
28 29	506		survey to estimate prevalence of selected health conditions and multimorbidity.
30 31 32	507		BMC Public Health. Mar 21 2013;13:251. doi:10.1186/1471-2458-13-251
33 34	508	32	St Sauver JL, Boyd CM, Grossardt BR, et al. Risk of developing multimorbidity
35 36	509		across all ages in an historical cohort study: differences by sex and ethnicity. BMJ
37 38	510		<i>Open</i> . Feb 3 2015;5(2):e006413. doi:10.1136/bmjopen-2014-006413
39 40 41	511	33	Masoomeh A, Azam M, Mehdi Y. et al. Multimorbidity as an important issue among
42 43	512		women: results of a gender difference investigation in a large population-based
44 45	513		cross-sectional study in West Asia. BMJ Open. 2017;May 9;7(5):e013548. doi:
46 47 48	514		10.1136/bmjopen-2016-013548.
49 50	515	34	Sanghamitra P, Subhashisa S, Mohammad AH, et al. Prevalence and outcomes of
51 52	516		multimorbidity in South Asia: a systematic review bmj open. BMJ Open. 2015 Oct
53 54 55	517		7;5(10):e007235. doi:10.1136/bmjopen-2014-007235.
56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

60

2			
3 4	518	35	Bellentani S, Tiribelli C, Saccoccio G, et al. Prevalence of chronic liver disease in
5 6	519		the general population of northern Italy: the Dionysos Study. Hepatology. Dec
7 8 9	520		1994;20(6):1442-9. doi:10.1002/hep.1840200611
9 10 11	521	36	Park SH, Plank LD, Suk KT, et al. Trends in the prevalence of chronic liver
12 13	522		disease in the Korean adult population, 1998-2017. Clin Mol Hepatol. Apr
14 15 16	523		2020;26(2):209-215. doi:10.3350/cmh.2019.0065
16 17 18	524		
19 20	525		
21 22			
23 24 25			
25 26 27			
27 28 29			
30 31			
32 33			
34 35			
36 37			
38 39			
40 41			
42 43			
44 45			
46 47			
48 49			
50 51			
52 53			
54 55			
56 57			
58 59			

\mathbf{a}	^
.۲	7
v	~

2 3 4	526	Supplementary Information
5 6	527	
7 8 9	528	Supplementary eTable 1. List of diseases and their ICD-10 codes used to define
) 10 11	529	diseases in medical claims data
12 13	530	Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and
14 15 16	531	cohort data
17 18	532	Supplementary eTable 3A. Diagnosed disease prevalence in fiscal year 2014 applied
19 20	533	to the Japanese total population by gender
21 22 23	534	Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied
23 24 25	535	to the Japanese total population by age group
26 27		Supplementary eTable 4. Hazard ratios in multimorbid individuals based on
28 29		hospitalisation or death rates in a 5-year cohort of $n = 111088$ men and
30 31 32		<i>n</i> = 70 871 women. Cox regression analysis
33 34	536	
35 36		
37 38		
39 40		
41 42 42		
43 44		
45 46		
47		
48 49		
50		
51 52		
53		
54 57		
55 56		
57		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

537 Table 1. Prevalence of diagnosed diseases in FY2014 applied to the Japanese

538 total population

			Baseline dat	a in FY2		
_	Overall		Men		Women	
	<i>N</i> =246,671	%	<i>N</i> =144,237	%	<i>N</i> =102,434	%
Men	144,237	58.5	-	-	-	
Age (Mean, SD)	45.0	12.9	44.6	12.9	45.7	12.8
20-24	18,524	7.5	11,315	7.8	7,209	7.0
25-29	17,251	7.0	12,014	8.3	5,237	5.1
30-34	18,093	7.3	11,104	7.7	6,989	6.8
35-39	23,878	9.7	13,278	9.2	10,600	0.3
40-44	39,721	16.1	21,640	15.0	18,081	17.7
45-49	40,908	16.6	24,191	16.8	16,717	16.3
50-54	29,466	11.9	17,577	12.2	11,889	11.6
55-59	20,149	8.2	11,343	7.9	8,806	8.6
60-64	21,278	8.6	12,706	8.8	8,572	8.4
65-69	11,931	4.8	6,768	4.7	5,163	5.0
70-74	5,472	2.2	2,301	1.6	3,171	3.1
AIDS/HIV	96	0.0	62	0.0	34	0.0
Any malignancy ^a	12,047	4.9	5,611	3.9	6,436	6.3
Cerebrovascular disease	10,866	4.4	6,510	4.5	4,356	4.3
Chronic pulmonary disease	43,216	17.5	22,484	15.6	20,732	20.2
Congestive heart failure	8,497	3.4	5,515	3.8	2,982	2.9
Dementia	447	0.2	210	0.1	237	0.2
Diabetes mellitus	27,344	11.1	17,881	12.4	9,463	9.2
Hemiplegia or paraplegia	813	0.3	533	0.4	280	0.3
Liver disease	27,127	11.0	16,954	11.8	10,173	9.9
Metastatic solid tumor	2,532	1.0	1,263	0.9	1,269	1.2
Myocardial infarction	1,628	0.7	1,325	0.9	303	0.3
Peptic ulcer disease	26,047	10.6	14,511	10.1	11,536	11.3
Peripheral vascular disease	10,407	4.2	5,723	4.0	4,684	4.6
Renal disease	2,573	1.0	1,751	1.2	822	0.0
Rheumatologic disease	4,146	1.7	1,397	1.0	2,749	2.7
≥1 disease among top 5	71,880	29.1	40,833	28.3	31,047	30.3
Disease no. among CCI	,				,	
no disease	171,140	69.4	101,857	70.6	69,283	67.6
1 disease	22,947	9.3	12,032	8.3	10,915	10.7
2 diseases	17,120	6.9	8,994	6.2	8,126	7.9
3 diseases	12,822	5.2	7,273	5.0	5,549	5.4
4 diseases	9,588	3.9	5,874	4.1	3,714	3.6
≥ 5 diseases	13,054	5.3	8,207	5.7	4,847	4.
Multimorbidity						
(≥2 diseases among CCI)	52,584	21.3	30,348	21.0	22,236	21.

Values are numbers (%) unless otherwise stated.

^a Any malignancy includes leukemia and lymphoma.

FY; fiscal year

SD; standard deviation

CCI; Charlson Comorbidity Index

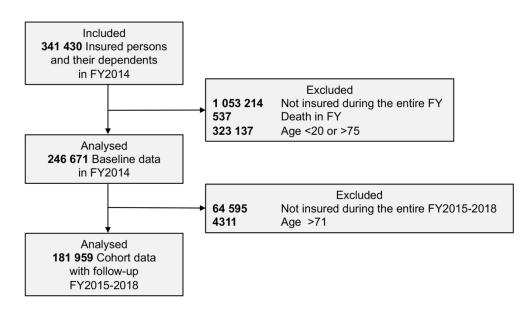
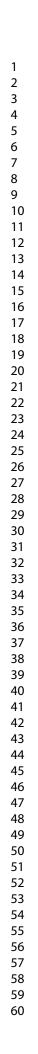



Figure 1. Participant selection flowchart. FY; fiscal year

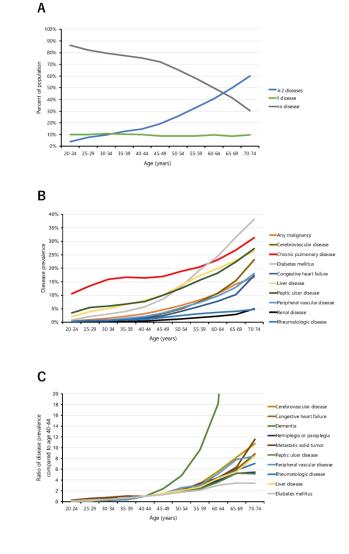
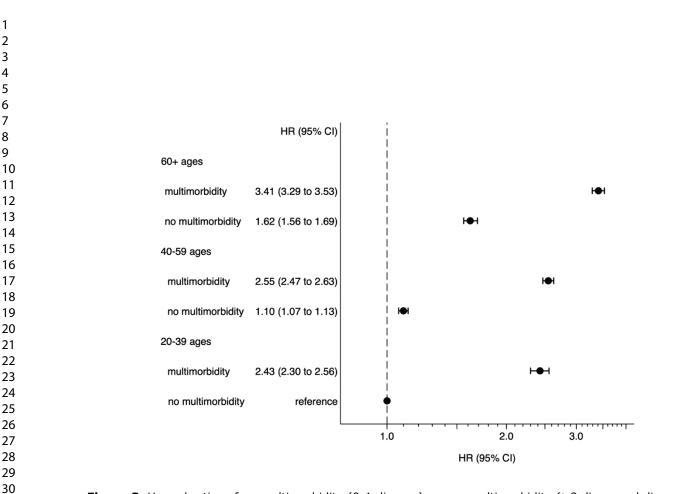



Figure 2. Multimorbidity across age groups in the Japanese total population aged 20-74. A) Percentage of the population having 0 to ≥5 chronic diseases by age group. B) Prevalence of the top ten chronic diseases by age group. C) The top ten chronic diseases with the steepest increase after age 40-44 years.

297x420mm (200 x 200 DPI)

Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity (≥ 2 diagnosed diseases) in three age groups in a 5-year cohort of n = 181 959 Japanese aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary material

Title: The prevalence of multimorbidity and its associations with hospitalisation or death in Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in the middle-aged generation

Authors: Yoshiyuki Saito PharmD, Ataru Igarashi PhD, Takeo Nakayama MD PhD, Shingo Fukuma MD

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and cohort data

Supplementary eTable 3A. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by gender

Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation or death rates in a 5-year cohort of $n = 111\ 088$ men and $n = 70\ 871$ women. Cox regression analysis

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Diseases	ICD-10 codes					
AIDS/HIV	B20.x-B22.x, B24.x					
Any malignancy, incl. leukemia and lymphoma	C00.x-C26.x, C30.x-C34.x, C37.x-C41x, C45.x-C58.x, C60.x-C76.x, C81.x-C85.x, C88.3, C88.7, C88.9, C90.0, C90.1, C91.x- C93.x, C94.0-C94.3, C94.5, C94.7, C95.x, C96.x, C4 C88.0-C88.2, C90.2, C94.4, C97.x					
Cerebrovascular disease	169.x, G45.x, G46.x, H34.0, I60.x-I68.x					
Chronic pulmonary //	J41.x-J47.x, J60.x-J66.x, I27.8, I27.9, J40.x, J67.x, J68.4, J70.1, J70.3					
Congestive heart failure	150.x, 109.9, 111.0, 113.0, 113.2, 125.5, 142.0, 142.5- 142.9, 143.x, P29.0					
Dementia	F00.x-F02.x, F03.x, F05.1, G30.x, G31.1					
Diabetes with chronic complication	E10.2-E10.4, E11.2-E11.4, E13.2-E13.4, E14.2-E14.4, E10.5, E10.7, E11.5, E11.7, E12.2-E12.5, E12.7, E13.5, E13.7, E14.5, E14.7					
Diabetes without chronic complication	E10.1, E10.9, E11.1, E11.9, E13.1, E13.9, E14.1, E14.9, E10.0, E10.6, E10.8, E11.0, E11.6, E11.8, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.6, E13.8, E14.0, E14.6, E14.8					
Hemiplegia or paraplegia	G81.x, G82.0-G82.2, G04.1, G11.4, G80.1, G80.2, G82.3-G82.5, G83.0-G83.4, G83.9					
Metastatic solid tumor	C77.x-C79.x, C80.x					
Mild liver disease	K70.3, K71.7, K73.x, K74.3- K74.6, B18.x, K70.0-K70.2, K70.9, K71.3-K71.5, K74.0-K74.2, K76.0, K76.2-K76.4, K76.8, K76.9, Z94.4					
Moderate or severe liver disease	K72.1, K72.9, K76.6, K76.7, I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K76.5					
Myocardial infarction	125.2, 121.x, 122.x					
Peptic ulcer disease	K25.4-K25.7, K26.4-K26.7, K27.4-K27.7, K28.4-K28.7, K25.0-K25.3, K25.9, K26.0-K26.3, K26.9, K27.0-K27.3, K27.9, K28.0-K28.3, K28.9					
Peripheral vascular disease	I71.x, I73.9, Z95.8, Z95.9, I70.x, I73.1, I73.8, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9					

Renal disease	N18.x, I12.0, I13.1, N03.2-N03.7, N05.2-N05.7, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2
Rheumatology disease	M05.x, M06.0, M32.x, M33.2, M34.x, M35.3, M06.1-M06.4, M06.8, M06.9, M31.5, M33.0, M33.1, M33.9, M35.1, M36.0

Supplementary eTable 2. Characteristics of baseline data in fiscal ye	ear 2014 and cohort data
---	--------------------------

	Baseline data	in FY2014	Cohort data	a	<i>P</i> -value ^c
N	242,360	(100%)	181,959	(100%)	
Men	142,471	(58.8%)	111,088	(61.1%)	<0.01
Age (Mean, SD)	44.5	(12.5)	44.7	(10.6)	<0.01
20-24	18,524	(7.6%)	5,052	(2.8%)	<0.01
25-29	17,251	(7.1%)	12,675	(7.0%)	
30-34	18,093	(7.5%)	14,784	(8.1%)	
35-39	23,878	(9.9%)	20,508	(11.3%)	
40-44	39,721	(16.4%)	35,168	(19.3%)	
45-49	40,908	(16.9%)	37,124	(20.4%)	
50-54	29,466	(12.2%)	25,906	(14.2%)	
55-59	20,149	(8.3%)	13,052	(7.2%)	
60-64	21,278	(8.8%)	10,735	(5.9%)	
65-69	11,931	(4.9%)	6,246	(3.4%)	
70-71	1,161	(0.5%)	709	(0.4%)	
AIDS/HIV	94	(0.0%)	74	(0.0%)	0.76
Any malignancy ^a	11,343	(4.7%)	8,377	(4.6%)	0.24
Cerebrovascular disease	9,860	(4.1%)	6,971	(3.8%)	<0.01
Chronic pulmonary disease	41,866	(17.3%)	32,093	(17.6%)	<0.01
Congestive heart failure	7,751	(3.2%)	5,710	(3.1%)	0.27
Dementia	291	(0.1%)	190	(0.1%)	0.13
Diabetes mellitus	25,716	(10.6%)	18,755	(10.3%)	<0.01
Hemiplegia or paraplegia	729	(0.3%)	507	(0.3%)	0.19

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Liver disease	25,999	(10.7%)	19,725	(10.8%)	0.24
Metastatic solid tumor	2,381	(1.0%)	1,823	(1.0%)	0.53
Myocardial infarction	1,526	(0.6%)	1,092	(0.6%)	0.22
Peptic ulcer disease	24,859	(10.3%)	18,594	(10.2%)	0.68
Peripheral vascular disease	9,623	(4.0%)	7,083	(3.9%)	0.20
	Baseline data	in FY2014	Cohort data	1	P-valu
N	242,360	(100%)	181,959	(100%)	
Renal disease	2,350	(1.0%)	1,747	(1.0%)	0.75
Rheumatologic disease	3,931	(1.6%)	2,926	(1.6%)	0.72
At least one disease among the top five ^b	69,014	(28.5%)	50,660	(27.8%)	<0.01
Disease no. among CCI (Mean, SD)	0.8	(1.6)	0.8	(1.6)	0.16
0 disease	169,872	(70.1%)	129,037	(70.9%)	<0.01
1 disease	22,514	(9.3%)	15,532	(8.5%)	
2 diseases	16,605	(6.9%)	12,375	(6.8%)	
3 diseases	12,242	(5.1%)	9,046	(5.0%)	
4 diseases	9,076	(3.7%)	6,816	(3.7%)	
≥ 5 diseases	12,051	(5.0%)	9,153	(5.0%)	
Multimorbidity (≥2 diseases among CCI)	49,974	(20.6%)	37,390	(20.5%)	
Composite outcomes	36,893	(15.2%)	31,224	(17.2%)	<0.01
Death	1,507	(0.6%)	1,507	(0.8%)	
Hospitalisation	36,495	(15.1%)	30,826	(16.9%)	

^a Any malignancy includes leukemia and lymphoma.

^b Top 5 diseases include chronic pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and cerebrovascular disease.

SD; standard deviation, CCI; Charlson Comorbidity Index

° Age (Mean) and Co-morbidity no. (Mean): Student's t-test. All other variables: Pearson's chi-square

test.

Supplementary eTable 3A. Prevalence of diagnosed diseases in FY2014 applied to the Japanese total population by gender

			Baseline dat	a in FY2	2014				Japanese tota	al popu	lation	
	Overall		Men		Women		Overall		Men		Women	
	<i>N</i> =246,671	%	N=144,237	%	<i>N</i> =102,434	%	<i>N</i> =88,923,000	%	<i>N</i> =44,288,000	%	<i>N</i> =44,640,000	
Men	144,237	58.5	-	-	-	-	44,288,000	49.8	-	-	-	
Age (Mean, SD)	45.0	12.9	44.6	12.9	45.7	12.8	48.0	15.3	47.7	15.3	48.4	
20-24	18,524	7.5	11,315	7.8	7,209	7.0	6,203,000	7.0	3,192,000	7.2	3,012,000	
25-29	17,251	7.0	12,014	8.3	5,237	5.1	6,677,000	7.5	3,414,000	7.7	3,264,000	
30-34	18,093	7.3	11,104	7.7	6,989	6.8	7,466,000	8.4	3,788,000	8.6	3,680,000	
35-39	23,878	9.7	13,278	9.2	10,600	0.3	8,670,000	9.8	4,394,000	9.9	4,276,000	
40-44												
	39,721	16.1	21,640	15.0	18,081	17.7	9,793,000	11.0	4,956,000	11.2	4,837,000	
45-49	40,908	16.6	24,191	16.8	16,717	16.3	8,609,000	9.7	4,329,000	9.8	4,278,000	
50-54	29,466	11.9	17,577	12.2	11,889	11.6	7,790,000	8.8	3,903,000	8.8	3,887,000	
55-59	20,149	8.2	11,343	7.9	8,806	8.6	7,653,000	8.6	3,802,000	8.6	3,853,000	
60-64	21,278	8.6	12,706	8.8	8,572	8.4	8,979,000	0.1	4,406,000	9.9	4,573,000	
65-69	11,931	4.8	6,768	4.7	5,163	5.0	9,155,000	10.3	4,414,000	10.0	4,741,000	
70-74	5,472	2.2	2,301	1.6	3,171	3.1	7,928,000	8.9	3,690,000	8.3	4,239,000	
AIDS/												
HIV	96	0.0	62	0.0	34	0.0	34,034	0.0	18,979	0.0	15,055	,
Any malignancy ^a	12,047	4.9	5,611	3.9	6,436	6.3	5,775,260	6.5	2,668,349	6.0	3,106,911	
Cerebrovascular disease	10,866	4.4	6,510	4.5	4,356	4.3	5,773,295	6.5	3,023,765	6.8	2,749,530	
Chronic pulmonary	10,000	7.7	0,010	4.0	4,000	4.0	0,110,200	0.0	0,020,700	0.0	2,140,000	
disease	43,216	17.5	22,484	15.6	20,732	20.2	17,303,735	19.5	7,713,864	17.4	9,589,871	
	8,497	3.4	5,515	3.8	2,982	20.2	4,317,076	4.9	2,459,170	5.6	1,857,906	
Congestive heart failure	0,497	5.4	5,515	3.0	2,902	2.9	4,317,070	4.9	2,459,170	5.0	1,007,900	
Deme	4.47	0.0	040	0.4	007		440.000	0.5	470.050	0.4	000 070	
ntia	447	0.2	210	0.1	237	0.2	410,326	0.5	179,350	0.4	230,976	
Diabetes mellitus	27,344	11.1	17,881	12.4	9,463	9.2	12,689,040	14.3	7,122,240	16.1	5,566,801	
Hemiplegia or paraplegia	813	0.3	533	0.4	280	0.3	424,609	0.5	253,040	0.6	171,569	
Liver disease	27,127	11.0	16,954	11.8	10,173	9.9	11,341,444	2.8	6,031,029	13.6	5,310,415	
Metastatic solid tumor	2,532	1.0	1,263	0.9	1,269	1.2	1,235,336	1.4	598,734	1.4	636,601	
Myocardial infarction	1,628	0.7	1,325	0.9	303	0.3	769,977	0.9	575,894	1.3	194,083	
Peptic ulcer disease	26,047	10.6	14,511	10.1	11,536	11.3	11,238,524	12.6	5,485,994	12.4	5,752,530	
Peripheral vascular												
disease	10,407	4.2	5,723	4.0	4,684	4.6	5,197,644	5.8	2,503,359	5.7	2,694,285	
Renal disease	2,573	1.0	1,751	1.2	822	0.8	1,261,138	1.4	784,770	1.8	476,367	
Rheumatologic disease	4,146	1.7	1,397	1.0	2,749	2.7	1,928,685	2.2	530,072	1.2	1,398,613	
≥1 disease among top 5	71,880	29.1	40,833	28.3	31,047	30.3	30,041,150	33.8	14,676,045	33.1	15,365,106	
• •	71,000	23.1	40,000	20.5	51,047	50.5	50,041,150	55.0	14,070,045	55.1	13,303,100	
Disease no. among CCI	171 140	60.4	101 057	70.6	60.202	67.6	57 202 601	64.4	20,006,914	65 F	20 206 077	
no disease	171,140	69.4	101,857	70.6	69,283		57,293,691		29,006,814	65.5		
1 disease	22,947	9.3	12,032	8.3	10,915		8,464,436	9.5	3,702,220	8.4		
2 diseases	17,120	6.9	8,994	6.2	8,126	7.9	6,799,080	7.6	3,029,535	6.8		
3 diseases	12,822	5.2	7,273	5.0	5,549	5.4	5,534,827	6.2	2,652,231	6.0		
4 diseases	9,588	3.9	5,874	4.1	3,714	3.6	4,261,753	4.8	2,242,062	5.1	2,019,691	
≥ 5 diseases	13,054	5.3	8,207	5.7	4,847	4.7	6,574,213	7.4	3,655,138	8.3	2,919,075	
Multimorbidity	52,584	21.3	30,348	21.0	22,236	21.7	23,169,873	26.1	11,578,966	26.1	11,590,906	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Pa

Page 43 of 49	BMJ Open
(≥2 diseases among CCI)	
 (≥2 diseases among CCI) Values are numbers (%) unless other ^a Any malignancy includes leukemia a lymphoma 	wise
39 40 41 42 43	
44	For poor review only, http://bmienen.hmi.com/site/about/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

	Overall		20-24		25-29		30-34	
	88,923,000	(100%)	6,204,000	(100%)	6,678,000	(100%)	7,468,000	(100%)
Men	44,288,000	(49.8%)	3,192,000	(51.5%)	3,414,000	(51.1%)	3,788,000	(50.7%)
AIDS/HIV	34,034	(0.0%)	1,400	(0.0%)	1,137	(0.0%)	1,394	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	24,047	(0.4%)	60,604	(0.9%)	103,907	(1.4%)
Cerebrovascular disease	5,773,295	(6.5%)	12,484	(0.2%)	23,767	(0.4%)	40,440	(0.5%)
Chronic pulmonary disease	17,303,735	(19.5%)	656,012	(10.6%)	901,156	(13.5%)	1,184,702	(15.9%)
Congestive heart failure	4,317,076	(4.9%)	21,322	(0.3%)	34,950	(0.5%)	52,469	(0.7%)
Dementia	410,326	(0.5%)	418	(0.0%)	0	(0.0%)	1,053	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	50,290	(0.8%)	141,852	(2.1%)	228,348	(3.1%)
Hemiplegia or paraplegia	424,609	(0.5%)	3,782	(0.1%)	7,489	(0.1%)	10,227	(0.1%)
Liver disease	11,341,444	(12.8%)	129,091	(2.1%)	259,190	(3.9%)	380,993	(5.1%)
Metastatic solid tumor	1,235,336	(1.4%)	6,706	(0.1%)	9,643	(0.1%)	15,804	(0.2%)
Myocardial infarction	769,977	(0.9%)	3,510	(0.1%)	3,859	(0.1%)	7,438	(0.1%)
Peptic ulcer disease	11,238,524	(12.6%)	213,860	(3.4%)	364,164	(5.5%)	444,445	(6.0%)
Peripheral vascular disease	5,197,644	(5.8%)	20,276	(0.3%)	42,759	(0.6%)	60,055	(0.8%)
Renal disease	1,261,138	(1.4%)	6,164	(0.1%)	11,118	(0.2%)	19,957	(0.3%)
Rheumatologic disease	1,928,685	(2.2%)	17,602	(0.3%)	35,051	(0.5%)	43,777	(0.6%)
no disease	57,293,691	(64.4%)	5,352,990	(86.3%)	5,500,039	(82.4%)	5,935,225	(79.5%)
1 disease	8,464,436	(9.5%)	609,768	(9.8%)	666,087	(10.0%)	805,022	(10.8%)
2 diseases	6,799,080	(7.6%)	163,269	(2.6%)	310,407	(4.6%)	399,222	(5.3%)
3 diseases	5,534,827	(6.2%)	45,066	(0.7%)	104,758	(1.6%)	178,423	(2.4%)
4 diseases	4,261,753	(4.8%)	19,190	(0.3%)	52,301	(0.8%)	77,876	(1.0%)
≥ 5 diseases	6,574,213	(7.4%)	13,716	(0.2%)	44,409	(0.7%)	72,233	(1.0%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	241,241	(3.9%)	511,875	(7.7%)	727,754	(9.7%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

-	Overall		35-39		40-44		45-49	
	88,923,000	(100%)	8,670,000	(100%)	9,793,000	(100%)	8,607,000	(100%)
Men	44,288,000	(49.8%)	4,394,000	(50.7%)	4,956,000	(50.6%)	4,329,000	(50.3%)
AIDS/HIV	34,034	(0.0%)	4,592	(0.1%)	4,124	(0.0%)	3,069	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	198,069	(2.3%)	308,591	(3.2%)	393,299	(4.6%)
Cerebrovascular disease	5,773,295	(6.5%)	93,413	(1.1%)	170,645	(1.7%)	265,098	(3.1%)
Chronic pulmonary disease	17,303,735	(19.5%)	1,446,109	(16.7%)	1,613,639	(16.5%)	1,462,084	(17.0%)
Congestive heart failure	4,317,076	(4.9%)	90,394	(1.0%)	155,193	(1.6%)	201,862	(2.3%)
Dementia	410,326	(0.5%)	734	(0.0%)	1,490	(0.0%)	3,606	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	352,333	(4.1%)	553,455	(5.7%)	737,731	(8.6%)
Hemiplegia or paraplegia	424,609	(0.5%)	13,621	(0.2%)	12,793	(0.1%)	19,669	(0.2%)
Liver disease	11,341,444	(12.8%)	577,316	(6.7%)	784,095	(8.0%)	858,769	(10.0%)
Metastatic solid tumor	1,235,336	(1.4%)	29,912	(0.3%)	56,656	(0.6%)	78,055	(0.9%)
Myocardial infarction	769,977	(0.9%)	8,925	(0.1%)	25,198	(0.3%)	37,793	(0.4%)
Peptic ulcer disease	11,238,524	(12.6%)	589,633	(6.8%)	749,581	(7.7%)	856,494	(10.0%)
Peripheral vascular disease	5,197,644	(5.8%)	127,339	(1.5%)	201,866	(2.1%)	288,167	(3.3%)
Renal disease	1,261,138	(1.4%)	30,634	(0.4%)	46,209	(0.5%)	73,397	(0.9%)
Rheumatologic disease	1,928,685	(2.2%)	79,300	(0.9%)	108,081	(1.1%)	143,756	(1.7%)
no disease	57,293,691	(64.4%)	6,707,086	(77.4%)	7,389,249	(75.5%)	6,205,507	(72.1%)
1 disease	8,464,436	(9.5%)	879,686	(10.1%)	969,263	(9.9%)	762,446	(8.9%)
2 diseases	6,799,080	(7.6%)	529,075	(6.1%)	633,182	(6.5%)	588,650	(6.8%)
3 diseases	5,534,827	(6.2%)	284,566	(3.3%)	352,334	(3.6%)	416,546	(4.8%)
4 diseases	4,261,753	(4.8%)	152,965	(1.8%)	232,087	(2.4%)	297,143	(3.5%)
≥ 5 diseases	6,574,213	(7.4%)	116,621	(1.3%)	216,885	(2.2%)	336,707	(3.9%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	1,083,227	(12.5%)	1,434,488	(14.6%)	1,639,046	(19.0%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the
Japanese total population by age group

_	Overall		50-54		55-59		60-64	
	88,923,000	(100%)	7,790,000	(100%)	7,655,000	(100%)	8,979,000	(100%)
Men	44,288,000	(49.8%)	3,903,000	(50.1%)	3,802,000	(49.7%)	4,406,000	(49.1%)
AIDS/HIV	34,034	(0.0%)	2,979	(0.0%)	3,324	(0.0%)	5,281	(0.1%)
Any malignancy ^a	5,775,260	(6.5%)	483,592	(6.2%)	624,101	(8.2%)	958,696	(10.7%)
Cerebrovascular disease	5,773,295	(6.5%)	387,663	(5.0%)	573,513	(7.5%)	965,151	(10.7%)
Chronic pulmonary disease	17,303,735	(19.5%)	1,469,169	(18.9%)	1,565,078	(20.4%)	2,074,822	(23.1%
Congestive heart failure	4,317,076	(4.9%)	316,491	(4.1%)	443,956	(5.8%)	694,542	(7.7%
Dementia	410,326	(0.5%)	7,254	(0.1%)	14,375	(0.2%)	27,048	(0.3%
Diabetes mellitus	12,689,040	(14.3%)	1,028,899	(13.2%)	1,477,049	(19.3%)	2,197,472	(24.5%
Hemiplegia or paraplegia	424,609	(0.5%)	26,826	(0.3%)	43,702	(0.6%)	56,416	(0.6%
Liver disease	11,341,444	(12.8%)	1,063,948	(13.7%)	1,316,086	(17.2%)	1,785,515	(19.9%
Metastatic solid tumor	1,235,336	(1.4%)	104,654	(1.3%)	136,279	(1.8%)	204,377	(2.3%
Myocardial infarction	769,977	(0.9%)	65,457	(0.8%)	76,970	(1.0%)	130,757	(1.5%
Peptic ulcer disease	11,238,524	(12.6%)	977,192	(12.5%)	1,190,533	(15.6%)	1,633,285	(18.2%
Peripheral vascular disease	5,197,644	(5.8%)	411,839	(5.3%)	554,776	(7.2%)	876,673	(9.8%
Renal disease	1,261,138	(1.4%)	95,578	(1.2%)	126,432	(1.7%)	202,057	(2.3%
Rheumatologic disease	1,928,685	(2.2%)	191,910	(2.5%)	235,332	(3.1%)	326,918	(3.6%
no disease	57,293,691	(64.4%)	5,087,646	(65.3%)	4,435,684	(57.9%)	4,468,987	(49.8%
1 disease	8,464,436	(9.5%)	687,805	(8.8%)	680,727	(8.9%)	859,388	(9.6%
2 diseases	6,799,080	(7.6%)	631,794	(8.1%)	687,732	(9.0%)	933,542	(10.4%
3 diseases	5,534,827	(6.2%)	510,570	(6.6%)	638,438	(8.3%)	881,741	(9.8%
4 diseases	4,261,753	(4.8%)	382,265	(4.9%)	509,123	(6.7%)	729,058	(8.1%
≥ 5 diseases	6,574,213	(7.4%)	489,921	(6.3%)	703,297	(9.2%)	1,106,284	(12.3%

 BMJ Open

Multimorbidity	23,169,873	(26.1%)	2,014,550	(25.9%)	2,538,590	(33.2%)	3,650,625	(40.7%)
(≥2 diseases among CCI)	23,109,073	(20.176)	2,014,550	(23.976)	2,330,390	(33.2 %)	3,030,023	(40.7 %)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

_	Overall		65-69		70-74	
	88,923,000	(100%)	9,155,000	(100%)	7,929,000	(100%)
Men	44,288,000	(49.8%)	4,414,000	(48.2%)	3,690,000	(46.5%)
AIDS/HIV	34,034	(0.0%)	3,793	(0.0%)	2,940	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	1,296,908	(14.2%)	1,323,445	(16.7%)
Cerebrovascular disease	5,773,295	(6.5%)	1,404,663	(15.3%)	1,836,456	(23.2%)
Chronic pulmonary disease	17,303,735	(19.5%)	2,445,425	(26.7%)	2,485,540	(31.3%)
Congestive heart failure	4,317,076	(4.9%)	931,107	(10.2%)	1,374,790	(17.3%)
Dementia	410,326	(0.5%)	83,286	(0.9%)	271,063	(3.4%)
Diabetes mellitus	12,689,040	(14.3%)	2,891,848	(31.6%)	3,029,762	(38.2%)
Hemiplegia or paraplegia	424,609	(0.5%)	81,998	(0.9%)	148,087	(1.9%)
Liver disease	11,341,444	(12.8%)	2,094,406	(22.9%)	2,092,035	(26.4%)
Metastatic solid tumor	1,235,336	(1.4%)	300,280	(3.3%)	292,970	(3.7%)
Myocardial infarction	769,977	(0.9%)	197,033	(2.2%)	213,037	(2.7%)
Peptic ulcer disease	11,238,524	(12.6%)	2,053,538	(22.4%)	2,165,800	(27.3%)
Peripheral vascular disease	5,197,644	(5.8%)	1,181,335	(12.9%)	1,432,557	(18.1%)
Renal disease	1,261,138	(1.4%)	257,988	(2.8%)	391,604	(4.9%)
Rheumatologic disease	1,928,685	(2.2%)	374,826	(4.1%)	372,134	(4.7%)
no disease	57,293,691	(64.4%)	3,803,485	(41.5%)	2,407,794	(30.4%)
1 disease	8,464,436	(9.5%)	785,842	(8.6%)	758,403	(9.6%)
2 diseases	6,799,080	(7.6%)	1,013,307	(11.1%)	908,900	(11.5%)
3 diseases	5,534,827	(6.2%)	1,074,487	(11.7%)	1,047,899	(13.2%)
4 diseases	4,261,753	(4.8%)	886,159	(9.7%)	923,584	(11.6%)

≥ 5 diseases	6,574,213	(7.4%)	1,591,721	(17.4%)	1,882,418	(23.7%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	4,565,674	(49.9%)	4,762,801	(60.1%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation or death rates in a 5-year cohort of *n* = 111 088 men and *n* = 70 871 women. Cox regression analysis

Overall ^a													
	Fu	Full Model			20-39 years			40-59 years			60-71 years		
	HR	95%	6CI	HR	95%	6CI	HR	95%	6CI	HR	95%	^b Cl	
Age	1.02	1.01	1.02		Y								
Sex	0.97	0.95	0.99	0.36	0.34	0.37	1.29	1.25	1.33	1.44	1.38	1.51	
≥2 diseases	2.17	2.12	2.21	2.17	2.05	2.29	2.31	2.24	2.38	2.05	1.97	2.14	
Men ^b							5						
Age	1.03	1.03	1.04										
≥2 diseases	2.04	1.98	2.10	2.81	2.56	3.07	2.25	2.17	2.34	1.94	1.84	2.04	
Women ^b													
Age	0.99	0.99	1.00							0.			
≥2 diseases	2.22	2.15	2.30	1.91	1.78	2.04	2.42	2.30	2.54	2.28	2.12	2.44	
^a References are fema variables	ale for sex, no	disease fo	or morbidit	у									
^b Reference is no dise	ease for morbid	dity variab	les										

^oReference is no disease for morbidity variables

HR; hazard ratio, CI; confidence interval

Page 49 of 49

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	7
Objectives	3	State specific objectives, including any prespecified hypotheses	7-8
Methods			
Study design	4	Present key elements of study design early in the paper	10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	10
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	9-10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	9-12
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed	Fig. 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	Fig. 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Suppl. Table 2
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	14
Outcome data	15*	Report numbers of outcome events or summary measures over time	Table 1, Suppl. Tables 3-4
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16, Fig. 3
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12, Fig. 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-16
Limitations			17-18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	20-23
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	24

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The prevalence of multimorbidity and its associations with hospitalisation or death in Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in the middle-aged generation

Journal:BMJ OpenManuscript IDimjopen-2022-063216.R3Article Type:Original researchDate Submitted by the Author6-Apr-2023Complete List of Authors:Salto, Yoshiyuki; The University of Tokyo, Department of Health Department of Health Informatics Seconomics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Seconomics & Outcomes Research; Yokohama City University School of Public Health Informatics Economics & Outcomes Research; Yokohama City University School of Public Health Informatics Economics & Outcomes Research; Yokohama City University School of Preventive Medicine Seconomics & Outcomes Research; Yokohama City University School of Public Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject HeadingpidemiologySecondary Subject HeadtaREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLICKeywords:REVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC		
Article Type:Original researchDate Submitted by the Author:06-Apr-2023Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject Heading EpidemiologySecondary Subject Heading:Health economics, Health informatics, Health policyKewwords:PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Journal:	BMJ Open
Date Submitted by the Author:06-Apr-2023Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject Heading EpidemiologySecondary Subject Heading:Health economics, Health informatics, Health policyKewwords:PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Manuscript ID	bmjopen-2022-063216.R3
Author:00-Apr-2023Complete List of Authors:Saito, Yoshiyuki; The University of Tokyo, Department of Health Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health SciencesSecondary Subject Keywork:EpidemiologyPREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Article Type:	Original research
Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health Sciences Primary Subject Heading EpidemiologySecondary Subject HeadingHealth economics, Health informatics, Health policyPREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC		06-Apr-2023
Heading: Epidemiology Secondary Subject Heading: Health economics, Health informatics, Health policy Keywords: PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC	Complete List of Authors:	Economics & Outcomes Research; Kyoto University School of Public Health, Department of Health Informatics Igarashi, Ataru ; The University of Tokyo, Department of Health Economics & Outcomes Research; Yokohama City University School of Medicine Graduate School of Medicine, Unit of Public Health and Preventive Medicine Nakayama, Takeo; Kyoto University School of Public Health, Department of Health Informatics Fukuma, Shingo; Kyoto University, Department of Human Health
Keywords: PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC		Epidemiology
	Secondary Subject Heading:	Health economics, Health informatics, Health policy
TEALIN	Keywords:	PREVENTIVE MEDICINE, EPIDEMIOLOGY, HEALTH ECONOMICS, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

The prevalence of multimorbidity and its associations with hospitalisation or death in

Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in

Yoshiyuki Saito^{1,2*} PharmD, Ataru Igarashi^{1,3} PhD, Takeo Nakayama² MD PhD, Shingo

¹Department of Health Economics & Outcomes Research, Graduate School of

Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

²Department of Health Informatics, School of Public Health, Graduate School of

Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

³Unit of Public Health and Preventive Medicine, Yokohama City University School of

⁴School of Human Health Sciences, Graduate School of Medicine, Kyoto University,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5 6 7 8 9	1
5 6 7	
7 8 9	2
10 11	3
12 13 14 15	4
16 17	5
18 19 20	6
21 22 23 24 25 26 27	7
24 25 26	8
28 29	9
30 31 32	10
30 31 32 33 34 35 36 37	11
38	12
39 40 41	13
42 43 44	14
45 46 47	15
48 49 50	16
51 52 53	17
54 55 56 57	18
58 59 60	

1

Title

Authors

Fukuma⁴ MD

Author Affiliations

113-0033, Japan

Medicine, Kanagawa 236-0027, Japan

Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

the middle-aged generation

19	
20	Running head
21	The burden of multimorbidity in Japan 2014-2019
22	
23	*Corresponding author
24	Yoshiyuki Saito, PharmD
25	Department of Health Economics & Outcomes Research, Graduate School of
26	Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
27	113-0033, Japan
28	E-mail: saito.yoshiyuki.86x@kyoto-u.jp
29	Tel: +81-3-5841-4828
30	
31	Word count: 3638 (incl. abstract)
32	Tables: 1
33	Figures: 3
34	Supplementary Tables: 4
35	
36	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		3
3 4 5	37	Abstract
6 7 8	38	Objective
9 10 11 12	39	To describe the prevalence of multimorbidity and its associations with clinical outcomes
12 13 14 15	40	across age groups.
16 17 18	41	Design
19 20 21	42	Retrospective cohort study using nationwide medical claims data.
22 23 24	43	Setting
25 26 27	44	Carried out in Japan between April 2014 and March 2019.
28 29 30	45	Participants
31 32 33	46	N = 246 671 Japanese individuals aged 20-74 enrolled in the Health Insurance were
34 35 36	47	included into the baseline data set for fiscal year (FY) 2014. Of those, N = 181 959
37 38 39	48	individuals were included into the cohort data set spanning FY2014-FY2018.
40 41 42	49	Exposures
43 44 45	50	Multimorbidity was defined as having ≥2 of 15 chronic conditions according to the ICD-
46 47 48	51	10 codes of the Charlson Comorbidity Index.
49 50 51	52	Primary and Secondary Outcomes
52 53 54	53	Primary outcome: The standardised prevalence of multimorbidity across age groups
55 56 57 58 59	54	was evaluated using data from FY 2014 and extrapolated to the Japanese total

1 2		4
3 4 5	55	population. Secondary Outcome: Hospitalisation or death events were traced by month
6 7 8	56	using medical claims data and insurer enrolment data. Associations between
9 10 11	57	multimorbidity and 5-year hospitalisation and/or death events across age groups were
12 13 14	58	analysed using a Cox regression model.
15 16 17	59	Results
18 19 20	60	The standardised prevalence rate of multimorbidity in the nationwide Japanese total
21 22 23	61	population was estimated to 26.1%. The prevalence rate with age was increased,
24 25 26	62	approximately 5% (ages 20-29), 10% (30-39), 20% (40-49), 30% (50-59), 50% (60-69), and
27 28 29	63	60%(70-74). Compared to individuals aged 20-39 without multimorbidity, those with
30 31 32	64	multimorbidity had a higher incidence of clinical events in any age group(HR = 2.43
33 34 35	65	[95% CI, 2.30-2.56] in ages 20-39, HR = 2.55 [95% CI, 2.47-2.63] in ages 40-59, and
36 37 38	66	HR = $3.41[95\% \text{ CI}, 3.23-3.53]$ in ages ≥ 60). The difference in the incidence of clinical
39 40 41	67	events between multimorbidity and no-multimorbidity was larger than that between age
42 43 44	68	groups.
45 46 47	69	Conclusions
48 49 50	70	Multimorbidity is already prevalent in the middle-aged generation and is associated with
51 52 53	71	poor clinical outcomes. These findings underscore the significance of multimorbidity and
54 55 56 57	72	highlight the urgent need for preventive intervention at the public health care level.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4 5	73	Article Summary
6		
7	74	
8		
9 10		
10 11	75	Strengths and limitations of this study
12		
13	76	• The current study covers a wide age range of individuals from a nationwide
14	/0	• The current study covers a wide age range of individuals from a nationwide
15		
16	77	general population.
17		
18 19		
20	78	 Japan's high medical insurance coverage rate made it possible to
21		
22	79	comprehensively identify chronic diseases from receipts.
23	1)	
24		
25	80	 The longitudinal analysis enabled the examination of clinical outcomes of
26 27		
28	0.1	
29	81	multiple co-morbidities.
30		
31	82	 The prevalence of multimorbidity may be underestimated because the target
32	02	• The prevalence of matamorbialty may be underestimated because the target
33		
34 35	83	population comprised regular employees and their families and might
36		
37	0.4	accordingly be bealthiar than the general population
38	84	accordingly be healthier than the general population.
39		
40	85	
41		
42 43		
44	86	Keywords
45		
46	87	chronic disease, insurance claims, middle age, multimorbidity, preventive medicine
47	07	onionio discuse, modranoe siamo, middle age, mattinorbiaty, preventive medisine
48	88	
49 50	00	
50		
52		
53		
54		
55		
56		
57 58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		6
3 4 5	89	Introduction
6 7 8 9	90	Aging societies worldwide face the problem of how to provide adequate and
9 10 11 12	91	affordable health care for a growing number of patients with multiple chronic conditions,
12 13 14 15	92	termed multimorbidity. ^{1,2} Managing multimorbidity is becoming a global challenge on the
16 17	93	clinical and public healthcare level not only in high-, but also in low- and middle-income
18 19 20	94	countries. ³ Many epidemiological studies on multimorbidity have shown its association
21 22 23	95	with age, socio-demographic and socio-economic factors.4-7 In addition, numerous
24 25 26	96	studies have shown that multiple comorbidities are common in older people.8-11 It has
27 28 29	97	been reported that multimorbid older patients had more than twice as many contacts per
30 31 32	98	year with physicians than those without multimorbidity ¹² and that the likelihood of being
33 34 35	99	hospitalised was increased by a factor of 5.6 due to multiple co-morbidities.8 On the
36 37 38	100	other hand, the accumulation of chronic diseases occurs continuously from middle age.
39 40 41	101	A number of recent studies conducted in various countries have reported that the onset
42 43 44	102	of multimorbidity is shifting toward younger age groups. ^{6, 13-15} However, multimorbidity
45 46 47 48	103	studies tend to focus on older people, and in-depth knowledge on multimorbidity in
49 50	104	younger age groups is lacking.
51 52 53	105	Here, to evaluate the current status of multimorbidity across age groups and examine
54 55 56 57	106	its association with clinical outcomes, we analysed a large nationwide medical claims
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 Page 8 of 48

3 4	107	cohort. Our findings add to existing knowledge by showing that multimorbidity has a
5 6	107	
7 8 9	108	significant impact on health starting from middle age and underscore the need for
10 11	109	preventive intervention on the public health care level.
	109	preventive intervention on the public health care level.
44 45		
46 47 48		
49 50		
50 51 52		
53		
54 55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5	-	
)

1 2		8
3 4 5	111	Materials and Methods
6 7 8	112	Data source
9 10 11	113	We used the nationwide medical claims and enrolment data of the Health Insurance
12 13 14	114	Association for Architecture and Civil Engineering companies (HIA ² CE), which is one of
15 16 17	115	the largest social insurance associations in Japan. HIA ² CE is a comprehensive insurer
18 19 20 21	116	which includes 1700 companies, from small engineering companies to middle and large
22 23	117	construction companies across Japan. This claims database covers a total of 400 000
24 25 26 27	118	insured persons, consisting of employees and their dependents.
27 28 29 30	119	The insured-based database is used widely and one of the popular real-world data in
30 31 32 33	120	Japan. ¹⁶ Japan has maintained a universal health coverage system since 1961. All
33 34 35 36	121	medical information regarding clinical practice covered by this health insurance is
37 38 39	122	included in the medical claims data, except for self-financed medical care and
40 41	123	individuals who receive public assistance. Furthermore, medical facilities have been
42 43 44 45 46 47	124	obliged since 2011 to submit medical claims data as an electronic record. Medical
	125	claims data include the names of the diagnosed diseases, the names of medical
48 49 50 51	126	procedures, and the names of prescribed medications, among others. In the present
52 53	127	study, we extracted the age, sex, names and ICD-10 codes of diagnosed diseases, and
54 55 56 57	128	hospitalisations and deaths from the medical claims data in HIA ² CE from FY2014 to
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 10 of 48

BMJ Open

1 2		9
3 4 5	129	FY2018 (April 2014 to March 2019). The enrolment data from HIA ² CE includes the
6 7 8	130	medical characteristics and in-out information of insured persons as of April 2019.
9 10 11 12	131	
12 13 14 15	132	Research design and study population
16 17 18	133	We prepared two data sets for analysis. The first was a cross-sectional data set
19 20 21	134	containing baseline data of FY2014, which we used to describe the diagnosed disease
21 22 23 24	135	prevalence in FY2014. The study population for this baseline data set included
24 25 26 27	136	individuals aged 20 to 74 years insured in FY2014 (April 2014 to March 2015). Since
28 29 30	137	HIA2CE is a type of insurance for workers in Japan, the database include only under 75
31 32 33	138	years individuals. Therefore, the maximum age in this cohort was 74 years. Participants
34 35 36	139	younger than 20 in FY2014 as well as participants who died during FY2014 were
37 38 39	140	excluded (Fig.1). The cohort data set contained longitudinal data for a 5-year period,
40 41 42	141	FY2014 to FY2018 (April 2014 to March 2019). The second data set contained
43 44 45	142	participants insured in whole period. We used this cohort data set to conduct Cox
46 47 48	143	regression analysis and calculate hazard ratios (HR)s for clinical events (Fig. 1).
49 50 51	144	
51 52 53 54 55 56 57	145	Definition of diagnosed diseases and multimorbidity
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 48

BMJ Open

1 2		10
3 4 5	146	There are a variety of definitions for chronic conditions in multimorbidity studies. ¹⁷⁻¹⁹
6 7 8	147	We used the Charlson Comorbidity Index (CCI) which is a validated tool to assess the
9 10 11 12	148	diseases associated with a significant risk of clinical events. ²⁰ The reason, we used CCI,
12 13 14 15	149	was that we focused on describing the prevalence of each disease and also assessing
16 17 18	150	the association of multimorbidity on hospitalisation or death. The CCI Canadian version
19 20 21	151	has been reported to be applicable to Japanese claims data. ²¹ We therefore defined
21 22 23 24	152	diagnosed diseases using medical claims data following ICD-10 codes of the CCI
24 25 26 27	153	Canada version. We merged the conditions "diabetes with chronic complication" and
27 28 29 30	154	"diabetes without chronic complication" into "diabetes mellitus", and "mild liver disease"
31 32 33	155	and "moderate or severe liver disease" into "liver disease". The following 15 chronic
34 35 36	156	conditions were included: AIDS/HIV, any malignancy (including lymphoma and
37 38 39	157	leukaemia), cerebrovascular disease, chronic pulmonary disease, congestive heart
40 41 42	158	failure, dementia, diabetes mellitus, hemiplegia or paraplegia, metastatic solid tumour,
43 44	159	liver disease, myocardial infarction, peptic ulcer disease, renal disease, and
45 46 47 48	160	rheumatologic disease. The ICD-10 codes of these diseases are shown in eTable 1 in
49 50 51	161	the Supplement. Multimorbidity status was defined as the concurrent presence of two or
52 53 54	162	more (≥2) diagnosed diseases among these conditions. ^{22, 23} We only used confirmed
55 56 57	163	diagnoses, not including suspected diagnoses, in Japanese claims data.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|--|

2 3		
4 5	164	
6 7 8	165	Definition of outcome events; hospitalisation or death
9 10 11	166	We defined two composite outcomes, hospitalisation or death, which occurred during
12 13 14	167	the period from FY2015 to FY2018. Using the medical claims data, both events were
15 16 17	168	traced by month. In Japan, the validity of death event information is reported to be less
18 19 20	169	sensitive if derived from medical claims data only. ^{24, 25} Therefore, we also used death
21 22 23	170	information from enrolment data recorded by the insurer: if either contained death
24 25 26	171	information, this was defined as a death event.
27 28 29	172	
30 31 32	173	Estimation of diagnosed disease prevalence to a nationwide scale
33 34 35	174	Diagnosed disease prevalence from baseline data was standardised to the
36 37 38	175	nationwide Japanese total population. We calculated prevalence rates according to
39 40 41	176	groups by 5-year age brackets and sex. Then, we estimated the prevalence rates
42 43 44	177	standardized to Japanese total population (age-sex standardized prevalence rate),
45 46 47	178	using the number from the vital statistics 2014 in Japan. ²⁶
48 49 50	179	
51 52 53 54 55 56 57 50	180	The association of multimorbidity with outcome by age group
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4 5 6	181	To examine the association of multimorbidity with outcome by age group, we
7 8	182	performed Cox regression analysis adjusted by sex using cohort data from four
9 10 11	183	consecutive years (FY2015 to FY2018). The independent and additive effect of
12 13 14	184	multimorbidity and aging, we defined combined categories according to three age
15 16 17	185	groups representing "young", "middle", and "old" ages (20-39, 40-59, and \geq 60,
18 19 20	186	respectively) and the binary status of multimorbidity, with the reference set as no
21 22 23	187	multimorbidity individuals aged 20-39. This model was able to show HR for aging alone
24 25 26	188	(e.g., HR for 40-59 ages without multimorbidity vs 20-39 ages without multimorbidity
27 28 29	189	and complex of aging and morbidity(e.g., HR for 40-59 ages with multimorbidity vs 20-
30 31 32	190	39 ages without multimorbidity).
33 34 35	191	
36 37 38	192	Statistical analysis
39 40 41	193	Cox regression was conducted for the association of multimorbidity with outcome by
42 43 44	194	age group. Our hypothesis was aging and MM or these combination leads to worsen
45 46 47	195	clinical events. Therefore, we defined six groups which were a combination of 3
48 49 50	196	categories of generation and MM, and we estimated HR in each group in reference of
51 52 53	197	young (aged 20-39) without MM. Regarding this model, we interpreted both the
54 55 56	198	independent impact of generation and MM on outcomes and the impact of MM in each
	190	
57 58 59 60	198	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2		
3 4 5 6	199	generation. Results were considered statistically significant at a two-sided <i>P</i> -value of
7 8 9	200	less than 0.05. All analyses were conducted using Stata software version 15.1
10 11 12	201	(StataCorp LLC; College Station, TX, USA).
13 14 15	202	
16 17 18	203	Patient and Public involvement
19 20 21	204	Patients or the public were not involved in this research. However, the results of this
22 23	205	study will be disseminated to the public through various means including published
24 25 26	206	papers and presentations.
27	207	
28 29	_ • • •	
30 31		
32		
33 34		
35		
36 37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
40 49		
50		
51 52		
53		
54 57		
55 56		
57		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	۸
	4

1 2		14
3 4 5	208	Results
6 7 8 9	209	Study participants
10 11	210	We analysed $n = 246\ 671$ individuals in the baseline data set in FY2014 (Table1) and
12 13 14	211	n = 181959 individuals in the cohort data set FY2014-FY2018. Because the follow-up
15 16 17	212	was four years, the cohort data set was slightly smaller than the baseline data set,
18 19 20	213	especially as a number of young individuals aged 20-24 and older individuals aged >60
21 22 23	214	dropped out. This may be due to raising children or early retirement, and explains the
24 25 26	215	higher proportion of men in the cohort data set. Mean age and co-morbidity numbers
27 28 29 30	216	among CCI diseases were mostly comparable between the two data sets, although the
30 31 32 33 34 35 36 37 38 39 40 41 42	217	prevalence differed for diabetes mellitus, cerebrovascular disease, and chronic
	218	pulmonary disease (eTable 2 in the Supplement). In the cohort data set, differences in
	219	disease prevalence between genders were observed. Notably, men had a higher
	220	prevalence of diabetes mellitus (P = 0.001) whereas women had a higher prevalence of
43 44	221	chronic pulmonary disease ($P = 0.002$).
45 46 47	222	
48 49 50	223	Estimated prevalence of multimorbidity in the Japanese total population
51 52 53	224	The prevalence of diagnosed diseases in FY2014 was applied to the vital statistics of
54 55 56	225	the Japanese population in 2014. The standardised prevalence of multimorbidity was
57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Page 16 of 48

1 2		15
3 4 5	226	estimated to 26.1% (26.1% in men, 26.0% in women) in the Japanese total population
6 7 8	227	(eTable 3A in the Supplement). The prevalence rate with age was increased , i.e.,
9 10 11	228	approximately 5% (25-24 (3.9%), 25-29 (7.7%)), 10% (30-34 (9.7%), 35-39 (12.5%)),
12 13 14	229	20% (40-44 (14.6%), 45-49 (19.0%)), 30% (50-54 (25.9%), 55-59 (33.2%)), 50% (60-64
15 16 17	230	(40.7%), 65-69 (49.9%)), and 60% (70-74).(Fig. 2A. Details of the prevalence of
18 19 20	231	diseases as well as the below results are shown in eTable 3B in the Supplement).
21 22 23	232	Figure 2B shows the types of diseases and their prevalence across age groups. The top
24 25 26	233	five diseases across the age groups "young" (20-39), "middle-aged (40-59), and "old"
27 28 29	234	(60-74) in order of prevalence were "young": chronic pulmonary disease, peptic ulcer
30 31 32	235	disease, liver disease, diabetes mellitus, and any malignancy; "middle-aged": chronic
33 34 35	236	pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and any
36 37 38	237	malignancy; and "old": diabetes mellitus, chronic pulmonary disease, liver disease,
39 40 41	238	peptic ulcer disease, and cerebrovascular disease. Notably, diabetes mellitus moved up
42 43 44	239	across the age groups from ranking fourth to first. In Figure 2C, disease prevalence is
45 46 47	240	shown in comparison to disease prevalence in the 40-44 age group. After the age of 40-
48 49 50	241	44, the top five accelerating diseases were dementia, cerebrovascular disease,
51 52 53	242	peripheral vascular disease, metastatic tumour, and congestive heart failure.
54 55 56	243	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
4 5 6	244	The association of multimorbidity with outcome by age group.
7 8 9	245	The composite outcomes occurred 17.2% (death 0.8%, hospitalisation 16.9%) in the
9 10 11 12	246	follow-up period (eTable2). Cox regression analysis showed that young individuals aged
13 14 15	247	20-39 with multimorbidity had a higher hazard ratio (HR) compared to the same age
16 17 18	248	group without multimorbidity (HR = 2.43 [95% CI, 2.30-2.56]). Further, HRs increased
19 20 21	249	across age groups (HR = 2.55 [95% CI, 2.47-2.63] ages 40-59; HR = 3.41 [95% CI,
22 23 24	250	3.23-3.53] ages \geq 60) (Fig. 3). The impact of multimorbidity on outcome exceeded that of
24 25 26 27	251	aging (HR = 1.62 [95% CI, 1.56-1.69] ages ≥60 and HR = 1.10 [95% CI, 1.07-1.13] ages
27 28 29 30	252	40-59 without multimorbidity) (Fig. 3). That was to say, even in aged 20-39 with
31 32 33	253	multimorbidity has a risk more than ages ≥60 without multimorbidity.
34 35	254	We also assessed HRs for non-multimorbid and multimorbid women and men
36 37 38	255	separately and found that women had a lower HR than men in the 20-39 age group but
39 40 41	256	a higher HR than men in the ≥60 age group (eTable 4 in the Supplement).
42 43		
44 45		
46		
47 48		
49 50		
50 51		
52		
53 54		
55		
56 57		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4 5	258	Discussion
6 7 8	259	In this stu
9 10 11	260	large cohort
12 13 14	261	prevalence r
15 16 17	262	women. Furt
18 19 20	263	3.9% (20-24
21 22 23	264	accelerating
24 25 26	265	outcomes of
27 28 29	266	middle-aged
30 31 32	267	The prese
33 34 35	268	general popu
36 37 38	269	young, middl
39 40 41	270	has a high m
42 43 44	271	chronic disea
45 46 47	272	clinical outco
48 49 50	273	population co
51 52 53	274	healthier tha
54 55 56	275	included in C
57 58 59		
60		

238	Discussion
259	In this study we analysed nationwide medical claims data for 15 chronic diseases in a
260	large cohort of the general population of Japan. As key findings, standardised
261	prevalence rates for multimorbidity were estimated to 26.1% for men and 26.0% for
262	women. Further, age group-specific prevalence rates for multimorbidity ranged from
263	3.9% (20-24 years) to 14.6% (40-44 years) and 60.1% (70-74 years), showing an
264	accelerating increase after age 40. Importantly, significant differences in the clinical
265	outcomes of multimorbidity versus no multimorbidity were already present in young and
266	middle-aged individuals.
267	The present study drew individuals covering a wide age range from a nationwide
268	general population. This allowed us to examine the burden of multiple co-morbidities in
269	young, middle-aged and old age groups in the real world. In addition, because Japan
270	has a high medical insurance coverage rate, it was possible to comprehensively identify
271	chronic diseases from receipts. Further, longitudinal analysis enabled us to examine the
272	clinical outcomes of multiple co-morbidities. With regard to limitations, the target
273	population comprised regular employees and their families and might accordingly be
274	healthier than the general population. Also, we defined multimorbidity by disease list
275	included in CCI most likely to lead to death, hence, we were not able to consider other

Page 19 of 48

BMJ Open

1 2		18
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	276	diseases associated with health-related quality of life loss. CCI originally includes
	277	comorbidities that have a strong impact on mortality, not quality of life and well-being.
	278	The presence of mental or psychosomatic disorders, which have been shown to be
	279	increasing, particularly in individuals already suffering from other chronic diseases, ²⁷
	280	younger people, ²⁸ and people with a low socio-economic status. ²⁹ Such diseases often
	281	remain undiagnosed or underreported in health records. ³⁰ Also, we collected diseases
	282	which were occurred during the year (FY2014). Therefore, patients who were untreated,
25 26	283	undiagnosed, or discontinued treatment cannot be picked up. These limitations likely
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	284	contributed to an underestimation of multimorbidity in our cohort. Further, because we
	285	did not manually verify the presence of disease using the physician's medical records
	286	data or medication information, disease names extracted from the medical claims data
	287	might be incorrect in some cases. In particular, Japanese physicians sometimes change
	288	the name of the disease in the medical record to the "correct" disease name for the
43 44 45	289	medication they wish to prescribe, a practice called "disease name for claims data".
45 46 47 48	290	Because of differences in data sources and study populations, direct comparison of
48 49 50 51	291	population-based prevalence rates between studies is not straightforward. Nonetheless,
52 53 54	292	the standardised prevalence rates for multimorbidity as reported in the present study -
54 55 56 57	293	26.1% for men and 26.0% for women - are similar to those reported by recent studies in
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		19)
3 4 5 6 7 8	294	other high-income countries, such as the United States (25% in men, 25% in women), ³¹	
	295	England (24.4% in men, 30% in women), ³² Canada (24.3% whole population), ⁵ and	
9 10 11	296	Denmark (19.3% in men, 23.7% in women). ⁶ Also recently some Asian countries	
12 13 14	297	reported similar prevalence, Iran (13.4% in men, 25.0% in women), ³³ India, and	
15 16 17	298	Bangladesh (53.7% - 56.5% in both genders, over aged 60). ³⁴ Many previous studies on	I
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 	299	multimorbidity focused on the older generation, aged 65 and up, because of the larger	
	300	number of chronic diseases in this age group and the increasing number of people	
	301	entering it. However, our present data show that already approximately 10% of 30-34-,	
	302	19% of 45-49-, and 33% of 55-59-year-olds have ≥2 chronic diseases. Further, 1% of	
	303	30-34-, 4% of 45-49-, and 9% of 55-59-year-olds have ≥5 chronic diseases. These	
	304	results show that multimorbidity is already prominent in the middle-aged population.	
	305	Recent studies reported similar or slightly higher prevalence rates for ≥2 chronic	
	306	diseases in an American (8% of 30-, 20% of 45-, and 38% of 55-year-olds) ²⁹ and a	
42 43 44	307	Canadian (10.5% of 18-44-, 27.4% of 45-54-, and 46.6% of 55-64-year-olds) ⁵	
45 46 47	308	population, although these two studies also included mental diseases and osteoporosis,	
48 49 50	309	which our present study did not. Our present study shows that, among 15 chronic	
51 52 53	310	diseases, the top five diseases in the 55-64 age group are chronic pulmonary disease	
54 55 56	311	(20.4-23.1%), diabetes mellitus (19.3-24.5%), liver disease (17.2-19.9%), peptic ulcer	
57 58 59			
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2		20
3 4 5 6 7 8 9	312	disease (15.6-18.2%), and any malignancy (8.2-10.7%). With regard to diabetes
	313	mellitus, the prevalence in the present study is similar to that previously reported in an
9 10 11 12	314	American population (15-30% in individuals aged 55-65) ²⁹ but higher than that in a
13 14 15 16 17 18 19 20 21	315	Canadian population (16.6% in individuals aged 55-64) ⁴ . The prevalence of chronic
	316	pulmonary disease in our present 55-65-year-olds was almost twice as high as those
	317	seen for the combined prevalence of asthma and chronic obstructive pulmonary disease
22 23	318	(COPD) in an American population aged 55-65 years (5% for men and 10% for
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	319	women) ²⁹ and in a Canadian population aged 55-64 years (13.7%). ⁵ This difference
	320	might have arisen due to our inclusion of various other pulmonary diseases besides
	321	asthma and COPD. Regarding liver disease, the prevalence seen for 55-65-year-olds in
	322	the present study was comparable to that seen in an adult population in Northern Italy ³⁵
	323	and in an adult population in Korea, ³⁶ although this comparison requires care since the
	324	types of liver disease in these studies and the age groups included vary.
42 43 44 45	325	Analysis of clinical outcomes using Cox regression revealed that the presence of
43 46 47 48	326	multimorbidity increased HRs in all age groups, including young individuals. In addition,
48 49 50 51	327	the comparison of the increased HRs resulting from multimorbidity versus no
52 53	328	multimorbidity showed that the impact of multimorbidity exceeds that of increasing age.
54 55 56 57	329	These results indicate that multimorbidity places a burden on all age groups.
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 48

BMJ Open

1 2		21
3 4 5 6 7 8	330	The five most prevalent diseases (diabetes mellitus, chronic pulmonary disease, liver
	331	disease, peptic ulcer disease, and any malignancy) in the present study are lifestyle-
9 10 11	332	related diseases that develop slowly over time. This trend should be greeted with alarm.
12 13 14	333	We trust that this study raises awareness of the potential health risks and burden
15 16 17 18	334	associated with the early onset of multimorbidity in young and middle-aged, the period
18 19 20	335	when one is busy working and raising children. Future studies should investigate the
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	336	specific lifestyle factors associated with an elevated risk of multimorbidity in the
	337	Japanese working population. Ultimately, public health care policies should be aimed at
	338	efforts to reverse the trend toward early multimorbidity onset.
	339	In conclusion, the present study confirmed the prevalence of MM by including in the
	340	denominator those who did not have the receipt of medical claims and to estimate the
	341	prevalence of MM in the general population. Furthermore, we revealed that the impact
	342	of multimorbidity is already clinically significant in middle-aged Japanese, with elevated
42 43 44	343	adverse events such as hospitalisation or death. In addition, the risk posed by
45 46 47	344	multimorbidity exceeds that of aging in all age groups. These results underscore the
48 49 50	345	need to undertake healthcare intervention against the onset of multimorbidity before
51 52 53	346	middle-aged, and not to leave it as a problem for geriatricians.
54 55 56	347	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		22
3 4 5	348	Ethical Approval
6 7 8 9	349	The present study was approved by the Institutional Review Board (IRB) of Kyoto
9 10 11 12	350	University (approval number: R0817). All data were anonymised before analysis and
13 14 15	351	none of the researchers had access to patient-identifiable information. The IRB waived
16 17 18	352	informed consent for this observational study.
19 20 21	353	
22 23 24	354	Data Availability Statement
25 26 27	355	All data are incorporated into the article and its online supplementary material.
28 29 30	356	
31 32	357	Author Contributions
33 34 35 36	358	Concept and design: YS, SF. Acquisition, analysis, or interpretation of data: all authors.
37 38 39	359	Drafting of the manuscript: YS, SF. Critical revision of the manuscript for important
40 41 42	360	intellectual content: all authors. Statistical analysis: YS, SF. Obtained funding: YS.
43 44 45	361	Administrative, technical, or material support: YS, SF. Study supervision: SF, AI, TN.
46 47 48	362	YS had full access to all the data in the study and takes responsibility for the integrity of
49 50 51	363	the data and the accuracy of the data analysis. All authors gave final approval and
52 53 54	364	agreed to be accountable for all aspects of work.
55 56 57 58	365	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3 4 5	360
6 7 8	367
9 10 11	368
12 13 14	369
15 16 17	37(
18 19 20	371
21 22 23	372
24 25 26	373
27 28 29	374
30 31 32	375
33 34 35	376
36 37 38	377
39 40 41	378
42 43 44	379
45 46 47	38(
48 49 50	381
51 52 53	-
54 55 56	-
57 58 59 60	

366	Acknowledgements
367	The authors are grateful to HIA ² CE for providing data for the present study.
368	
369	Funding
370	This work was supported by Grants-in-Aid from the Japan Society for the Promotion of
371	Science (JSPS) KAKENHI Grant Number 19K19458 (YS). The sponsor had no role in
372	the design of the study; in the collection, analysis and interpretation of data; in the
373	writing of the report; or in the decision to submit the article for publication.
374	
375	Competing Interests None declared.
376	None declared.
377	
378	Patient Consent for Publication
379	Not applicable.
380	
381	
38	2 Figure Legends
38	3 Figure 1. Participant selection flowchart. FY; fiscal year

1 2			24		
3					
4 5					
6 7	384	ļ			
8 9 10 11	385	Fig	Jure 2. Multimorbidity across age groups in the Japanese total population aged 20-		
12 13 14	386	74.	A) Percentage of the population having 0 to ≥5 chronic diseases by age group. B)		
15 16 17	387	' Pre	evalence of the top ten chronic diseases by age group. C) The top ten chronic		
18 19 20	388	dis	eases with the steepest increase after age 40-44 years.		
21 22	389)			
 390 Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity 					
27 28 29	391 diagnosed diseases) in three age groups in a 5-year cohort of <i>n</i> = 181 959 Japanese				
30 31 32		-	ed 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval		
33 34 35	393 394		ferences		
36 37	395	1	Bleich SN, Sherrod C, Chiang A, et al. Systematic Review of Programs Treating		
38 39	396		High-Need and High-Cost People With Multiple Chronic Diseases or Disabilities		
40 41 42	397		in the United States, 2008-2014. Prev Chronic Dis. Nov 12 2015;12:E197.		
42 43 44	398		doi:10.5888/pcd12.150275		
45 46	399	2	Hajat C, Stein E. The global burden of multiple chronic conditions: A narrative		
47 48 49	400		review. <i>Prev Med Rep</i> . Dec 2018;12:284-293. doi:10.1016/j.pmedr.2018.10.008		
50 51	401	3	Prathapan S, Fernando G, Matthias AT, Bentota Mallawa Arachchige Charuni Y,		
52 53 54 55 56 57	402		Abeygunawardhana HMG, Somathilake B. The rising complexity and burden of		
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1 2			25
3 4 5 6 7 8 9	403		multimorbidity in a middle-income country. PLoS One. 2020;15(12):e0243614.
	404		doi:10.1371/journal.pone.0243614
	405	4	Low LL, Kwan YH, Ko MSM, et al. Epidemiologic Characteristics of Multimorbidity
10 11	406		and Sociodemographic Factors Associated With Multimorbidity in a Rapidly Aging
12 13	407		Asian Country. JAMA Netw Open. Nov 1 2019;2(11):e1915245.
14 15 16	408		doi:10.1001/jamanetworkopen.2019.15245
17 18	409	5	Pefoyo AJ, Bronskill SE, Gruneir A, et al. The increasing burden and complexity of
19 20	410		multimorbidity. BMC Public Health. Apr 23 2015;15:415. doi:10.1186/s12889-015-
21 22 23 24 25	411		1733-2
	412	6	Schiotz ML, Stockmarr A, Host D, Glumer C, Frolich A. Social disparities in the
26 27	413		prevalence of multimorbidity - A register-based population study. BMC Public
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	414		<i>Health</i> . May 10 2017;17(1):422. doi:10.1186/s12889-017-4314-8
	415	7	Sum G, Ishida M, Koh GC, Singh A, Oldenburg B, Lee JT. Implications of
	416		multimorbidity on healthcare utilisation and work productivity by socioeconomic
	417		groups: Cross-sectional analyses of Australia and Japan. PLoS One.
	418		2020;15(4):e0232281. doi:10.1371/journal.pone.0232281
	419	8	Bahler C, Huber CA, Brungger B, Reich O. Multimorbidity, health care utilization
	420		and costs in an elderly community-dwelling population: a claims data based
44 45 46	421		observational study. BMC Health Serv Res. Jan 22 2015;15:23.
40 47 48	422		doi:10.1186/s12913-015-0698-2
49 50	423	9	Hu RH, Hsiao FY, Chen LJ, Huang PT, Hsu WW. Increasing age- and gender-
51 52	424		specific burden and complexity of multimorbidity in Taiwan, 2003-2013: a cross-
53 54 55			
56 57			
58 59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			rei peer tettett ettig intep//onjopenionijieeni/site/ubout/guidenites/intini

Page 27 of 48

2	6

1 2			26
2 3 4	425		sectional study based on nationwide claims data. BMJ Open. Jun 9
5 6 7 8 9	426		2019;9(6):e028333. doi:10.1136/bmjopen-2018-028333
	427	10	Lenzi J, Avaldi VM, Rucci P, Pieri G, Fantini MP. Burden of multimorbidity in
10 11	428		relation to age, gender and immigrant status: a cross-sectional study based on
12 13	429		administrative data. BMJ Open. Dec 21 2016;6(12):e012812.
14 15 16 17	430		doi:10.1136/bmjopen-2016-012812
	431	11	Picco L, Achilla E, Abdin E, et al. Economic burden of multimorbidity among older
19 20	432		adults: impact on healthcare and societal costs. BMC Health Serv Res. May 10
21 22 23	433		2016;16:173. doi:10.1186/s12913-016-1421-7
23 24 25	434	12	van den Bussche H, Schon G, Kolonko T, et al. Patterns of ambulatory medical
26 27 28 29 30 31 32 33 34	435		care utilization in elderly patients with special reference to chronic diseases and
	436		multimorbidityresults from a claims data based observational study in Germany.
	437		BMC Geriatr. Sep 13 2011;11:54. doi:10.1186/1471-2318-11-54
	438	13	Katikireddi SV, Skivington K, Leyland AH, Hunt K, Mercer SW. The contribution of
35 36	439		risk factors to socioeconomic inequalities in multimorbidity across the lifecourse: a
37 38 39	440		longitudinal analysis of the Twenty-07 cohort. BMC Med. Aug 24 2017;15(1):152.
40 41	441		doi:10.1186/s12916-017-0913-6
42 43	442	14	Kone AP, Mondor L, Maxwell C, Kabir US, Rosella LC, Wodchis WP. Rising
44 45 46	443		burden of multimorbidity and related socio-demographic factors: a repeated
47 48	444		cross-sectional study of Ontarians. Can J Public Health. Apr 13
49 50	445		2021;doi:10.17269/s41997-021-00474-y
51 52 53	446	15	Singer L, Green M, Rowe F, Ben-Shlomo Y, Kulu H, Morrissey K. Trends in
53 54 55	447		multimorbidity, complex multimorbidity and multiple functional limitations in the
56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~~			

1

Page 28 of 48

2			
3 4	448		ageing population of England, 2002-2015. J Comorb. Jan-Dec
5 6	449		2019;9:2235042X19872030. doi:10.1177/2235042X19872030
7 8 9	450	16	Katsutoshi H, Annabel B, Yasuhiko M, et al. Current Status, Challenges, and
10 11	451		Future Perspectives of Real-World Data and Real-World Evidence in Japan.
12 13	452		Drugs - Real World Outcomes. 2021;8:459–480. doi:org/10.1007/s40801-021-
14 15 16	453		00266-3
16 17 18	454	17	Eng SL, Hui LK, Elaine QY H, Sok HT, et al. Systematic review on the instruments
19 20	455		used for measuring the association of the level of multimorbidity and clinically
21 22	456		important outcomes. BMJ Open. 2021;May
23 24 25	457		5;11(5):e041219. doi:10.1136/bmjopen-2020-041219.
26 27	458	18	Karen B, Stewart WM, Michael N, et al. Epidemiology of multimorbidity and
28 29	459		implications for health care, research, and medical education: a cross-sectional
30 31 32	460		study. <i>Lancet</i> . 2012;Jul 7;380(9836):37-43. doi:10.1016/S0140-6736(12)60240-2.
33 34	461	19	Jürisson M, Heti P, Anneli U, et al. Prevalence of chronic conditions and
35 36	462		multimorbidity in Estonia: a population-based cross-sectional study. BMJ Open.
37 38 39	463		2021;Oct 5;11(10):e049045. doi:10.1136/bmjopen-2021-049045.
40 41	464	20	Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
42 43	465		prognostic comorbidity in longitudinal studies: development and validation. J
44 45 46	466		Chronic Dis. 1987;40(5):373-83. doi:10.1016/0021-9681(87)90171-821 Quan
47 48	467		H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index
49 50	468		and score for risk adjustment in hospital discharge abstracts using data from 6
51 52 53	469		countries. <i>Am J Epidemiol</i> . Mar 15 2011;173(6):676-82. doi:10.1093/aje/kwq433
53 54 55			
56 57			
58 59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			

BMJ Open

2			
3 4	470	21	Vijaya S, Hude Q, Patricia H, Kiyohide F. Cross-National Comparative
5 6	471		Performance of Three Versions of the ICD-10 Charlson Index. Medical Care.
7 8 9	472		2007 Dec;45(12):1210-5. doi: 10.1097/MLR.0b013e3181484347.
10 11	473	22	Johnston MC, Crilly M, Black C, Prescott GJ, Mercer SW. Defining and measuring
12 13	474		multimorbidity: a systematic review of systematic reviews. Eur J Public Health.
14 15 16	475		Feb 1 2019;29(1):182-189. doi:10.1093/eurpub/cky098
10 17 18	476	23	Le Reste JY, Nabbe P, Manceau B, et al. The European General Practice
19 20	477		Research Network presents a comprehensive definition of multimorbidity in family
21 22 22	478		medicine and long term care, following a systematic review of relevant literature.
23 24 25	479		<i>J Am Med Dir Assoc</i> . May 2013;14(5):319-25. doi:10.1016/j.jamda.2013.01.001
26 27	480	24	Ooba N, Setoguchi S, Ando T, et al. Claims-based definition of death in Japanese
28 29	481		claims database: validity and implications. PLoS One. 2013;8(5):e66116.
30 31 32	482		doi:10.1371/journal.pone.0066116
33 34	483	25	Sakai M, Ohtera S, Iwao T, et al. Validation of claims data to identify death among
35 36	484		aged persons utilizing enrollment data from health insurance unions. Environ
37 38 39	485		<i>Health Prev Med</i> . Nov 23 2019;24(1):63. doi:10.1186/s12199-019-0819-3
40 41	486	26	Statistics Bureau of Japan. Preliminary count of the Japanese population.
42 43	487		Accessed March, 2014. http://www.stat.go.jp/data/jinsui/index.html
44 45 46	488	27	Aoki T, Yamamoto Y, Shimizu S, Fukuhara S. Physical multimorbidity patterns and
46 47 48 49 50 51 52	489		depressive symptoms: a nationwide cross-sectional study in Japan. Fam Med
	490		Community Health. 2020;8(1):e000234. doi:10.1136/fmch-2019-000234
	491	28	Egede LE. Major depression in individuals with chronic medical disorders:
53 54 55	492		prevalence, correlates and association with health resource utilization, lost
56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	493		productivity and functional disability. Gen Hosp Psychiatry. Sep-Oct
5 6 7	494		2007;29(5):409-16. doi:10.1016/j.genhosppsych.2007.06.002
7 8 9	495	29	Rocca WA, Boyd CM, Grossardt BR, et al. Prevalence of multimorbidity in a
10 11	496		geographically defined American population: patterns by age, sex, and
12 13	497		race/ethnicity. Mayo Clin Proc. Oct 2014;89(10):1336-49.
14 15 16	498		doi:10.1016/j.mayocp.2014.07.010
17 18	499	30	Cassell A, Edwards D, Harshfield A, et al. The epidemiology of multimorbidity in
19 20	500		primary care: a retrospective cohort study. Br J Gen Pract. Apr
21 22	501		2018;68(669):e245-e251. doi:10.3399/bjgp18X695465
23 24 25	502	31	Violan C, Foguet-Boreu Q, Hermosilla-Perez E, et al. Comparison of the
26 27	503		information provided by electronic health records data and a population health
28 29	504		survey to estimate prevalence of selected health conditions and multimorbidity.
30 31 32	505		BMC Public Health. Mar 21 2013;13:251. doi:10.1186/1471-2458-13-251
33 34	506	32	St Sauver JL, Boyd CM, Grossardt BR, et al. Risk of developing multimorbidity
35 36	507		across all ages in an historical cohort study: differences by sex and ethnicity. BMJ
37 38	508		<i>Open</i> . Feb 3 2015;5(2):e006413. doi:10.1136/bmjopen-2014-006413
39 40 41	509	33	Masoomeh A, Azam M, Mehdi Y. et al. Multimorbidity as an important issue among
42 43	510		women: results of a gender difference investigation in a large population-based
44 45	511		cross-sectional study in West Asia. BMJ Open. 2017;May 9;7(5):e013548. doi:
46 47 48	512		10.1136/bmjopen-2016-013548.
49 50	513	34	Sanghamitra P, Subhashisa S, Mohammad AH, et al. Prevalence and outcomes of
51 52	514		multimorbidity in South Asia: a systematic review bmj open. BMJ Open. 2015 Oct
53 54 55	515		7;5(10):e007235. doi:10.1136/bmjopen-2014-007235.
56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

\sim	\sim
٠.	"
.)	v

2			
3 4	516	35	Bellentani S, Tiribelli C, Saccoccio G, et al. Prevalence of chronic liver disease in
5 6	517		the general population of northern Italy: the Dionysos Study. Hepatology. Dec
7 8 9	518		1994;20(6):1442-9. doi:10.1002/hep.1840200611
9 10 11	519	36	Park SH, Plank LD, Suk KT, et al. Trends in the prevalence of chronic liver
12 13	520		disease in the Korean adult population, 1998-2017. Clin Mol Hepatol. Apr
14 15 16	521		2020;26(2):209-215. doi:10.3350/cmh.2019.0065
16 17 18	522		
19 20	523		
21 22			
23 24 25			
25 26 27			
28 29			
30 31			
32 33 34			
35 36			
37 38			
39 40			
41 42 43			
45 44 45			
46 47			
48 49			
50 51			
52 53 54			
54 55 56			
57 58			
59			

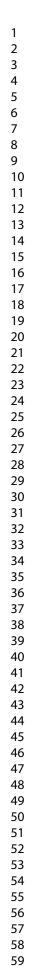
3	1
<u> </u>	

1 2		3
2 3 4	524	Supplementary Information
5 6	525	
7 8 9	526	Supplementary eTable 1. List of diseases and their ICD-10 codes used to define
10 11	527	diseases in medical claims data
12 13	528	Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and
14 15 16	529	cohort data
17 18	530	Supplementary eTable 3A. Diagnosed disease prevalence in fiscal year 2014 applied
19 20	531	to the Japanese total population by gender
21 22 23	532	Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied
23 24 25	533	to the Japanese total population by age group
26 27		Supplementary eTable 4. Hazard ratios in multimorbid individuals based on
28 29 30		hospitalisation or death rates in a 5-year cohort of $n = 111088$ men and
30 31 32		<i>n</i> = 70 871 women. Cox regression analysis
33 34	534	
35 36		
37 38		
39 40		
41 42		
43		
44 45		
46		
47 48		
49 50		
50 51		
52		
53 54		
55		
56 57		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

535 Table 1. Prevalence of diagnosed diseases in FY2014 applied to the Japanese

536 total population

			Baseline dat	a in FY2		
	Overall		Men		Women	
	<i>N</i> =246,671	%	<i>N</i> =144,237	%	<i>N</i> =102,434	%
Men	144,237	58.5	-	-	-	
Age (Mean, SD)	45.0	12.9	44.6	12.9	45.7	12.8
20-24	18,524	7.5	11,315	7.8	7,209	7.0
25-29	17,251	7.0	12,014	8.3	5,237	5.
30-34	18,093	7.3	11,104	7.7	6,989	6.
35-39	23,878	9.7	13,278	9.2	10,600	0.3
40-44	39,721	16.1	21,640	15.0	18,081	17.
45-49	40,908	16.6	24,191	16.8	16,717	16.
50-54	29,466	11.9	17,577	12.2	11,889	11.
55-59	20,149	8.2	11,343	7.9	8,806	8.
60-64	21,278	8.6	12,706	8.8	8,572	8.4
65-69	11,931	4.8	6,768	4.7	5,163	5.
70-74	5,472	2.2	2,301	1.6	3,171	3.
AIDS/HIV	96	0.0	62	0.0	34	0.
Any malignancy ^a	12,047	4.9	5,611	3.9	6,436	6.
Cerebrovascular disease	10,866	4.4	6,510	4.5	4,356	4.
Chronic pulmonary disease	43,216	17.5	22,484	15.6	20,732	20.
Congestive heart failure	8,497	3.4	5,515	3.8	2,982	2.
Dementia	447	0.2	210	0.1	237	0.
Diabetes mellitus	27,344	11.1	17,881	12.4	9,463	9.
Hemiplegia or paraplegia	813	0.3	533	0.4	280	0.
Liver disease	27,127	11.0	16,954	11.8	10,173	9.
Metastatic solid tumor	2,532	1.0	1,263	0.9	1,269	1.
Myocardial infarction	1,628	0.7	1,325	0.9	303	0.
Peptic ulcer disease	26,047	10.6	14,511	10.1	11,536	11.
Peripheral vascular disease	10,407	4.2	5,723	4.0	4,684	4.
Renal disease	2,573	1.0	1,751	1.2	822	0.
Rheumatologic disease	4,146	1.7	1,397	1.0	2,749	2.
≥1 disease among top 5	71,880	29.1	40,833	28.3	31,047	30.
Disease no. among CCI	11,000	20.1	10,000	20.0	01,011	00.
no disease	171,140	69.4	101,857	70.6	69,283	67.
1 disease	22,947	9.3	12,032	8.3	10,915	10.
2 diseases	17,120	6.9	8,994	6.2	8,126	7.
3 diseases	12,822	5.2	7,273 <	5.0	5,549	5.
4 diseases	9,588	3.9	5,874	4.1	3,714	3.
≥ 5 diseases	13,054	5.3	8,207	5.7	4,847	4.
Multimorbidity			0,207		7,077	
	52,584	21.3	30,348	21.0	22,236	21.


Values are numbers (%) unless otherwise stated.

^a Any malignancy includes leukemia and lymphoma.

FY; fiscal year

SD; standard deviation

CCI; Charlson Comorbidity Index

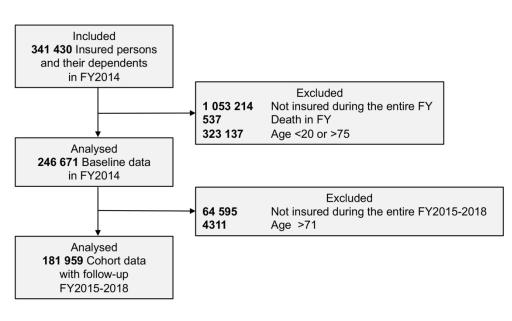
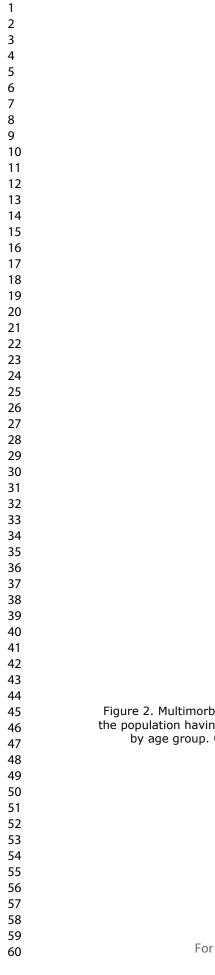



Figure 1. Participant selection flowchart. FY; fiscal year

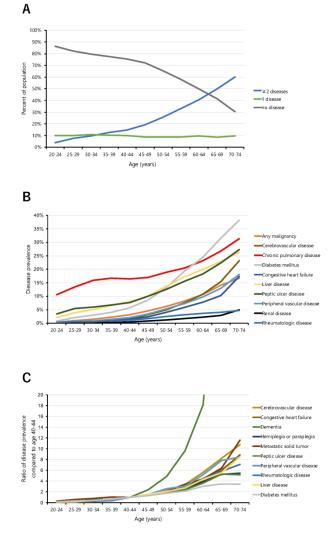
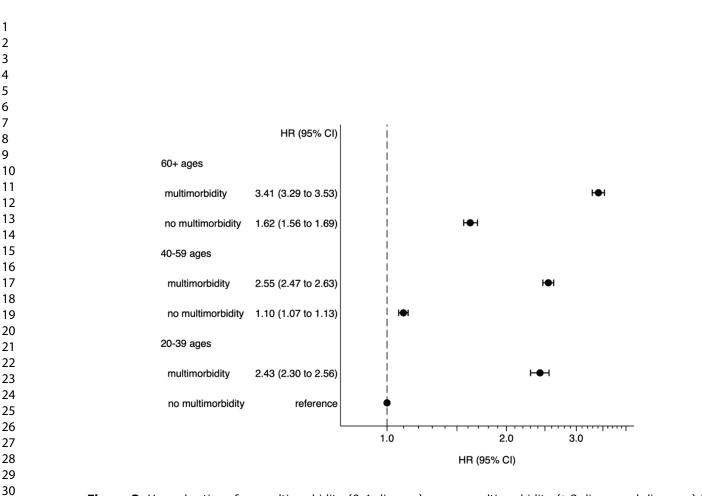



Figure 2. Multimorbidity across age groups in the Japanese total population aged 20-74. A) Percentage of the population having 0 to ≥5 chronic diseases by age group. B) Prevalence of the top ten chronic diseases by age group. C) The top ten chronic diseases with the steepest increase after age 40-44 years.

297x420mm (200 x 200 DPI)

Figure 3. Hazard ratios of no multimorbidity (0-1 disease) versus multimorbidity (\geq 2 diagnosed diseases) in three age groups in a 5-year cohort of n = 181 959 Japanese aged 20-71. Cox regression analysis. HR; hazard ratio, CI; confidence interval

 BMJ Open

Supplementary material

Title: The prevalence of multimorbidity and its associations with hospitalisation or death in Japan 2014-2019 - a retrospective cohort study using nationwide medical claims data in the middle-aged generation

Authors: Yoshiyuki Saito PharmD, Ataru Igarashi PhD, Takeo Nakayama MD PhD, Shingo Fukuma MD

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and cohort data

Supplementary eTable 3A. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by gender

Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation or death rates in a 5-year cohort of $n = 111\ 088$ men and $n = 70\ 871$ women. Cox regression analysis

Supplementary eTable 1. List of diseases and their ICD-10 codes used to define diseases in medical claims data

Diseases	ICD-10 codes
AIDS/HIV	B20.x-B22.x, B24.x
Any malignancy, incl. leukemia and lymphoma	C00.x-C26.x, C30.x-C34.x, C37.x-C41x, C45.x-C58.x, C60.x-C76.x, C81.x-C85.x, C88.3, C88.7, C88.9, C90.0, C90.1, C91.x- C93.x, C94.0-C94.3, C94.5, C94.7, C95.x, C96.x, C43.x, C88.0-C88.2, C90.2, C94.4, C97.x
Cerebrovascular disease	169.x, G45.x, G46.x, H34.0, 160.x-168.x
Chronic pulmonary	J41.x-J47.x, J60.x-J66.x, I27.8, I27.9, J40.x, J67.x, J68.4, J70.1, J70.3
Congestive heart failure	150.x, 109.9, 111.0, 113.0, 113.2, 125.5, 142.0, 142.5- 142.9, 143.x, P29.0
Dementia	F00.x-F02.x, F03.x, F05.1, G30.x, G31.1
Diabetes with chronic complication	E10.2-E10.4, E11.2-E11.4, E13.2-E13.4, E14.2-E14.4, E10.5, E10.7, E11.5, E11.7, E12.2-E12.5, E12.7, E13.5, E13.7, E14.5, E14.7
Diabetes without chronic complication	E10.1, E10.9, E11.1, E11.9, E13.1, E13.9, E14.1, E14.9, E10.0, E10.6, E10.8, E11.0, E11.6, E11.8, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.6, E13.8, E14.0, E14.6, E14.8
Hemiplegia or paraplegia	G81.x, G82.0-G82.2, G04.1, G11.4, G80.1, G80.2, G82.3-G82.5, G83.0-G83.4, G83.9
Metastatic solid tumor	C77.x-C79.x, C80.x
Mild liver disease	K70.3, K71.7, K73.x, K74.3- K74.6, B18.x, K70.0-K70.2, K70.9, K71.3-K71.5, K74.0-K74.2, K76.0, K76.2-K76.4, K76.8, K76.9, Z94.4
Moderate or severe liver disease	K72.1, K72.9, K76.6, K76.7, I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K76.5
Myocardial infarction	I25.2, I21.x, I22.x
Peptic ulcer disease	K25.4-K25.7, K26.4-K26.7, K27.4-K27.7, K28.4-K28.7, K25.0-K25.3, K25.9, K26.0-K26.3, K26.9, K27.0-K27.3, K27.9, K28.0-K28.3, K28.9
Peripheral vascular disease	I71.x, I73.9, Z95.8, Z95.9, I70.x, I73.1, I73.8, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9

 BMJ Open

Renal disease	N18.x, I12.0, I13.1, N03.2-N03.7, N05.2-N05.7, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2				
Rheumatology disease	M05.x, M06.0, M32.x, M33.2, M34.x, M35.3, M06.1-M06.4, M06.8, M06.9, M31.5, M33.0, M33.1, M33.9, M35.1, M36.0				

Supplementary eTable 2. Characteristics of baseline data in fiscal year 2014 and cohort data
--

	Baseline data	in FY2014	Cohort data	1	P-value
Ν	242,360	(100%)	181,959	(100%)	
Men	142,471	(58.8%)	111,088	(61.1%)	<0.01
Age (Mean, SD)	44.5	(12.5)	44.7	(10.6)	<0.01
20-24	18,524	(7.6%)	5,052	(2.8%)	<0.01
25-29	17,251	(7.1%)	12,675	(7.0%)	
30-34	18,093	(7.5%)	14,784	(8.1%)	
35-39	23,878	(9.9%)	20,508	(11.3%)	
40-44	39,721	(16.4%)	35,168	(19.3%)	
45-49	40,908	(16.9%)	37,124	(20.4%)	
50-54	29,466	(12.2%)	25,906	(14.2%)	
55-59	20,149	(8.3%)	13,052	(7.2%)	
60-64	21,278	(8.8%)	10,735	(5.9%)	
65-69	11,931	(4.9%)	6,246	(3.4%)	
70-71	1,161	(0.5%)	709	(0.4%)	
AIDS/HIV	94	(0.0%)	74	(0.0%)	0.76
Any malignancy ^a	11,343	(4.7%)	8,377	(4.6%)	0.24
Cerebrovascular disease	9,860	(4.1%)	6,971	(3.8%)	<0.01
Chronic pulmonary disease	41,866	(17.3%)	32,093	(17.6%)	<0.01
Congestive heart failure	7,751	(3.2%)	5,710	(3.1%)	0.27
Dementia	291	(0.1%)	190	(0.1%)	0.13
Diabetes mellitus	25,716	(10.6%)	18,755	(10.3%)	<0.01
Hemiplegia or paraplegia	729	(0.3%)	507	(0.3%)	0.19

Liver disease	25,999	(10.7%)	19,725	(10.8%)	0.24
Metastatic solid tumor	2,381	(1.0%)	1,823	(1.0%)	0.53
Myocardial infarction	1,526	(0.6%)	1,092	(0.6%)	0.22
Peptic ulcer disease	24,859	(10.3%)	18,594	(10.2%)	0.68
Peripheral vascular disease	9,623	(4.0%)	7,083	(3.9%)	0.20
	Baseline data	in FY2014	Cohort data	a	P-value
N	242,360	(100%)	181,959	(100%)	
Renal disease	2,350	(1.0%)	1,747	(1.0%)	0.75
Rheumatologic disease	3,931	(1.6%)	2,926	(1.6%)	0.72
At least one disease among the top five ^b	69,014	(28.5%)	50,660	(27.8%)	<0.01
Disease no. among CCI (Mean, SD)	0.8	(1.6)	0.8	(1.6)	0.16
0 disease	169,872	(70.1%)	129,037	(70.9%)	<0.01
1 disease	22,514	(9.3%)	15,532	(8.5%)	
2 diseases	16,605	(6.9%)	12,375	(6.8%)	
3 diseases	12,242	(5.1%)	9,046	(5.0%)	
4 diseases	9,076	(3.7%)	6,816	(3.7%)	
≥ 5 diseases	12,051	(5.0%)	9,153	(5.0%)	
Multimorbidity (≥2 diseases among CCI)	49,974	(20.6%)	37,390	(20.5%)	
Composite outcomes	36,893	(15.2%)	31,224	(17.2%)	<0.01
Death	1,507	(0.6%)	1,507	(0.8%)	
Hospitalisation	36,495	(15.1%)	30,826	(16.9%)	

^b Top 5 diseases include chronic pulmonary disease, diabetes mellitus, liver disease, peptic ulcer disease, and cerebrovascular disease.

SD; standard deviation, CCI; Charlson Comorbidity Index

^c Age (Mean) and Co-morbidity no. (Mean): Student's t-test. All other variables: Pearson's chi-square

test.

BMJ Open

Supplementary eTable 3A. Prevalence of diagnosed diseases in FY2014 applied to the Japanese total population by gender

			Baseline dat	a in FY2	2014				Japanese tota	al popu	Ilation	
	Overall		Men		Women		Overall		Men		Women	
	<i>N</i> =246,671	%	<i>N</i> =144,237	%	<i>N</i> =102,434	%	<i>N</i> =88,923,000	%	<i>N</i> =44,288,000	%	<i>N</i> =44,640,000	
Men	144,237	58.5	-	-	-	-	44,288,000	49.8	-	-	-	
Age (Mean, SD)	45.0	12.9	44.6	12.9	45.7	12.8	48.0	15.3	47.7	15.3	48.4	,
20-24	18,524	7.5	11,315	7.8	7,209	7.0	6,203,000	7.0	3,192,000	7.2	3,012,000	
25-29	17,251	7.0	12,014	8.3	5,237	5.1	6,677,000	7.5	3,414,000	7.7	3,264,000	
30-34	18,093	7.3	11,104	7.7	6,989	6.8	7,466,000	8.4	3,788,000	8.6	3,680,000	
35-39	23,878	9.7	13,278	9.2	10,600	0.3	8,670,000	9.8	4,394,000	9.9	4,276,000	
40-44	39,721	16.1	21,640	15.0	18,081	17.7	9,793,000	11.0	4,956,000	11.2	4,837,000	
45-49	40,908	16.6	24,191	16.8	16,717	16.3	8,609,000	9.7	4,329,000	9.8	4,278,000	
50-54	29,466	11.9	17,577	12.2	11,889	11.6	7,790,000	8.8	3,903,000	8.8	3,887,000	
55-59	20,149	8.2	11,343	7.9	8,806	8.6	7,653,000	8.6	3,802,000	8.6	3,853,000	
60-64	21,278	8.6	12,706	8.8	8,572	8.4	8,979,000	0.1	4,406,000	9.9	4,573,000	
65-69	11,931	4.8	6,768	4.7	5,163	5.0	9,155,000	10.3	4,414,000	10.0	4,741,000	
70-74	5,472	2.2	2,301	1.6	3,171	3.1	7,928,000	8.9	3,690,000	8.3	4,239,000	
AIDS/												
HIV	96	0.0	62	0.0	34	0.0	34,034	0.0	18,979	0.0	15,055	,
Any malignancy ^a	12,047	4.9	5,611	3.9	6,436	6.3	5,775,260	6.5	2,668,349	6.0	3,106,911	
Cerebrovascular disease	10,866	4.4	6,510	4.5	4,356	4.3	5,773,295	6.5	3,023,765	6.8	2,749,530	
Chronic pulmonary	,		-,				-,		-,,		_,,	
disease	43,216	17.5	22,484	15.6	20,732	20.2	17,303,735	19.5	7,713,864	17.4	9,589,871	
Congestive heart failure	8,497	3.4	5,515	3.8	2,982	2.9	4,317,076	4.9	2,459,170	5.6	1,857,906	
Deme	0,407	0.4	0,010	0.0	2,002	2.0	4,011,010	4.0	2,400,170	0.0	1,007,000	
ntia	447	0.2	210	0.1	237	0.2	410,326	0.5	179,350	0.4	230,976	
Diabetes mellitus	27,344	11.1	17,881	12.4	9,463	9.2	12,689,040	14.3	7,122,240	16.1	5,566,801	
	813	0.3	533							0.6		
Hemiplegia or paraplegia				0.4	280	0.3	424,609	0.5	253,040		171,569	
Liver disease	27,127	11.0	16,954	11.8	10,173	9.9	11,341,444	2.8	6,031,029	13.6	5,310,415	
Metastatic solid tumor	2,532	1.0	1,263	0.9	1,269	1.2	1,235,336	1.4	598,734	1.4	636,601	
Myocardial infarction	1,628	0.7	1,325	0.9	303	0.3	769,977	0.9	575,894	1.3	194,083	
Peptic ulcer disease	26,047	10.6	14,511	10.1	11,536	11.3	11,238,524	12.6	5,485,994	12.4	5,752,530	
Peripheral vascular												
disease	10,407	4.2	5,723	4.0	4,684	4.6	5,197,644	5.8	2,503,359	5.7	2,694,285	
Renal disease	2,573	1.0	1,751	1.2	822	0.8	1,261,138	1.4	784,770	1.8	476,367	
Rheumatologic disease	4,146	1.7	1,397	1.0	2,749	2.7	1,928,685	2.2	530,072	1.2	1,398,613	,
≥1 disease among top 5	71,880	29.1	40,833	28.3	31,047	30.3	30,041,150	33.8	14,676,045	33.1	15,365,106	
Disease no. among CCI	,		-,		- , -		,- ,		, ,		-,,	
no disease	171,140	69.4	101,857	70.6	69,283	67.6	57,293,691	64.4	29,006,814	65.5	28,286,877	
1 disease	22,947	9.3	12,032	8.3	10,915		8,464,436	9.5	3,702,220	8.4		
2 diseases	17,120	6.9	8,994	6.2	8,126	7.9	6,799,080	7.6	3,029,535	6.8		
3 diseases	12,822	5.2	7,273	5.0	5,549	5.4	5,534,827	6.2	2,652,231	6.0		
4 diseases	9,588	3.9	5,874	4.1	3,714	3.6	4,261,753	4.8	2,242,062	5.1	2,019,691	
≥ 5 diseases	13,054	5.3	8,207	5.7	4,847	4.7	6,574,213	7.4	3,655,138	8.3	2,919,075	
Multimorbidity	52,584	21.3	30,348	21.0	22,236	21.7	23,169,873	26.1	11,578,966	26.1	11,590,906	,

	(≥2 diseases among	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	CCI) Values are numbers (%) unless otherwise ^a Any malignancy includes leukemia and	For peer review only
30 31 32 33 34 35 36 37 38 39 40 41		
42 43 44 45 46 47		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary eTable 3B. Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

	Overall		20-24		25-29		30-34	
	88,923,000	(100%)	6,204,000	(100%)	6,678,000	(100%)	7,468,000	(100%)
Men	44,288,000	(49.8%)	3,192,000	(51.5%)	3,414,000	(51.1%)	3,788,000	(50.7%)
AIDS/HIV	34,034	(0.0%)	1,400	(0.0%)	1,137	(0.0%)	1,394	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	24,047	(0.4%)	60,604	(0.9%)	103,907	(1.4%)
Cerebrovascular disease	5,773,295	(6.5%)	12,484	(0.2%)	23,767	(0.4%)	40,440	(0.5%)
Chronic pulmonary disease	17,303,735	(19.5%)	656,012	(10.6%)	901,156	(13.5%)	1,184,702	(15.9%)
Congestive heart failure	4,317,076	(4.9%)	21,322	(0.3%)	34,950	(0.5%)	52,469	(0.7%)
Dementia	410,326	(0.5%)	418	(0.0%)	0	(0.0%)	1,053	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	50,290	(0.8%)	141,852	(2.1%)	228,348	(3.1%)
Hemiplegia or paraplegia	424,609	(0.5%)	3,782	(0.1%)	7,489	(0.1%)	10,227	(0.1%)
Liver disease	11,341,444	(12.8%)	129,091	(2.1%)	259,190	(3.9%)	380,993	(5.1%)
Metastatic solid tumor	1,235,336	(1.4%)	6,706	(0.1%)	9,643	(0.1%)	15,804	(0.2%)
Myocardial infarction	769,977	(0.9%)	3,510	(0.1%)	3,859	(0.1%)	7,438	(0.1%)
Peptic ulcer disease	11,238,524	(12.6%)	213,860	(3.4%)	364,164	(5.5%)	444,445	(6.0%)
Peripheral vascular disease	5,197,644	(5.8%)	20,276	(0.3%)	42,759	(0.6%)	60,055	(0.8%)
Renal disease	1,261,138	(1.4%)	6,164	(0.1%)	11,118	(0.2%)	19,957	(0.3%)
Rheumatologic disease	1,928,685	(2.2%)	17,602	(0.3%)	35,051	(0.5%)	43,777	(0.6%)
no disease	57,293,691	(64.4%)	5,352,990	(86.3%)	5,500,039	(82.4%)	5,935,225	(79.5%)
1 disease	8,464,436	(9.5%)	609,768	(9.8%)	666,087	(10.0%)	805,022	(10.8%)
2 diseases	6,799,080	(7.6%)	163,269	(2.6%)	310,407	(4.6%)	399,222	(5.3%)
3 diseases	5,534,827	(6.2%)	45,066	(0.7%)	104,758	(1.6%)	178,423	(2.4%)
4 diseases	4,261,753	(4.8%)	19,190	(0.3%)	52,301	(0.8%)	77,876	(1.0%)
≥ 5 diseases	6,574,213	(7.4%)	13,716	(0.2%)	44,409	(0.7%)	72,233	(1.0%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	241,241	(3.9%)	511,875	(7.7%)	727,754	(9.7%)

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the
Japanese total population by age group

-	Overall		35-39		40-44		45-49	
	88,923,000	(100%)	8,670,000	(100%)	9,793,000	(100%)	8,607,000	(100%)
Men	44,288,000	(49.8%)	4,394,000	(50.7%)	4,956,000	(50.6%)	4,329,000	(50.3%)
AIDS/HIV	34,034	(0.0%)	4,592	(0.1%)	4,124	(0.0%)	3,069	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	198,069	(2.3%)	308,591	(3.2%)	393,299	(4.6%)
Cerebrovascular disease	5,773,295	(6.5%)	93,413	(1.1%)	170,645	(1.7%)	265,098	(3.1%)
Chronic pulmonary disease	17,303,735	(19.5%)	1,446,109	(16.7%)	1,613,639	(16.5%)	1,462,084	(17.0%)
Congestive heart failure	4,317,076	(4.9%)	90,394	(1.0%)	155,193	(1.6%)	201,862	(2.3%)
Dementia	410,326	(0.5%)	734	(0.0%)	1,490	(0.0%)	3,606	(0.0%)
Diabetes mellitus	12,689,040	(14.3%)	352,333	(4.1%)	553,455	(5.7%)	737,731	(8.6%)
Hemiplegia or paraplegia	424,609	(0.5%)	13,621	(0.2%)	12,793	(0.1%)	19,669	(0.2%)
Liver disease	11,341,444	(12.8%)	577,316	(6.7%)	784,095	(8.0%)	858,769	(10.0%)
Metastatic solid tumor	1,235,336	(1.4%)	29,912	(0.3%)	56,656	(0.6%)	78,055	(0.9%)
Myocardial infarction	769,977	(0.9%)	8,925	(0.1%)	25,198	(0.3%)	37,793	(0.4%)
Peptic ulcer disease	11,238,524	(12.6%)	589,633	(6.8%)	749,581	(7.7%)	856,494	(10.0%)
Peripheral vascular disease	5,197,644	(5.8%)	127,339	(1.5%)	201,866	(2.1%)	288,167	(3.3%)
Renal disease	1,261,138	(1.4%)	30,634	(0.4%)	46,209	(0.5%)	73,397	(0.9%)
Rheumatologic disease	1,928,685	(2.2%)	79,300	(0.9%)	108,081	(1.1%)	143,756	(1.7%)
no disease	57,293,691	(64.4%)	6,707,086	(77.4%)	7,389,249	(75.5%)	6,205,507	(72.1%)
1 disease	8,464,436	(9.5%)	879,686	(10.1%)	969,263	(9.9%)	762,446	(8.9%)
2 diseases	6,799,080	(7.6%)	529,075	(6.1%)	633,182	(6.5%)	588,650	(6.8%)
3 diseases	5,534,827	(6.2%)	284,566	(3.3%)	352,334	(3.6%)	416,546	(4.8%)
4 diseases	4,261,753	(4.8%)	152,965	(1.8%)	232,087	(2.4%)	297,143	(3.5%)
≥ 5 diseases	6,574,213	(7.4%)	116,621	(1.3%)	216,885	(2.2%)	336,707	(3.9%)
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	1,083,227	(12.5%)	1,434,488	(14.6%)	1,639,046	(19.0%)

 BMJ Open

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

_	Overall		50-54		55-59		60-64	
	88,923,000	(100%)	7,790,000	(100%)	7,655,000	(100%)	8,979,000	(100%)
Men	44,288,000	(49.8%)	3,903,000	(50.1%)	3,802,000	(49.7%)	4,406,000	(49.1%)
AIDS/HIV	34,034	(0.0%)	2,979	(0.0%)	3,324	(0.0%)	5,281	(0.1%)
Any malignancy ^a	5,775,260	(6.5%)	483,592	(6.2%)	624,101	(8.2%)	958,696	(10.7%
Cerebrovascular disease	5,773,295	(6.5%)	387,663	(5.0%)	573,513	(7.5%)	965,151	(10.7%)
Chronic pulmonary disease	17,303,735	(19.5%)	1,469,169	(18.9%)	1,565,078	(20.4%)	2,074,822	(23.1%)
Congestive heart failure	4,317,076	(4.9%)	316,491	(4.1%)	443,956	(5.8%)	694,542	(7.7%
Dementia	410,326	(0.5%)	7,254	(0.1%)	14,375	(0.2%)	27,048	(0.3%
Diabetes mellitus	12,689,040	(14.3%)	1,028,899	(13.2%)	1,477,049	(19.3%)	2,197,472	(24.5%
Hemiplegia or paraplegia	424,609	(0.5%)	26,826	(0.3%)	43,702	(0.6%)	56,416	(0.6%
Liver disease	11,341,444	(12.8%)	1,063,948	(13.7%)	1,316,086	(17.2%)	1,785,515	(19.9%
Metastatic solid tumor	1,235,336	(1.4%)	104,654	(1.3%)	136,279	(1.8%)	204,377	(2.3%
Myocardial infarction	769,977	(0.9%)	65,457	(0.8%)	76,970	(1.0%)	130,757	(1.5%
Peptic ulcer disease	11,238,524	(12.6%)	977,192	(12.5%)	1,190,533	(15.6%)	1,633,285	(18.2%
Peripheral vascular disease	5,197,644	(5.8%)	411,839	(5.3%)	554,776	(7.2%)	876,673	(9.8%
Renal disease	1,261,138	(1.4%)	95,578	(1.2%)	126,432	(1.7%)	202,057	(2.3%
Rheumatologic disease	1,928,685	(2.2%)	191,910	(2.5%)	235,332	(3.1%)	326,918	(3.6%
no disease	57,293,691	(64.4%)	5,087,646	(65.3%)	4,435,684	(57.9%)	4,468,987	(49.8%
1 disease	8,464,436	(9.5%)	687,805	(8.8%)	680,727	(8.9%)	859,388	(9.6%
2 diseases	6,799,080	(7.6%)	631,794	(8.1%)	687,732	(9.0%)	933,542	(10.4%
3 diseases	5,534,827	(6.2%)	510,570	(6.6%)	638,438	(8.3%)	881,741	(9.8%
4 diseases	4,261,753	(4.8%)	382,265	(4.9%)	509,123	(6.7%)	729,058	(8.1%
≥ 5 diseases	6,574,213	(7.4%)	489,921	(6.3%)	703,297	(9.2%)	1,106,284	(12.3%

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 3. (continued) Diagnosed disease prevalence in fiscal year 2014 applied to the Japanese total population by age group

_	Overall		65-69		70-74	
	88,923,000	(100%)	9,155,000	(100%)	7,929,000	(100%)
Men	44,288,000	(49.8%)	4,414,000	(48.2%)	3,690,000	(46.5%)
AIDS/HIV	34,034	(0.0%)	3,793	(0.0%)	2,940	(0.0%)
Any malignancy ^a	5,775,260	(6.5%)	1,296,908	(14.2%)	1,323,445	(16.7%)
Cerebrovascular disease	5,773,295	(6.5%)	1,404,663	(15.3%)	1,836,456	(23.2%)
Chronic pulmonary disease	17,303,735	(19.5%)	2,445,425	(26.7%)	2,485,540	(31.3%)
Congestive heart failure	4,317,076	(4.9%)	931,107	(10.2%)	1,374,790	(17.3%)
Dementia	410,326	(0.5%)	83,286	(0.9%)	271,063	(3.4%)
Diabetes mellitus	12,689,040	(14.3%)	2,891,848	(31.6%)	3,029,762	(38.2%)
Hemiplegia or paraplegia	424,609	(0.5%)	81,998	(0.9%)	148,087	(1.9%)
Liver disease	11,341,444	(12.8%)	2,094,406	(22.9%)	2,092,035	(26.4%)
Metastatic solid tumor	1,235,336	(1.4%)	300,280	(3.3%)	292,970	(3.7%)
Myocardial infarction	769,977	(0.9%)	197,033	(2.2%)	213,037	(2.7%)
Peptic ulcer disease	11,238,524	(12.6%)	2,053,538	(22.4%)	2,165,800	(27.3%)
Peripheral vascular disease	5,197,644	(5.8%)	1,181,335	(12.9%)	1,432,557	(18.1%)
Renal disease	1,261,138	(1.4%)	257,988	(2.8%)	391,604	(4.9%)
Rheumatologic disease	1,928,685	(2.2%)	374,826	(4.1%)	372,134	(4.7%)
no disease	57,293,691	(64.4%)	3,803,485	(41.5%)	2,407,794	(30.4%)
1 disease	8,464,436	(9.5%)	785,842	(8.6%)	758,403	(9.6%)
2 diseases	6,799,080	(7.6%)	1,013,307	(11.1%)	908,900	(11.5%)
3 diseases	5,534,827	(6.2%)	1,074,487	(11.7%)	1,047,899	(13.2%)
4 diseases	4,261,753	(4.8%)	886,159	(9.7%)	923,584	(11.6%)

 BMJ Open

≥ 5 diseases	6,574,213	(7.4%)	1,591,721	(17.4%)	1,882,418	(23.7%)	
Multimorbidity (≥2 diseases among CCI)	23,169,873	(26.1%)	4,565,674	(49.9%)	4,762,801	(60.1%)	

^aAny malignancy includes leukemia and lymphoma.

Supplementary eTable 4. Hazard ratios in multimorbid individuals based on hospitalisation or death rates in a 5-year cohort of n = 111088 men and n = 70871 women. Cox regression analysis

Overall ^a													
	Fu	Full Model			20-39 years			40-59 years			60-71 years		
	HR	95%	6CI	HR	95%	6CI	HR	95%	6CI	HR	95%	^b Cl	
Age	1.02	1.01	1.02		Y								
Sex	0.97	0.95	0.99	0.36	0.34	0.37	1.29	1.25	1.33	1.44	1.38	1.51	
≥2 diseases	2.17	2.12	2.21	2.17	2.05	2.29	2.31	2.24	2.38	2.05	1.97	2.14	
Men ^b							5						
Age	1.03	1.03	1.04										
≥2 diseases	2.04	1.98	2.10	2.81	2.56	3.07	2.25	2.17	2.34	1.94	1.84	2.04	
Women ^b													
Age	0.99	0.99	1.00							0.			
≥2 diseases	2.22	2.15	2.30	1.91	1.78	2.04	2.42	2.30	2.54	2.28	2.12	2.44	
^a References are fema variables	·			у									
^b Doforonco is no disc	aco for morbi	dity voriab	loc										

^bReference is no disease for morbidity variables

HR; hazard ratio, CI; confidence interval

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	7
Objectives	3	State specific objectives, including any prespecified hypotheses	7-8
Methods			
Study design	4	Present key elements of study design early in the paper	10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	10
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	9-10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	11
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	9-12
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	12
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(e) Describe any sensitivity analyses	

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	Fig. 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	Fig. 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Suppl. Table 2
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	14
Outcome data	15*	Report numbers of outcome events or summary measures over time	Table 1, Suppl. Tables 3-4
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	16, Fig. 3
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12, Fig. 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-16
Limitations			17-18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	20-23
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	24

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.