

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Triple burden of malnutrition among mother-child pairs in low and middle-income countries: In the era of sustainable development goals

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-070978
Article Type:	Original research
Date Submitted by the Author:	10-Dec-2022
Complete List of Authors:	Chilot, Dagmawi; University of Gondar College of Medicine and Health Sciences, Department of Human Physiology Belay, Daniel; University of Gondar College of Medicine and Health Sciences, Epidemology Merid, Mehari ; University of Gondar, Department of Epidemiology and Biostatistics Kibret, Anteneh; University of Gondar, Human anatomy Alem, Adugnaw ; University of Gondar College of Medicine and Health Sciences, Epidemiology and Bio statistics Asratie, Melaku; University of Gondar, Aragaw, Fantu Mamo; University of Gondar, Department of Epidemiology and Biostatistics
Keywords:	NUTRITION & DIETETICS, EPIDEMIOLOGY, PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Community child health < PAEDIATRICS
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Triple burden of malnutrition among mother-child pairs in low and 2 middle-income countries: In the era of sustainable development goals

- Dagmawi Chilot*¹, Daniel Gashaneh Belay^{3,4}, Mehari Woldemariam Merid⁴, Anteneh Ayelign
 Kibret³, Adugnaw Zeleke Alem⁴, Melaku Hunie Asratie⁵, and Fantu Mamo Aragaw⁴
- ¹Department of Human Physiology, University of Gondar, College of Medicine and Health
 Science, School of Medicine, Gondar, Ethiopia;
- ⁹ ³Department of Human Anatomy, University of Gondar, College of Medicine and Health Science,
- 10 School of Medicine, Gondar, Ethiopia;
- ⁴Department of Epidemiology & Biostatistics, University of Gondar, College of Medicine and
- 12 Health Science, Institute of Public Health, Gondar, Ethiopia;
- ⁵Department of women and family health, University of Gondar, College of Medicine and Health
- 14 Science, School of Midwifery, Gondar, Ethiopia;

17 Correspondence: Dagmawi Chilot: dagimchilot21@gmail.com. ¹Department of Human
18 Physiology, University of Gondar, College of Medicine and Health Sciences, University of
19 Gondar, P.O. Box 196, Gondar, Ethiopia,

BMJ Open

2	
3 4 5 7 8 9 10	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
15	
10	
17	
11 12 13 14 15 16 17 18	
19	
20	
21	
22	
23	
24	
25	
25	
22 23 24 25 26 27 28 29 30 31 32 33 34	
27	
28	
29	
30	
31	
32	
33	
32 33 34 35 36 37 38	
35	
26	
30	
3/	
50	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
50 57	
58	
59	

60

29 Abstract

30 Objective: This study aimed to assess the prevalence and determinants of the triple burden of
 31 malnutrition among mother-child pairs in low-and middle-income countries.

32 **Design:** Cross-Sectional Study

33 **Setting:** Low-and middle-income countries

34 **Participants:** Women and children

35 **Primary outcome:** Triple burden of malnutrition

Methods: Data for this study were drawn from recent 22 low and middle-income countries
Demographic and Health Surveys (DHSs). A total weighted sample of 116,795 mother-child pairs
was included in the study. STATA version 14.2 was used to clean, code and analyze the data.
Multilevel logistic regression was employed to identify factors associated with the problem.
Adjusted odds ratio with 95% CI and a P value <0.05 was reported to indicate statistical
association. Model fitness and comparison were done using ICC, MOR, PCV, and deviance.

Result: The pooled prevalence of the triple burden of malnutrition among mother-child pairs was 42 43 11.39%. It showed statistically significant positive associations with mothers aged \geq 35 years 44 (AOR=2.25,95%CI 2.08-2.44), family size >10 (AOR=1.17,95%CI 1.08-1.26), delivery by CS (AOR=1.93,95%CI 1.83-2.03), the richest household (AOR=1.72,95%CI 1.56-1.88), grand 45 46 multiparous (AOR=1.62, 95% CI 1.46-1.81), age of child 36-47 months (AOR=1.77, 95% CI 1.64-47 1.90), at a p-value of <0.05. Whereas breastfeeding (AOR=0.94,95%CI 0.89-0.99), married 48 mothers (AOR=0.87,95%CI 0.78-0.96), female children (AOR=0.88,95%CI 0.84-0.92), improved 49 toilet (AOR=0.23,95%CI 0.17-0.29), improved source of drinking water (AOR=0.28,95%CI 0.21-50 0.35), rural residents (AOR=0.66,95%CI 0.62-0.69) had a contrasting relationship with the triple 51 burden of malnutrition

Conclusions: About 1 out of 10 households suffer from the triple burden of malnutrition in low and middle-income countries. This study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs. Prevention of the problem requires collective efforts from the governments, the scientific and medical communities, and the industry towards changing dietary and lifestyle habits. Keywords: Triple burden, mother-child pairs, malnutrition, low and middle-income countries. Strengths and limitations of this study The findings were supported by large datasets covering 22 LMICs. \geq > We employed multilevel analysis which is an appropriate methodology for such data > The data were collected using a common internationally acceptable methodological procedure. > DHS used a cross-sectional survey design, and the causal relationship between the triple burden of malnutrition and the independent variables cannot be established. > We didn't include important covariates such as dietary intake, physical activity level, or comorbidities as the DHS did not collect information on these variables

Page 5 of 23

Background

13	Background
74	The triple burden of malnutrition, defined as the coexistence of overnutrition, undernutrition, and
75	micronutrient deficiencies is increasing in low and middle-income countries (LMICs) (1). The
76	World Health Organization (WHO) characterized overnutrition (Obesity and overweight) as a
77	pandemia of a major public health concern due to the increased frequency of the problem in many
78	countries (2). It is ranked as the sixth leading cause of disability-adjusted life years (DALYs) and
79	accounts for approximately 4 million people dying each year worldwide (3-5). Several previous
80	studies have shown, following marked dietary change that obesity/overweight is increasing more
81	rapidly in low and middle-income countries compared to higher-income countries (6, 7).
82	Similarly, undernutrition continues to be a major public health concern throughout the developing
83	world (8, 9). Nearly half of all deaths in children under 5 are attributable to undernutrition and it
84	encompasses wasting, stunting, underweight, and micronutrient deficiencies (anemia) (10, 11).
85	Despite stunting having declined steadily, faster progress is needed to reach the 2030 target (12,
86	13). Wasting and underweight persisting at alarming rates require a reversal in trajectory if the
87	2030 target is to be achieved (14). Since 2000, a significant reduction in the prevalence of anemia
88	in children under five has been observed in many low- and lower-middle-income countries (15).

90 in resource-constrained settings (16, 17). Endorsing early childhood feeding best practices is
91 crucial to improve the health of children (18).

Children are more vulnerable to inadequate pre-natal, infant, and young child nutrition, particularly

Malnutrition has a tremendous negative impact on the normal functioning of every organ system
(19). It can cause permanent, widespread damage to a child's growth, development, and well-being
(20). Scientific evidence has shown that malnutrition in children is associated with poorer school
performance, increased susceptibility to infections, and slow recovery from illness (21, 22).

Maternal malnutrition increases the risk of poor pregnancy outcomes including obstructed labor, premature or low-birth-weight babies, and postpartum hemorrhage (23, 24). To reduce the problem the United Nations (UN) adopted the Sustainable Development Goals (SDGs), especially those targeted to end poverty in all its forms everywhere (SDG 1), end hunger, achieve food security, improve nutrition, promote sustainable agriculture (SDG 2), ensure healthy lives, and promote well-being for all at all ages (SDG 3) (25, 26).

Previous literature recognizes the basic and underlying causes of malnutrition including the environmental, economic, and sociopolitical contextual factors, with poverty having a central role (11, 27-29). Given the persistent and high levels of triple burden of malnutrition among mother-child pairs in low and middle-income countries, there is a strong need for action. To design and deliver effective interventions adequate understanding of the socioeconomic, environmental, and cultural factors is highly important. Besides if the SDG targets are to be met, coordinated action is required toward not only sustaining current rates of decline but also accelerating progress. Therefore, the objective of this study was to assess the prevalence of the triple burden of malnutrition among mothers and children and the potential factors associated with it in low and middle-income countries.

Materials and methods

Study design, setting, and period

The present study is based on 22 low and middle-income countries that have had Demographic and Health Surveys (DHS) since 2016. The DHS used a cross-sectional survey study design to collect data and provide population and health indicators at the national level. The list of those countries and the respective year of surveys is provided in Table 1.

Country	Year of survey	Region
Albania	2017/18	Southeastern Europe
Benin	2017/18	West Africa
Burundi	2016/17	East-central Africa
Cameroon	2018	West-central Africa
Ethiopia	2016	East Africa
Gambia	2019/20	West Africa
Guinea	2018	West Africa
Haiti	2016/17	Caribbean
India	2019/21	South Asia
Liberia	2019/20	West Africa
Madagascar	2021	East Africa
Mali	2018	West Africa
Mauritania	2019/21	Northwest Africa
Maldives	2016/17	South Asia
Nigeria	2018	West Africa
Nepal	2016	South Asia
Rwanda	2019/20	East Africa
Sierra Leone	2019	West Africa
Tajikistan	2017	Central Asia
Timor Leste	2016	South Asia
Uganda	2016	East Africa
South Africa	2016	South Africa

The current analyses was based on pooled data from DHSs in 22 LMICs. These are nationally representative surveys that collect data on reproductive, maternal, neonatal, child health, and nutrition in LMIC. The surveys are similarly designed that used standardized questionnaires and data collection procedures, allowing therefore comparability of results. The survey employed a two-stage cluster sampling technique. In the first stage, the selection of proportional clusters/enumeration areas was performed using each country's most recent population and housing census as a sampling frame. In the second stage, a systematic selection of households from the newly created cluster was performed. A detailed description of the DHS sampling design and

data collection procedures has been found in each country's DHS report. The study population forthis study was mother-child pairs.

Definition of variables

Outcome variable:

The triple burden of malnutrition was the outcome variable of this study where the mother was overweight/obese and children under 5 years of age were undernourished and anemic. At the same household level, first, we created four different categories of malnutrition such as overweight/obese mother and stunted child, overweight/obese mother and wasted child, overweight/obese mother and underweight child, and overweight/obese mother and anemic child. Then we further combined overweight/obese mothers, undernourished children, and anemic children to generate the triple burden of malnutrition.

140 Independent variables:30

Based on previous works of literature and the likelihood of influencing the outcome of interest, several explanatory variables including the age of mothers, mother's education, marital status, current breastfeeding, delivery by cesarean section, family size, wealth index, media access, parity, age of the child, sex of the child, type of toilet facility, source of drinking water, residence and distance to health facility were considered.

Statistical analyses

We append the dataset of each country to generate pooled data. The data extraction, coding, and analysis were carried out using STATA software version 14.2. We weighted the sample to restore the representativeness of the sample so that the total sample looks like the country's actual population. Due to the hierarchical nature of the DHS, the multilevel analysis was fitted to identify significantly associated factors. Four models were fitted; the null model (with no predictors), the

model I (adjusted for individual-level variables only), model II (adjusted for community-level variables only), and model III (model adjustment for both individual and community-level variables simultaneously). Adjusted OR (AOR) with 95% CI and p<0.05 were used to determine significant predictors. Model fitness and comparison were done using Intraclass Correlation Coefficient (ICC), Proportional Change in Variance (PCV), Median Odds Ratio (MOR), the Likelihood Ratio test (LR), and deviance computed.

Patient and public involvement statement

As our study used secondary analysis of DHS data, participants and the public were not involved in the study design or planning of the study. The study participants were not consulted to interpret the results and write or editing of this document for readability or accuracy.

Results

A total of 116,795 mother-child pairs were included in the study. Over half (56.48%) of mothers were in the age category of 25-34 years. About 22.98% of mothers were illiterate and the majority (46.39%) had attended secondary education. Approximately 95.73% of mothers were married and 62.89% were currently breastfeeding. About 20.33% and 21.21% of the households were in the low wealth quintile of poorest and poorer respectively. Over a quarter (27.62%) of the families had never been exposed to any type of media. The majority of the children (32.59%) were aged \leq 12 months. A large proportion (83.60%) of the households had improved sources of drinking water and almost two-thirds (67.02%) of the households had improved toilet facilities. Almost three fourth (71.03%) of participants lived in rural areas and for over a quarter (27.42%) of those participants, the distance to access health facilities was a big problem (**Table 2**).

173 Table 2. Socio-demographic characteristics of the study participants

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22 23	
23 24	
24 25	
26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57	

Variables	Categories	Unweighted	Weighted
		frequency (%)	frequency (%)
Age of mothers	15-24	34,983 (29.05)	35,918 (30.75)
	25-34	68,386 (56.78)	65,971 (56.48)
	≥35	17,073 (14.18)	14,906 (12.76)
Mothers education	No education	27,995 (23.24)	26,845 (22.98)
	Primary education	19,684 (16.34)	18,633 (15.95)
	Secondary	57,008 (47.33)	54,185 (46.39)
	Higher	15,755 (13.08)	17,131 (14.67)
	Not in union	5,583 (4.64)	4,987 (4.27)
Mothers marital status	Married	114,859 (95.36)	111,807 (95.73)
	No	44,160 (36.66)	43,338 (37.11)
Currently breastfeeding	Yes	76,282 (63.34)	73,457 (62.89)
Delivery by cesarean	No	99,291 (82.49)	93,974 (80.51)
section	Yes	21,077 (17.51)	22,748 (19.49)
Family size	<u><</u> 5	56,365 (46.80)	53,677 (45.96)
	6-10	54,605 (45.34)	53,258 (45.60)
	>10	9,472 (7.86)	9,859 (8.44)
Wealth index	Poorest	28,097 (23.33)	23,749 (20.33)
	Poorer	27,352 (22.71)	24,774 (21.21)
	Middle	24,741 (20.54)	24,330 (20.83)
	Richer	22,180 (18.42)	23,880 (20.45)
	Richest	18,072 (15.00)	20,061 (17.18)
Media access	No	• 33,942 (28.18)	32,256 (27.62)
	Yes	86,500 (71.82)	84,539 (72.38)
Parity	Primiparous	36,241 (30.09)	35,333 (30.25)
I unity	Multiparous	76,092 (63.18)	73,823 (63.21)
	Grand Multiparous	8,109 (6.73)	7,639 (6.54)
	≤12	38,959 (32.35)	38,059 (32.59)
	13-23	25,382 (21.07)	24,819 (21.25)
Age of child	24-35	22,208 (18.44)	21,478 (18.39)
Age of clind	36-47	17,948 (14.90)	17,204 (14.73)
	48-59	15,945 (13.24)	15,234 (14.75)
	Male	63,660 (52.86)	62,008 (53.09)
Sex of child			, , ,
	Female	56,782 (47.14)	54,787 (46.91)
Type of toilet facility	Unimproved	37,519 (31.15)	38,518 (32.98)
	Improved	82,923 (68.85)	78,277 (67.02)
Source of drinking water	Unimproved	20,959 (17.40)	19,159 (16.40)
Desidence	Improved	99,483 (82.60)	97,636 (83.60)
Residence	Urban Deces	28,722 (23.85)	33,838 (28.97)
	Rural	91,720 (76.15)	82,957 (71.03)
Distance to health facility	No problem	84,605 (70.25)	84,776 (72.58)
	Big problem	35,837 (29.75)	32,019 (27.42)

Prevalence of triple burden of malnutrition

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10 19	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
50	

60

176 In 22 low and middle-income countries, the pooled prevalence of the triple burden of malnutrition

among mother-child pairs was found at 11.39 % (95% CI 9.56%, 13.23%). Ethiopia has the lowest

178 (3.54 %) prevalence of triple burden while Mauritania (31.66%) bears the highest (**Figure 1**).

179 Fig 1. The pooled prevalence of the triple burden of malnutrition

180 Multilevel analyses

181 Random parameter estimation and model selection

Based on the result of random effect analysis, the ICC of the null model was 0.30, indicating that 30% of the total variability in triple burden prevalence was attributable to between-cluster variability, while about 70% was due to individual differences. The null model MOR was 3.04, which indicates that a mother/child from a cluster with a high triple burden prevalence has a 3.04 times higher probability of being malnourished than a mother/child from a cluster with a lower prevalence. Model III was the best-fitted model since it has the highest log likelihood (-91665) and the lowest deviance (183,330) value (**Table 3**).

189 Factors associated with the triple burden of malnutrition (Fixed effects)

190 The existence of triple burden of malnutrition showed statistically significant positive associations 191 with mothers aged 25-34 years (AOR=1.54, 95% CI 1.45 - 1.63), >35 years (AOR=2.25, 95% CI 192 2.08 - 2.44), mothers attended secondary education (AOR=1.08, 95% CI 1.02-1.15), family size 193 >10 (AOR=1.17, 95% CI 1.08 - 1.26), delivery by CS (AOR=1.93, 95% CI 1.83 - 2.03), the richer 194 household (AOR=1.63, 95% CI 1.49 - 1.76), the richest household (AOR=1.72, 95% CI 1.56 -195 1.88), multiparous (AOR=1.42, 95% CI 1.34 - 1.49), grand multiparous (AOR=1.62, 95% CI 1.46 196 - 1.81), age of child 36-47 months (AOR=1.77, 95% CI 1.64 - 1.90), age of child 48-59 197 (AOR=1.51, 95% CI 1.39 - 1.64), at a p-value of <0.05. Whereas breastfeeding (AOR=0.94, 95%

198 C	CI 0.89 - 0.99),	married mothers	(AOR=0.87,	95% CI 0.78	3 - 0.96),	female children	(AOR=0.88,
-------	------------------	-----------------	------------	-------------	------------	-----------------	------------

95% CI 0.84 - 0.92), improved toilet facility (AOR=0.23, 95% CI 0.17 - 0.29), improved source

of drinking water (AOR=0.28, 95% CI 0.21 - 0.35), rural residents (AOR=0.66, 95% CI 0.62 -

0.69) showed a contrasting relationship with the triple burden of malnutrition (Table 3).

Variables	Categories	Null	Model I	Model II	Model III
		model	AOR 95% CI	AOR 95% CI	AOR 95% CI
Age of mothers	15-24		1.00		1.00
-	25-34		1.54 (1.46 - 1.63)**		1.54 (1.45 - 1.63)*
	≥35		2.28 (2.11 - 2.47)**		2.25 (2.08 - 2.44)*
Mothers	No education		1.00		1.00
education	Primary education		1.04 (0.97 - 1.12)		1.04 (0.97 - 1.12)
	Secondary		1.08 (1.01 - 1.15)*		1.08 (1.02 - 1.15)*
	Higher		0.94 (0.86 - 1.02)		0.94 (0.86 - 1.02)
Mothers	Not in union		1.00		1.00
marital status	Married		0.83 (0.75 - 0.93)*		0.87 (0.78 - 0.96)*
Currently	No		1.00		1.00
breast feeding	Yes		0.92 (0.87 - 0.97)*		0.94 (0.89 - 0.99)*
Delivery by	No		1.00		1.00
CS	Yes		1.94 (1.84 - 2.04)**		1.93 (1.83 - 2.03)*
Family size	≤5		1.00		1.00
-	6-10		1.00 (0.97 - 1.08)		1.01 (0.98 - 1.08)
	>10		1.14 (1.06 - 1.24)**		1.17 (1.08 - 1.26)*
Wealth index	Poorest		1.00		1.00
	Poorer		1.41 (1.31 - 1.52)**		1.38 (1.28 - 1.49)*
	Middle		1.60 (1.48 - 1.73)**	—	1.49 (1.38 - 1.62)*
	Richer		1.86 (1.72 - 2.02)**	—	1.63 (1.49 - 1.76)*
	Richest		2.15 (1.97 - 2.35)**		1.72 (1.56 - 1.88)*
Media access	No		1.00		1.00
	Yes		1.01 (0.98 - 1.08)		1.02 (0.99 - 1.11)
Parity	Primiparous		1.00		1.00
	Multiparous		1.42 (1.34 - 1.50)**		1.42 (1.34 - 1.49)*
	Grand Multiparous		1.61 (1.44 - 1.79)**		1.62 (1.46 - 1.81)*
	≤12		1.00		1.00
	13-23		1.41 (1.32 - 1.50)**		1.41 (1.32 - 1.50)*
Age of child	24-35		1.62 (1.52 - 1.73)**		1.63 (1.53 - 1.74)*
	36-47		1.75 (1.62 - 1.89)**		1.77 (1.64 - 1.90)*
	48-59		1.50 (1.38 - 1.62)**		1.51 (1.39 - 1.64)*

Table 2 Martin .14:1 • .• £ 41. ما دا سنسه ſ.1.1 -1-

Saw of shild	Male		1.00		1.00
Sex of child	Female		0.88 (0.84 - 0.92	2)** —	0.88 (0.84 - 0.92)*
Type of toilet	Unimproved		1.00		1.00
facility	Improved		0.24 (0.18 - 1.31	.) —	0.23 (0.17 - 0.29)*
Source of	Unimproved		1.00		1.00
drinking water	Improved		0.21 (0.16 - 0.28	3) —	0.28 (0.21 - 0.35)*
Community-lev	el variables				
Residence	Urban			1.00	1.00
	Rural			0.49 (0.46 - 0.52)**	0.66 (0.62 - 0.69)*
Distance to	No problem			1.00	1.00
health facility	Big problem			0.87 (0.82 - 0.91)**	0.94 (0.89 - 0.98)*
Random effect					
	Variance	1.40	1.24	1.31	1.23
	ICC	0.30	0.27	0.28	0.27
	MOR	3.04	2.88	2.96	2.85
	PCV	Reff	11.42	6.43	12.14
Model compari	son				
	Log likelihood ratio	-100585	-92108	-97815	-91665
	Deviance	201,170	184,216	195,630	183,330

ICC = *Inter cluster correlation coefficient, MOR* =*Median odds ratio, PCV* = *proportional change in variance. AOR=adjusted odds ratio; CI= confidence interval,*

Discussion

Low and middle-income countries are increasingly facing the triple burden of malnutrition where women and children are among the hardest hit by the burden (30, 31). The present study examined the co-occurrence of undernutrition, overweight/obesity, and anemia among mother-child pairs in the same household using nationally representative data. The finding showed that the prevalence of triple burden found at 11.39 % (95% CI 9.56%, 13.23%), Ethiopia has the lowest (3.54 %) prevalence while Mauritania (31.66%) bears the highest. The variation among countries could be attributed to differences in socio-economic status, food environment, physical activity, genetic factors, health care system strength, national policy, and political commitments.

This study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs. It has found a

216 parallel correlation between the triple burden of malnutrition and maternal age. The odds of being 217 malnourished increase as the age of the mother increases where older mothers bear the highest risk 218 compared to younger ones. Various findings (32, 33) have revealed that older women have an 219 increased risk of malnutrition, this could be because of reduced physical activity, less energy 220 requirement, and hormonal changes. Similarly, mothers who attended secondary education were 221 more likely to be malnourished (33). A plausible explanation for this could be the shifts from 222 manual labor to more sedentary occupations and the related decline in physical activity.

Being married reduced the risk of the triple burden of malnutrition. Partners together could generate more money, reduce food insecurity, and tend to take better care of themselves and their children. It is been reported that children in single-parent households suffered from undernutrition significantly more than children brought up by both parents (34, 35). Likewise, this study revealed breastfeeding reduced the triple burden of malnutrition. Breastfeeding plays a vital role in the prevention of different forms of childhood malnutrition (36). Delivery by cesarean section (C-section) delays the timely initiation of breastfeeding and prelacteal feeding (37). Previous studies have reported that C-section increases maternal obesity and negatively affects the breastfeeding of children, which results suffer from malnutrition (38, 39). Moreover, malnutrition in children is related to gut microbiota alteration and C-section contributes to microbial alterations in the small intestine (40).

Our study revealed a parallel relationship between the household wealth quintiles and the triple burden of malnutrition. As household income increases, the odds of malnutrition increase (41, 42). High income could increase the purchasing power for food, influencing the type of foods consumed and the intake of prepared or processed food (30). Economic growth and the food industry's rapid penetration into the market have resulted in diets based on energy-dense and Page 15 of 23

BMJ Open

nutrient-poor foods (43). In recent years, the dietary preference in LMICs has changed as the food
environment is dominated by media advertising and relatively cheap and highly tasty energy-dense
foods (44).

This study identified that the odds of triple burden of malnutrition were higher in a household with a family size >10. A plausible explanation is that in a household with a large family, providing optimum nutritious food to all the family members and children could be difficult (45, 46). Moreover giving proper care and time to children and the family could be unlikely and this could lead to malnutrition. Likewise, Parity was found a determinant of the triple burden of malnutrition. Higher parity increased the odds of malnutrition. The possible explanation could be that women gain weight during pregnancy, and weight loss does not occur in the post-partum period (47). This mother's obesity/overweight is also correlated with child malnutrition.

The present study revealed that child age and sex were significant factors in malnutrition. Older under-five children were more likely to be malnourished compared to younger ones (48). A previous study (49) revealed that there was an increased frequency of parasite infection in older children leads to a higher prevalence of malnutrition compared to the younger ones. In addition, gender was found a significant determinant of malnutrition where a female child was less likely to be malnourished (50). The cause of the gender gap in malnutrition is unknown however, some studies argued that male children are known to be more vulnerable than females to diseases including lower respiratory infections, diarrhoeal diseases, malaria, and preterm birth. Those problems have been reported as factors for undernutrition among young male children (51, 52). Others also claimed that boys are more vulnerable to environmental problems while playing, such as exposure to toxins and air pollution than girls (53).

Being rural residents was associated with lower odds of the triple burden of malnutrition. This urban-rural difference could be attributable to factors including access to different food types, overcrowding and concurrent disease, physical activity, and sedentary lifestyles. Previous studies depicted that urbanization affects the way of life, and access to processed and junk foods could exacerbate malnutrition among women and children (42, 54).

Our study has some strengths and limitations. It used large nationally representative samples with appropriate statistical modeling. The use of large nationally representative data and multilevel analysis helps to provide more robust estimates of observed associations as well as enhance the generalizability of the results. Despite the strengths, this study used cross-sectional data, which did not indicate a temporal relationship between the factors and triple burden. No important covariates, such as dietary intake, physical activity level, comorbidities, and nutrition status during pregnancy, were incorporated into the study as the DHS did not provide a complete record of these ie, variables.

Conclusions and recommendations

About 1 out of 10 households suffer from the triple burden of malnutrition in low and middle-income countries. This study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs. Prevention of the problem requires collective efforts from the governments, the scientific and medical communities, and the industry towards changing dietary and lifestyle habits.

Abbreviations

AOR, Adjusted Odds Ratio; DHSs, Demographic and Health Surveys; ICC, Intra cluster correlation coefficient; LMICs, low and middle-income countries; MOR, median odds ratio; PCV,

2 3	000	
4	283	a proportional change in variance; SDGs, Sustainable Development Goals; WHO, World Health
5 6 7	284	Organization
8 9 10	285	Declarations
11 12	286	Ethics approval and consent to participate
13 14 15	287	Permission to access the data was obtained from the measure DHS program
16 17	288	(http://www.dhsprogram.com) via online request. The website and the data used were publicly
18 19	289	available with no personal identifier. All methods were carried out in accordance with relevant
20 21 22	290	guidelines and regulations.
23 24	291	Consent for publication
25 26 27 28	292	Not applicable.
29 30	293	Availability of data and materials
31 32 33	294	Data are available online in a public, open-access repository (www.measuredhs.com/data).
34 35 36	295	Competing interests
37 38 39	296	The authors declare that they have no competing interests.
40 41 42	297	Funding
43 44	298	No funder.
45 46 47	299	Author Contributions
48 49	300	Conceptualization: DC. Study design: DC, DGB, MWM, AAK, AZA, MHA, FMA. Execution:
50 51 52	301	DC, DGB, MWM, AAK, AZA, MHA, FMA. Acquisition of the data: DC, DGB, MWM, AAK,
53 54 55 56	302	AZA, MHA, FMA. Analysis and interpretation: DC, DGB, MWM, AAK, AZA, MHA, FMA.
57 58		16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	303	Writing: DC, DGB, MWM, AAK, AZA, MHA, FMA. Review and editing: DC, DGB, MWM,
5 6 7	304	AAK, AZA, MHA, FMA.
7 8 9	305	Acknowledgments
10 11 12	306	The authors acknowledge the Measure DHS for providing us with the data set.
13 14	307	
15 16	308	References
17	309	1. Meenakshi J. Trends and patterns in the triple burden of malnutrition in India.
18	310	Agricultural Economics. 2016;47(S1):115-34.
19 20	311	 Hepatology TLG. Obesity: another ongoing pandemic. 2021. p. 411.
20 21		
22	312	3. Organization WH. Diet, nutrition, and the prevention of chronic diseases: report of a joint
23	313	WHO/FAO expert consultation: World Health Organization; 2003.
24	314	4. Tabarés Seisdedos R. Health effects of overweight and obesity in 195 countries over 25
25	315	years. New England Journal of Medicine, 2017, vol 377, num 1, p 13-27. 2017.
26	316	5. Dai H, Alsalhe TA, Chalghaf N, Riccò M, Bragazzi NL, Wu J. The global burden of
27	317	disease attributable to high body mass index in 195 countries and territories, 1990–2017: An
28	318	analysis of the Global Burden of Disease Study. PLoS medicine. 2020;17(7):e1003198.
29	319	6. Ford ND, Patel SA, Narayan KV. Obesity in low-and middle-income countries: burden,
30	320	drivers, and emerging challenges. Annual review of public health. 2017;38:145-64.
31 32	321	7. Mahumud RA, Sahle BW, Owusu-Addo E, Chen W, Morton RL, Renzaho A.
32 33	322	Association of dietary intake, physical activity, and sedentary behaviours with overweight and
34	323	obesity among 282,213 adolescents in 89 low and middle income to high-income countries.
35	324	International Journal of Obesity. 2021;45(11):2404-18.
36	325	8. Heidkamp RA, Piwoz E, Gillespie S, Keats EC, D'Alimonte MR, Menon P, et al.
37	326	Mobilising evidence, data, and resources to achieve global maternal and child undernutrition
38	327	targets and the Sustainable Development Goals: an agenda for action. The Lancet.
39	328	2021;397(10282):1400-18.
40	329	9. Osendarp S, Akuoku JK, Black RE, Headey D, Ruel M, Scott N, et al. The COVID-19
41 42	330	crisis will exacerbate maternal and child undernutrition and child mortality in low-and middle-
42 43	331	income countries. Nature Food. 2021;2(7):476-84.
44	332	10. World Health Organisation Fact Sheets—Malnutrition. Available online:
45	333	https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 26 Nov 2022).
46	334	11. Adepoju AA, Allen S. Malnutrition in developing countries: nutrition disorders, a leading
47	335	cause of ill health in the world today. Paediatrics and Child Health. 2019;29(9):394-400.
48	336	12. Sunguya BF, Zhu S, Mpembeni R, Huang J. Trends in prevalence and determinants of
49 50	337	stunting in Tanzania: an analysis of Tanzania demographic health surveys (1991–2016).
50 51	338	Nutrition Journal. 2019;18(1):1-13.
52	339	13. Yang YY, Kaddu G, Ngendahimana D, Barkoukis H, Freedman D, Lubaale YA, et al.
53	340	Trends and determinants of stunting among under-5s: evidence from the 1995, 2001, 2006 and
54		
55	341	2011 Uganda Demographic and Health Surveys. Public health nutrition. 2018;21(16):2915-28.
56		
57		
58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

1		
2		
3	342	14. Singh KJ, Chiero V, Kriina M, Alee NT, Chauhan K. Identifying the trend of persistent
4 5	343	cluster of stunting, wasting, and underweight among children under five years in northeastern
6	344	states of India. Clinical Epidemiology and Global Health. 2022;18:101158.
7	345	15. Organization. WH. WHO Global Anaemia Estimates, 2021 Edition. Anaemia in Women
8	346	and Children. Available online: https://www. who.
9	347	int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 1 December
10 11	348	2022).
12	349	16. Koli HB, Nair MG, Shah MC. Impact of structured pre-natal counselling on early
13	350	initiation of breast feeding and adherence to exclusive breast feeding: a comparative
14	351	interventional study. International Journal of Reproduction, Contraception, Obstetrics and
15	352	Gynecology. 2021;10(7):2699-704.
16 17	353 354	17. Scott N, Delport D, Hainsworth S, Pearson R, Morgan C, Huang S, et al. Ending
18	354 355	malnutrition in all its forms requires scaling up proven nutrition interventions and much more: a 129-country analysis. BMC medicine. 2020;18(1):1-19.
19	356	129-country analysis. BMC medicine. 2020, 18(1):1-19. 18. Mistry SK, Hossain M, Arora A. Maternal nutrition counselling is associated with
20	357	reduced stunting prevalence and improved feeding practices in early childhood: a post-program
21	358	comparison study. Nutrition Journal. 2019;18(1):1-9.
22 23	359	19. Norman K, Haß U, Pirlich M. Malnutrition in older adults—recent advances and
24	360	remaining challenges. Nutrients. 2021;13(8):2764.
25	361	20. Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of
26	362	maternal and early life malnutrition on health: a diet-microbe perspective. BMC medicine.
27	363	2020;18(1):1-15.
28 29	364	21. Kirolos A, Goyheneix M, Eliasz MK, Chisala M, Lissauer S, Gladstone M, et al.
30	365	Neurodevelopmental, cognitive, behavioural and mental health impairments following childhood
31	366	malnutrition: a systematic review. BMJ global health. 2022;7(7):e009330.
32	367	22. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Current
33 34	368	opinion in infectious diseases. 2018;31(3):231.
35	369	23. Castro-Rodríguez DC, Rodríguez-González GL, Menjivar M, Zambrano E. Maternal
36	370	interventions to prevent adverse fetal programming outcomes due to maternal malnutrition:
37	371	Evidence in animal models. Placenta. 2020;102:49-54.
38	372	24. Desyibelew HD, Dadi AF. Burden and determinants of malnutrition among pregnant
39 40	373 374	 women in Africa: A systematic review and meta-analysis. PloS one. 2019;14(9):e0221712. Sachs JD, Schmidt-Traub G, Mazzucato M, Messner D, Nakicenovic N, Rockström J. Six
41	374	transformations to achieve the sustainable development goals. Nature sustainability.
42	376	2019;2(9):805-14.
43	377	26. Fonseca LM, Domingues JP, Dima AM. Mapping the sustainable development goals
44 45	378	relationships. Sustainability. 2020;12(8):3359.
45 46	379	27. Siddiqui F, Salam RA, Lassi ZS, Das JK. The intertwined relationship between
47	380	malnutrition and poverty. Frontiers in Public Health. 2020;8:453.
48	381	28. Rah JH, Melse-Boonstra A, Agustina R, van Zutphen KG, Kraemer K. The Triple Burden
49 50	382	of Malnutrition Among Adolescents in Indonesia. SAGE Publications Sage CA: Los Angeles,
50 51	383	CA; 2021. p. S4-S8.
52	384	29. Luo H, Zyba SJ, Webb P. Measuring malnutrition in all its forms: An update of the net
53	385	state of nutrition index to track the global burden of malnutrition at country level. Global Food
54	386	Security. 2020;26:100453.
55 56		
56 57		
58		18
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3	207	
4	387	30. Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of
5	388	malnutrition and the changing nutrition reality. The Lancet. 2020;395(10217):65-74.
6	389	31. Christian AK, Dake FA. Profiling household double and triple burden of malnutrition in
7	390	sub-Saharan Africa: Prevalence and influencing household factors. Public Health Nutrition.
8	391	2022;25(6):1563-76.
9 10	392	32. Wong C, Zalilah M, Chua E, Norhasmah S, Chin Y, Siti Nur'Asyura A. Double-burden
11	393	of malnutrition among the indigenous peoples (Orang Asli) of Peninsular Malaysia. BMC Public
12	394	Health. 2015;15(1):1-9.
13	395	33. Sunuwar DR, Singh DR, Pradhan PMS. Prevalence and factors associated with double
14	396	and triple burden of malnutrition among mothers and children in Nepal: evidence from 2016
15	397	Nepal demographic and health survey. BMC Public Health. 2020;20(1):1-11.
16	398	34. Villena-Esponera MP, Moreno-Rojas R, Molina-Recio G. Food insecurity and the double
17 18	399	burden of malnutrition of indigenous refugee Épera Siapidara. Journal of immigrant and minority
19	400	health. 2019;21(5):1035-42.
20	401	35. Tiwari N. The Influence of Single Parent Environment on Children's Learning and
21	402	Development.
22	403	36. Molitoris J. Breastfeeding during pregnancy and its association with childhood
23	404	malnutrition and pregnancy loss in low-and middle-income countries. Lund Papers in Economic
24 25	405	Demography. 2018;2018(3):1-81.
25 26	406	37. Raihana S, Alam A, Huda TM, Dibley MJ. Factors associated with delayed initiation of
27	407	breastfeeding in health facilities: secondary analysis of Bangladesh demographic and health
28	408	survey 2014. International Breastfeeding Journal. 2021;16(1):1-13.
29	409	38. Belachew A. Timely initiation of breastfeeding and associated factors among mothers of
30	410	infants age 0–6 months old in Bahir Dar City, Northwest, Ethiopia, 2017: a community based
31	411	cross-sectional study. International breastfeeding journal. 2019;14(1):1-6.
32 33	412	39. Saaka M, Hammond AY. Caesarean section delivery and risk of poor childhood growth.
33 34	413	Journal of nutrition and metabolism. 2020;2020.
35	414	40. Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation
36	415	in childhood malnutrition-the role of short chain fatty acids. Clinical Nutrition. 2019;38(2):615-
37	416	
38	417	41. Kibria A, Muhammed G, Swasey K, Hasan MZ, Sharmeen A, Day B. Prevalence and
39	418	factors associated with underweight, overweight and obesity among women of reproductive age
40 41	419	in India. Global health research and policy. 2019;4(1):1-12.
42	420	42. Kumar P, Chauhan S, Patel R, Srivastava S, Bansod DW. Prevalence and factors
43	421	associated with triple burden of malnutrition among mother-child pairs in India: a study based on
44	422	National Family Health Survey 2015–16. BMC Public Health. 2021;21(1):1-12.
45	423	43. Sekiyama M, Jiang HW, Gunawan B, Dewanti L, Honda R, Shimizu-Furusawa H, et al.
46	424	Double burden of malnutrition in rural West Java: household-level analysis for father-child and
47 48	425	mother-child pairs and the association with dietary intake. Nutrients. 2015;7(10):8376-91.
40 49	426	44. Liguori J, Trübswasser U, Pradeilles R, Le Port A, Landais E, Talsma EF, et al. How do
50	427	food safety concerns affect consumer behaviors and diets in low-and middle-income countries?
51	428	A systematic review. Global Food Security. 2022;32:100606.
52	429	45. Drammeh W, Hamid NA, Rohana A. Determinants of household food insecurity and its
53	430	association with child malnutrition in Sub-Saharan Africa: A review of the literature. Current
54 57	431	Research in Nutrition and Food Science Journal. 2019;7(3):610-23.
55 56		
57		
58		19
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	432	46. Serbesa ML, Iffa MT, Geleto M. Factors associated with malnutrition among pregnant
4 5	433	women and lactating mothers in Miesso Health Center, Ethiopia. European Journal of
6	434	Midwifery. 2019;3.
7 8	435 436	47. Bhavadharini B, Anjana RM, Deepa M, Jayashree G, Nrutya S, Shobana M, et al. Gestational weight gain and pregnancy outcomes in relation to body mass index in Asian Indian
8 9	437	women. Indian Journal of Endocrinology and Metabolism. 2017;21(4):588.
10	438	48. Sinha RK, Dua R, Bijalwan V, Rohatgi S, Kumar P. Determinants of stunting, wasting,
11 12	439	and underweight in five high-burden pockets of four Indian states. Indian journal of community
13	440 441	medicine: official publication of Indian Association of Preventive & Social Medicine. 2018;43(4):279.
14 15	442	49. Pal A, Manna S, Dalui R, Mukhopadhyay R, Dhara PC. Undernutrition and associated
16	443	factors among children aged 5-10 years in West Bengal, India: a community-based cross-
17 18	444	sectional study. Egyptian Pediatric Association Gazette. 2021;69(1):1-12.
19	445 446	50. Anuradha R, Sivanandham R, Salome SD, Francis R, Roopa D, Sampavi S, et al. Nutritional status of children aged 3-6 years in a rural area of Tamilnadu. Journal of clinical and
20 21	447	diagnostic research: JCDR. 2014;8(10):JC01.
21 22 23	448 449	51. Hawkes S, Buse K. Gender and global health: evidence, policy, and inconvenient truths. The Lancet. 2013;381(9879):1783-7.
24	450	52. Thurstans S, Opondo C, Seal A, Wells J, Khara T, Dolan C, et al. Boys are more likely to
25 26	451	be undernourished than girls: a systematic review and meta-analysis of sex differences in
20	452 453	undernutrition. BMJ global health. 2020;5(12):e004030. 53. Asfaw M, Wondaferash M, Taha M, Dube L. Prevalence of undernutrition and associated
28 29	454	factors among children aged between six to fifty nine months in Bule Hora district, South
30	455	Ethiopia. BMC Public health. 2015;15(1):1-9.
31	456	54. Nagarkar AM, Kulkarni SS. Obesity and its effects on health in middle-aged women
32 33	457	from slums of Pune. Journal of Mid-life Health. 2018;9(2):79.
34 35	458	
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Country	Year of surv	ey			P	Prevalence (95% CI)	% Weig
Albania	2017/18			 }		8.27 (6.31, 10.23)	4.54
Benin	2017/18			+		9.46 (8.17, 10.75)	4.68
Burundi	2016/17					4.31 (3.49, 5.13)	4.74
Cameroon	2018			-		12.23 (10.61, 13.85)	4.62
Ethiopia	2016		•			3.54 (2.90, 4.18)	4.76
Gambia	2019/20			-		10.50 (8.67, 12.33)	4.57
Guinea	2018			+		12.04 (10.16, 13.92)	4.56
Haiti	2016/17			+		7.94 (6.48, 9.40)	4.65
India	2019/21			۲		11.79 (11.58, 12.00)	4.79
Liberia	2019/20			+		11.31 (9.42, 13.20)	4.56
Madagasca	r 2021			•		5.76 (4.80, 6.72)	4.73
Mali	2018			-		12.21 (10.25, 14.17)	4.54
Mauritania	2019/21				_	 31.66 (28.74, 34.58) 	4.27
Maldives	2016/17					23.66 (20.40, 26.92)	4.16
Nigeria	2018			+		11.91 (10.78, 13.04)	4.70
Nepal	2016			•		6.59 (4.99, 8.19)	4.62
Rwanda	2019/20			-		9.42 (7.57, 11.27)	4.57
Sierra Leoi	ne 2019			*		9.74 (8.39, 11.09)	4.67
Tajikistan	2017 2010	5		-		9.63 (8.30, 10.96)	4.67
Timor Lest	e 2016					9.22 (6.50, 11.94)	4.33
Uganda	2016			+		6.92 (5.49, 8.35)	4.65
South Afric	ca 2016				-	— 29.69 (24.95, 34.43)	3.63
Overall,						11.39 (9.56, 13.23)	100.0
		-20	0		20		_

161x123mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2, 3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
6		recruitment, exposure, follow-up, and data collection	_
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7
	-	methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7,8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	1
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking	
		account of sampling strategy	
		account of sampling strategy	

Continued on next page

8.9

10/12

12/15

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers pote eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, soc
data		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of in
		(c) Cohort study—Summarise follow-up time (eg, average and total amoun
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures or
		Case-control study-Report numbers in each exposure category, or summar
		measures of exposure
		Cross-sectional study-Report numbers of outcome events or summary mea
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estim
		their precision (eg, 95% confidence interval). Make clear which confounder
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute ri
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bia
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limit
		multiplicity of analyses, results from similar studies, and other relevant evid
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information	on	0
Funding	22	Give the source of funding and the role of the funders for the present study
6		applicable, for the original study on which the present article is based

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Triple burden of malnutrition among mother-child pairs in low and middle-income countries: A cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-070978.R1
Article Type:	Original research
Date Submitted by the Author:	17-Mar-2023
Complete List of Authors:	Chilot, Dagmawi; University of Gondar College of Medicine and Health Sciences, Department of Human Physiology Belay, Daniel; University of Gondar College of Medicine and Health Sciences, Department of Human Anatomy Merid, Mehari ; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Biostatistics Kibret, Anteneh; University of Gondar College of Medicine and Health Sciences, Department of Human anatomy Alem, Adugnaw ; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Bio statistics Asratie, Melaku; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Bio statistics Asratie, Melaku; University of Gondar College of Medicine and Health Sciences, Department of women and family health Teshager, Nahom ; University of Gondar College of Medicine and Health Sciences, Department of pediatrics Aragaw, Fantu Mamo; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Biostatistics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Nutrition and metabolism, Public health
Keywords:	NUTRITION & DIETETICS, EPIDEMIOLOGY, PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Community child health < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Triple burden of malnutrition among mother-child pairs in low and middle-income countries: A cross-sectional study

4 Dagmawi Chilot*¹, Daniel Gashaneh Belay^{3,4}, Mehari Woldemariam Merid⁴, Anteneh Ayelign
5 Kibret³, Adugnaw Zeleke Alem⁴, Melaku Hunie Asratie⁵, Nahom Worku Teshager⁶ and Fantu
6 Mamo Aragaw⁴

- ¹Department of Human Physiology, University of Gondar, College of Medicine and Health
 Science, School of Medicine, Gondar, Ethiopia;
- ¹⁹ 10 ³Department of Human Anatomy, University of Gondar, College of Medicine and Health Science,
- 2021 11 School of Medicine, Gondar, Ethiopia;
- ²² 12 ⁴Department of Epidemiology & Biostatistics, University of Gondar, College of Medicine and
- Health Science, Institute of Public Health, Gondar, Ethiopia;
- ²⁶ 14 ⁵Department of women and family health, University of Gondar, College of Medicine and Health
- 2728 15 Science, School of Midwifery, Gondar, Ethiopia;
- ²⁹ 16 ⁶Department of Pediatrics and Child Health, University of Gondar, College of Medicine and Health
- Science, School of Medicine, Gondar, Ethiopia;
 Science, School of Medicine, Gondar, Ethiopia;

19 Correspondence: Dagmawi Chilot: dagimchilot21@gmail.com. ¹Department of Human
20 Physiology, University of Gondar, College of Medicine and Health Sciences, University of
21 Gondar, P.O. Box 196, Gondar, Ethiopia,

1		
2 3 4	30	
5 6 7	31	Abstract
8 9	32	Objective: This study aimed to assess the prevalence and determinants of the triple burden of
10 11	33	malnutrition among mother-child pairs in low-and middle-income countries.
12 13 14	34	Design: Cross-Sectional Study
15 16	35	Setting: Low-and middle-income countries
17 18	36	Participants: Women and children
19 20 21	37	Primary outcome: Triple burden of malnutrition (overweight/obese mother with undernourished
22 23	38	and anemic under 5 years child)
24 25	39	Methods: Data for this study were drawn from recent 22 low and middle-income countries
26 27 28	40	Demographic and Health Surveys (DHSs). A total weighted sample of 116,795 mother-child pairs
29 30	41	was included in the study. STATA version 14.2 was used to clean, code and analyze the data.
31 32	42	Multilevel logistic regression was employed to identify factors associated with the problem.
33 34 25	43	Adjusted odds ratio with 95% CI and a P value <0.05 was reported to indicate statistical
35 36 37	44	association. Model fitness and comparison were done using ICC, MOR, PCV, and deviance.
38 39 40	45	Result: The pooled prevalence of the triple burden of malnutrition among mother-child pairs was
41 42	46	11.39%. It showed statistically significant positive associations with mothers aged \geq 35 years
43 44 45	47	(AOR=2.25,95%CI 2.08-2.44), family size >10 (AOR=1.17,95%CI 1.08-1.26), delivery by CS
45 46 47	48	(AOR=1.93,95%CI 1.83-2.03), the richest household (AOR=1.72,95%CI 1.56-1.88), grand
48 49	49	multiparous (AOR=1.62, 95% CI 1.46-1.81), age of child 36-47 months (AOR=1.77, 95% CI 1.64-
50 51	50	1.90), at a p-value of <0.05. Whereas breastfeeding (AOR=0.94,95%CI 0.89-0.99), married
52 53 54	51	mothers (AOR=0.87,95%CI 0.78-0.96), female children (AOR=0.88,95%CI 0.84-0.92), improved
55 56	52	toilet (AOR=0.23,95%CI 0.17-0.29), improved source of drinking water (AOR=0.28,95%CI 0.21-
57 58		2

0.35), rural residents (AOR=0.66,95%CI 0.62-0.69) had a contrasting relationship with the triple burden of malnutrition

Conclusion: About 1 out of 10 households suffer from the triple burden of malnutrition in low and middle-income countries. This study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs.

Keywords: Triple burden, mother-child pairs, malnutrition, low and middle-income countries.

Strengths and limitations of this study

- The findings were supported by large datasets covering 22 LMICs. \geq
- We employed multilevel analysis which is an appropriate methodology for such data \geq
- The data were collected using a common internationally acceptable methodological procedure. \geq
- > DHS used a cross-sectional survey design, and the causal relationship between the triple burden of malnutrition and the independent variables cannot be established.
 - We didn't include important covariates such as dietary intake, physical activity level, or \geq comorbidities as the DHS did not collect information on these variables

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 24

BMJ Open

74 Background

The triple burden of malnutrition, defined as the coexistence of overnutrition, undernutrition, and micronutrient deficiencies is increasing in low and middle-income countries (LMICs) (1). The World Health Organization (WHO) characterized overnutrition (Obesity and overweight) as a pandemia of a major public health concern due to the increased frequency of the problem in many countries (2). It is ranked as the sixth leading cause of disability-adjusted life years (DALYs) and accounts for approximately 4 million people dying each year worldwide (3-5). Several previous studies have shown, following marked dietary change that obesity/overweight is increasing more rapidly in low and middle-income countries compared to higher-income countries (6, 7).

Similarly, undernutrition continues to be a major public health concern throughout the developing world (8, 9). Nearly half of all deaths in children under 5 are attributable to undernutrition and it encompasses wasting, stunting, underweight, and micronutrient deficiencies (anemia) (10, 11). Despite stunting having declined steadily, faster progress is needed to reach the 2030 target (12, 13). Wasting and underweight persisting at alarming rates require a reversal in trajectory if the 2030 target is to be achieved (14). Since 2000, a significant reduction in the prevalence of anemia in children under five has been observed in many low- and lower-middle-income countries (15). Children are more vulnerable to inadequate pre-natal, infant, and young child nutrition, particularly in resource-constrained settings (16, 17). Endorsing early childhood feeding best practices is crucial to improve the health of children (18).

Malnutrition has a tremendous negative impact on the normal functioning of every organ system
(19). It can cause permanent, widespread damage to a child's growth, development, and well-being
(20). Scientific evidence has shown that malnutrition in children is associated with poorer school
performance, increased susceptibility to infections, and slow recovery from illness (21, 22).

97 Maternal malnutrition increases the risk of poor pregnancy outcomes including obstructed labor, 98 premature or low-birth-weight babies, and postpartum hemorrhage (23, 24). To reduce the problem 99 the United Nations (UN) adopted the Sustainable Development Goals (SDGs), especially those 100 targeted to end poverty in all its forms everywhere (SDG 1), end hunger, achieve food security, 101 improve nutrition, promote sustainable agriculture (SDG 2), ensure healthy lives, and promote 102 well-being for all at all ages (SDG 3) (25, 26).

Previous literature recognizes the basic and underlying causes of malnutrition including the environmental, economic, and sociopolitical contextual factors, with poverty having a central role (11, 27-29). The triple burden of malnutrition among mother-child pairs is a relatively new issue and only a few country-based studies explore the problem which couldn't give a panoramic view of the problem in LMICs (30-32). Given the persistent and high levels of the problem in these countries, there is a strong need for action. To design and deliver effective interventions adequate understanding of the socioeconomic, environmental, and cultural factors is highly important. Besides if the SDG targets are to be met, coordinated action is required toward not only sustaining current rates of decline but also accelerating progress. Therefore, the objective of this study was to assess the prevalence of the triple burden of malnutrition among mothers and children and the potential factors associated with it in low and middle-income countries.

Ma

Materials and methods

Study design, setting, and period

The present study is based on 22 low and middle-income countries that have had Demographic and Health Surveys (DHS) from 2016-2020. The DHS used a cross-sectional survey study design to collect data and provide population and health indicators at the national level. The list of those countries and the respective year of surveys is provided in Table 1.

Country	Year of survey	Region
Albania	2017/18	Southeastern Europe
Benin	2017/18	West Africa
Burundi	2016/17	East-central Africa
Cameroon	2018	West-central Africa
Ethiopia	2016	East Africa
Gambia	2019/20	West Africa
Guinea	2018	West Africa
Haiti	2016/17	Caribbean
India	2019/21	South Asia
Liberia	2019/20	West Africa
Madagascar	2021	East Africa
Mali	2018	West Africa
Mauritania	2019/21	Northwest Africa
Maldives	2016/17	South Asia
Nigeria	2018	West Africa
Nepal	2016	South Asia
Rwanda	2019/20	East Africa
Sierra Leone	2019	West Africa
Tajikistan	2017	Central Asia
Timor Leste	2016	South Asia
Uganda	2016	East Africa
South Africa	2016	South Africa

³⁴ 122 Data source and sampling procedure ³⁵

The current analyses was based on pooled data from DHSs in 22 LMICs. These are nationally representative surveys that collect data on reproductive, maternal, neonatal, child health, and nutrition in LMIC. The surveys are similarly designed that used standardized questionnaires and data collection procedures, allowing therefore comparability of results. The survey employed a two-stage cluster sampling technique. In the first stage, the selection of proportional clusters/enumeration areas was performed using each country's most recent population and housing census as a sampling frame. In the second stage, a systematic selection of households from the newly created cluster was performed. A detailed description of the DHS sampling design and data collection procedures has been found in each country's DHS report. The study population for

this study was mother-child pairs. Weighting was done using the complex sample design weighting
and the "svyset" Stata command was applied. Variables v005 (sampling weight), v021 (primary
sampling unit), and v023 (stratification used in sample design) were used, and as the result, a total
weighted sample of 116,795 mother-child pairs was included in the analysis.

Definition of variables

Outcome variable:

The triple burden of malnutrition was the outcome variable of this study where the mother was overweight/obese and children under 5 years of age were undernourished and anemic (31, 33). At the same household level, first, we created four different categories of malnutrition such as overweight/obese mother and stunted child, overweight/obese mother and wasted child, overweight/obese mother and underweight child, and overweight/obese mother and anemic child. Then we further combined overweight/obese mothers, undernourished children, and anemic children to generate the triple burden of malnutrition. Categorization was made based on height-for-age z-score (HAZ), standard deviations (SD), weight-for-height z-score (WHZ), weight-for-age z-score (WAZ), hemoglobin level, and body mass index (BMI).

Stunting dichotomized and coded into 0=Not stunted (HAZ -2SD and above) & 1= Stunted
 (HAZ <-2SD);

43 149 Wasting dichotomized and coded into 0=Not wasted (WHZ-2SD to +2SD) and 1=Wasted
44
45 150 (WHZ < -2SD);

Underweight dichotomized and coded into 0= Not underweight (WHZ-2SD and above) & 1=
Underweight (WAZ < -2SD);

⁵² 153 Child anemia dichotomized and coded into 0= Not anemic (hemoglobin level > 11 g/dl), & 1=
 ⁵⁴ 154 Anemic (hemoglobin level < 11 g/dl);

Page 9 of 24

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

155 Mother's BMI dichotomized and coded into 0= Normal (18.5–24.9 kg/m2) & 156 1=Overweight/Obese (\geq 25 kg/m2)

157 The triple burden of malnutrition was dichotomized and coded into 0= NO (not overweight/obese
158 mother and not undernourished child plus not anemic child, and 1= YES (overweight/obese mother

- and undernourished child plus anemic child)
- 160 An undernourished child is a child who is stunted or wasted or underweight.
- 161 Independent variables:

Based on previous works of literature and the likelihood of influencing the outcome of interest, several explanatory variables including the age of mothers, mother's education, marital status, current breastfeeding, delivery by cesarean section, family size, wealth index, media access, parity, age of the child, sex of the child, type of toilet facility, source of drinking water, residence and distance to health facility were considered.

167 **Statistical analyses**

168 We append the dataset of each country to generate pooled data. The data extraction, coding, and 169 analysis were carried out using STATA software version 14.2. We weighted the sample to restore 170 the representativeness of the sample so that the total sample looks like the country's actual population. Due to the hierarchical nature of the DHS, the multilevel analysis was fitted to identify 171 172 significantly associated factors. Four models were fitted; the null model (with no predictors), the 173 model I (adjusted for individual-level variables only), model II (adjusted for community-level 174 variables only), and model III (model adjustment for both individual and community-level 175 variables simultaneously). Adjusted OR (AOR) with 95% CI and p<0.05 were used to determine 176 significant predictors. Model fitness and comparison were done using Intraclass Correlation 177 Coefficient (ICC), Proportional Change in Variance (PCV), Median Odds Ratio (MOR), the
178 Likelihood Ratio test (LR), and deviance computed.

180 Patient and public involvement statement

181 As our study used secondary analysis of DHS data, participants and the public were not involved 182 in the study design or planning of the study. The study participants were not consulted to interpret 183 the results and write or editing of this document for readability or accuracy.

Results

Demographics and socioeconomic characteristics

A total of 116,795 mother-child pairs were included in the study. Over half (56.48%) of mothers were in the age category of 25-34 years. About 22,98% of mothers were illiterate and the majority (46.39%) had attended secondary education. Approximately 95.73% of mothers were married and 62.89% were currently breastfeeding. About 20.33% and 21.21% of the households were in the low wealth quintile of poorest and poorer respectively. Over a quarter (27.62%) of the families had never been exposed to any type of media. The majority of the children (32.59%) were aged \leq 12 months. A large proportion (83.60%) of the households had improved sources of drinking water and almost two-thirds (67.02%) of the households had improved toilet facilities. Almost three fourth (71.03%) of participants lived in rural areas and for over a quarter (27.42%) of those participants, the distance to access health facilities was a big problem (**Table 2**).

196 Table 2. Socio-demographic characteristics of the study participants

Variables	Categories	Unweighted	Weighted
		frequency (%)	frequency (%)
Age of mothers	15-24	34,983 (29.05)	35,918 (30.75)
-	25-34	68,386 (56.78)	65,971 (56.48)

Page 11 of 24

	≥35	17,073 (14.18)	14,906 (12.76)
Mothers education	No education	27,995 (23.24)	26,845 (22.98)
	Primary education	19,684 (16.34)	18,633 (15.95)
	Secondary	57,008 (47.33)	54,185 (46.39)
	Higher	15,755 (13.08)	17,131 (14.67)
	Not in union	5,583 (4.64)	4,987 (4.27)
Mothers marital status	Married	114,859 (95.36)	111,807 (95.7.
	No	44,160 (36.66)	43,338 (37.11)
Currently breastfeeding	Yes	76,282 (63.34)	73,457 (62.89)
Delivery by cesarean	No	99,291 (82.49)	93,974 (80.51
section	Yes	21,077 (17.51)	22,748 (19.49
Family size	≤5	56,365 (46.80)	53,677 (45.96
	6-10	54,605 (45.34)	53,258 (45.60
	>10	9,472 (7.86)	9,859 (8.44)
Wealth index	Poorest	28,097 (23.33)	23,749 (20.33
	Poorer	27,352 (22.71)	24,774 (21.21
	Middle	24,741 (20.54)	24,330 (20.83
	Richer	22,180 (18.42)	23,880 (20.45
	Richest	18,072 (15.00)	20,061 (17.18
Media access	No	33,942 (28.18)	32,256 (27.62
	Yes	86,500 (71.82)	84,539 (72.38
Parity	Primiparous	36,241 (30.09)	35,333 (30.25
	Multiparous	76,092 (63.18)	73,823 (63.21
	Grand Multiparous	• 8,109 (6.73)	7,639 (6.54)
	≤12	38,959 (32.35)	38,059 (32.59
	13-23	25,382 (21.07)	24,819 (21.25
Age of child	24-35	22,208 (18.44)	21,478 (18.39
5	36-47	17,948 (14.90)	17,204 (14.73
	48-59	15,945 (13.24)	15,234 (13.04
G 0.1.11	Male	63,660 (52.86)	62,008 (53.09
Sex of child	Female	56,782 (47.14)	54,787 (46.91
T	Unimproved	37,519 (31.15)	38,518 (32.98
Type of toilet facility	Improved	82,923 (68.85)	78,277 (67.02
Source of drinking water	Unimproved	20,959 (17.40)	19,159 (16.40
0	Improved	99,483 (82.60)	97,636 (83.60
Residence	Urban	28,722 (23.85)	33,838 (28.97
		· · · · ·	, ,
Residence	Rural	91,720 (76.15)	82,957(71.03
Distance to health facility	Rural No problem	<u>91,720 (76.15)</u> 84,605 (70.25)	82,957 (71.03 84,776 (72.58

Prevalence of triple burden of malnutrition

199 In 22 low and middle-income countries, the pooled prevalence of the triple burden of malnutrition

among mother-child pairs was found at 11.39 % (95% CI 9.56%, 13.23%). Ethiopia has the lowest

201 (3.54 %) prevalence of triple burden while Mauritania (31.66%) bears the highest (Figure 1).

Fig 1. The pooled prevalence of the triple burden of malnutrition

203 Multilevel analyses

204 Random parameter estimation and model selection

Based on the result of random effect analysis, the ICC of the null model was 0.30, indicating that 30% of the total variability in triple burden prevalence was attributable to between-cluster variability, while about 70% was due to individual differences. The null model MOR was 3.04, which indicates that a mother/child from a cluster with a high triple burden prevalence has a 3.04 times higher probability of being malnourished than a mother/child from a cluster with a lower prevalence. Model III was the best-fitted model since it has the highest log likelihood (-91665) and the lowest deviance (183,330) value (**Table 3**).

212 Factors associated with the triple burden of malnutrition (Fixed effects)

The triple burden of malnutrition was statistically significant with mothers aged 25-34 years $(AOR=1.54, 95\% \text{ CI } 1.45 - 1.63), \geq 35 \text{ years} (AOR=2.25, 95\% \text{ CI } 2.08 - 2.44), \text{ mothers attended}$ secondary education (AOR=1.08, 95% CI 1.02-1.15), family size >10 (AOR=1.17, 95% CI 1.08 -1.26), delivery by CS (AOR=1.93, 95% CI 1.83 - 2.03), the richer household (AOR=1.63, 95% CI 1.49 - 1.76), the richest household (AOR=1.72, 95% CI 1.56 - 1.88), multiparous (AOR=1.42, 95% CI 1.34 - 1.49), grand multiparous (AOR=1.62, 95% CI 1.46 - 1.81), age of child 36-47 months (AOR=1.77, 95% CI 1.64 - 1.90), age of child 48-59 (AOR=1.51, 95% CI 1.39 - 1.64), breastfeeding (AOR=0.94, 95% CI 0.89 - 0.99), married mothers (AOR=0.87, 95% CI 0.78 - 0.96),

221 female children (AOR=0.88, 95% CI 0.84 - 0.92), improved toilet facility (AOR=0.23, 95% CI					
-2.21 temale children (AUR=0.88, 95% CL 0.84 - 0.92) improved follet facility (AUR=0.23, 95% CL	221	$C = 1 + 1 + 1 + 1 + (A \cap D = 0 + 0)$	0.50/(0.1004)	1 + 1 + 0 + 1 + (AOD + 0)	0 = 0 = 0 / CI
	///	temale children (AUR=UXX)	95% (10×4 - 09/)	improved follet facility (AUR=0)/	1 97% [1]
			$, J J / 0 O I 0.0 I 0. J \Delta j$		J, J J J 0 CI

222 0.17 - 0.29), improved source of drinking water (AOR=0.28, 95% CI 0.21 - 0.35), rural residents

223 (AOR=0.66, 95% CI 0.62 - 0.69) at a p-value of <0.05 (**Table 3**).

Table 3. Multivariable multilevel logistic regression analysis of the triple burden of malnutrition.

Variables	Categories	Null model	Model I AOR 95% CI	Model II AOR 95% CI	Model III AOR 95% CI
Age of mothers	15-24		1.00		1.00
C	25-34		1.54 (1.46 - 1.63)**		1.54 (1.45 - 1.63)*
	≥35		2.28 (2.11 - 2.47)**		2.25 (2.08 - 2.44)*
Mothers	No education		1.00		1.00
education	Primary education		1.04 (0.97 - 1.12)		1.04 (0.97 - 1.12)
	Secondary		1.08 (1.01 - 1.15)*		1.08 (1.02 - 1.15)*
	Higher		0.94 (0.86 - 1.02)		0.94 (0.86 - 1.02)
Mothers	Not in union		1.00		1.00
marital status	Married		0.83 (0.75 - 0.93)*		0.87 (0.78 - 0.96)*
Currently	No		1.00		1.00
breast feeding	Yes		0.92 (0.87 - 0.97)*		0.94 (0.89 - 0.99)*
Delivery by	No		1.00		1.00
CS	Yes		1.94 (1.84 - 2.04)**		1.93 (1.83 - 2.03)*
Family size	<u>≤</u> 5		1.00		1.00
5	6-10		1.00 (0.97 - 1.08)		1.01 (0.98 - 1.08)
	>10		1.14 (1.06 - 1.24)**		1.17 (1.08 - 1.26)*
Wealth index	Poorest		1.00		1.00
	Poorer		1.41 (1.31 - 1.52)**		1.38 (1.28 - 1.49)*
	Middle		1.60 (1.48 - 1.73)**		1.49 (1.38 - 1.62)*
	Richer		1.86 (1.72 - 2.02)**		1.63 (1.49 - 1.76)*
	Richest		2.15 (1.97 - 2.35)**		1.72 (1.56 - 1.88)*
Media access	No		1.00		1.00
	Yes		1.01 (0.98 - 1.08)		1.02 (0.99 - 1.11)
Parity	Primiparous		1.00		1.00
5	Multiparous		1.42 (1.34 - 1.50)**		1.42 (1.34 - 1.49)*
	Grand Multiparous		1.61 (1.44 - 1.79)**		1.62 (1.46 - 1.81)*
	≤12		1.00		1.00
	13-23		1.41 (1.32 - 1.50)**		1.41 (1.32 - 1.50)*
Age of child	24-35		1.62 (1.52 - 1.73)**		1.63 (1.53 - 1.74)*
J	36-47		1.75 (1.62 - 1.89)**		1.77 (1.64 - 1.90)*
	48-59		1.50 (1.38 - 1.62)**		1.51 (1.39 - 1.64)*
a <u>a</u> i i i i	Male		1.00		1.00
Sex of child	Female		0.88 (0.84 - 0.92)**		0.88 (0.84 - 0.92)*

Type of toilet	Unimproved		1.00		1.00
facility	Improved		0.24 (0.18 - 1.31)	—	0.23 (0.17 - 0.29)**
Source of	Unimproved		1.00		1.00
drinking water	Improved		0.21 (0.16 - 0.28)	—	0.28 (0.21 - 0.35)*
Community-lev	el variables				
Residence	Urban			1.00	1.00
	Rural			0.49 (0.46 - 0.52)**	0.66 (0.62 - 0.69)**
Distance to	No problem			1.00	1.00
health facility	Big problem			0.87 (0.82 - 0.91)**	0.94 (0.89 - 0.98)*
Random effect					
	Variance	1.40	1.24	1.31	1.23
	ICC	0.30	0.27	0.28	0.27
	MOR	3.04	2.88	2.96	2.85
	PCV	Reff	11.42	6.43	12.14
Model compari	son				
	Log likelihood ratio	-100585	-92108	-97815	-91665
	Deviance	201,170	184,216	195,630	183,330

ICC = *Inter cluster correlation coefficient, MOR* =*Median odds ratio, PCV* = *proportional change in variance. AOR=adjusted odds ratio; CI= confidence interval,*

Discussion

LMICs are increasingly facing the triple burden of malnutrition where women and children are among the hardest hit by the burden (34, 35). This study assessed the triple burden of malnutrition (co-occurrence of undernutrition, overweight/obesity, and anemia among mother-child pairs) in the same household using nationally representative data. The finding showed that the prevalence of triple burden found at 11.39 % (95% CI 9.56%, 13.23%), Ethiopia has the lowest (3.54 %) prevalence while Mauritania (31.66%) bears the highest. The variation among countries could be attributed to differences in socio-economic status, food environment, physical activity, genetic factors, health care system strength, national policy, and political commitments.

The study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs. It has found a parallel correlation between the triple burden of malnutrition and maternal age. The odds of being

Page 15 of 24

BMJ Open

malnourished increase as the age of the mother increases. This is in agreement with previous studies where older mothers bear the highest risk compared to younger ones (31, 36). The possible explanation could be because of reduced physical activity, less energy requirement, and hormonal changes among older mothers. Similarly, mothers who have attended secondary education were more likely to be malnourished (31). A plausible explanation for this could be the shifts from manual labor to more sedentary occupations and the related decline in physical activity.

Being married reduced the risk of the triple burden of malnutrition. Partners together could generate more money, reduce food insecurity, and tend to take better care of themselves and their children. It is been reported that children in single-parent households suffered from undernutrition significantly more than children brought up by both parents (37, 38). Likewise, this study revealed breastfeeding reduced the triple burden of malnutrition. Breastfeeding plays a vital role in the prevention of different forms of childhood malnutrition (39). Delivery by cesarean section (C-section) delays the timely initiation of breastfeeding and pre-lacteal feeding (40). Previous studies have reported that C-section increases maternal obesity and negatively affect the breastfeeding of children, which results suffer from malnutrition (41, 42). Moreover, malnutrition in children is related to gut microbiota alteration and C-section contributes to microbial alterations in the small intestine (43).

Our study revealed a parallel relationship between the household wealth quintiles and the triple burden of malnutrition. As household income increases, the odds of malnutrition increase (30, 44). High income could increase the purchasing power for food, influencing the type of foods consumed and the intake of prepared or processed food (34). Economic growth and the food industry's rapid penetration into the market have resulted in diets based on energy-dense and nutrient-poor foods (45). In recent years, the dietary preference in LMICs has changed as the food

262 environment is dominated by media advertising and relatively cheap and highly tasty energy-dense263 foods (46).

The odds of the triple burden of malnutrition were higher in a household with a family size >10. A plausible explanation is that in a household with a large family, providing optimum nutritious food to all the family members and children could be difficult (47, 48). Moreover giving proper care and time to children and the family could be unlikely and this could lead to malnutrition. Likewise, Parity was found a determinant of the triple burden of malnutrition. Higher parity increased the odds of malnutrition. The possible explanation could be that women gain weight during pregnancy, and weight loss does not occur in the post-partum period (49). This mother's obesity/overweight is also correlated with child malnutrition.

The present study revealed that child age and sex were significant factors for malnutrition. Older under-five children were more likely to be malnourished compared to younger ones (50). A previous study (51) revealed that there was an increased frequency of parasite infection in older children leads to a higher prevalence of malnutrition compared to the younger ones. In addition, gender was found a significant determinant of malnutrition where a female child was less likely to be malnourished (52). The cause of the gender gap in malnutrition is unknown however, some studies argued that male children are known to be more vulnerable than females to diseases including lower respiratory infections, diarrhoeal diseases, malaria, and preterm birth. Those problems have been reported as factors for undernutrition among young male children (53, 54). Others also claimed that boys are more vulnerable to environmental problems while playing, such as exposure to toxins and air pollution than girls (55).

Being rural residents was associated with lower odds of the triple burden of malnutrition. This
urban-rural difference could be attributable to factors including access to different food types,

Page 17 of 24

BMJ Open

overcrowding and concurrent disease, physical activity, and sedentary lifestyles. Previous studies
depicted that urbanization affects the way of life, and access to processed and junk foods could
exacerbate malnutrition among women and children (30, 56).

Our study has some strengths and limitations. It used large nationally representative samples with appropriate statistical modeling. The use of large nationally representative data and multilevel analysis helps to provide more robust estimates of observed associations as well as enhance the generalizability of the results. Despite the strengths, this study used cross-sectional data, which did not indicate a temporal relationship between the factors and triple burden. No important covariates, such as dietary intake, physical activity level, comorbidities, and nutrition status during pregnancy, were incorporated into the study as the DHS did not provide a complete record of these variables.

6 Conclusions and recommendations

About 1 out of 10 households suffer from the triple burden of malnutrition in low and middleincome countries. This study revealed that several maternal, child, household, and communitylevel factors have a significant impact on the triple burden of malnutrition among mother-child pairs. The triple burden requires the governments, the scientific and medical communities, and the industry's efforts in changing dietary and lifestyle habits to address all forms of malnutrition and should focus on women's nutrition to break the intergenerational triple burden of malnutrition.

Abbreviations

AOR, Adjusted Odds Ratio; DHSs, Demographic and Health Surveys; ICC, Intra cluster
correlation coefficient; LMICs, low and middle-income countries; MOR, median odds ratio; PCV,
a proportional change in variance; SDGs, Sustainable Development Goals; WHO, World Health
Organization

2 3 4	
5 6	
7 8 9	
9 10 11	2
12 13	
14 15 16	
16 17 18	-
19 20 21	
21 22 23	-
24 25	3
20 21 22 23 24 25 26 27 28 29	3
30	
31 32	2
33 34 35	_
36 37	-
38 39 40	
40 41 42	
43 44	3
45 46 47	2
48 49	3
50 51	3
52 53 54	
55 56	3
57 58	
59 60	

308 **Declarations**

309 Ethics approval and consent to participate

310 Permission to access the data was obtained from the measure DHS program (http://www.dhsprogram.com) via online request. The website and the data used were publicly 311 312 available with no personal identifier. All methods were carried out in accordance with relevant 313 guidelines and regulations.

314 **Consent for publication**

315 Not applicable.

316 Availability of data and materials

317 Data are available online in a public, open-access repository (www.measuredhs.com/data).

318 **Competing interests**

319 The authors declare that they have no competing interests.

320 Funding

321 No funder.

322 Author Contributions

- 323 Conceptualization: DC. Study design: DC, DGB, MWM, AAK, AZA, MHA, NWT and FMA.
- 5 324 Execution: DC, DGB, MWM, AAK, AZA, MHA, NWT and FMA. Acquisition of the data: DC,
- [']₈ 325 DGB, MWM, AAK, AZA, MHA, NWT and FMA. Analysis and interpretation: DC, DGB, MWM,
- 0 326 AAK, AZA, MHA, NWT and FMA. Writing: DC, DGB, MWM, AAK, AZA, MHA, NWT and
- 327 FMA. Review and editing: DC, DGB, MWM, AAK, AZA, MHA, NWT and FMA.

328 Acknowledgments

2		
3 4	329	The authors acknowledge the Measure DHS for providing us with the data set.
5		
6	330	
7	550	
8	331	References
9 10		
10 11	332	1. Meenakshi J. Trends and patterns in the triple burden of malnutrition in India.
12	333	Agricultural Economics. 2016;47(S1):115-34.
13	334	2. Hepatology TLG. Obesity: another ongoing pandemic. 2021. p. 411.
14	335	3. Organization WH. Diet, nutrition, and the prevention of chronic diseases: report of a joint
15	336	WHO/FAO expert consultation: World Health Organization; 2003.
16	337	4. Tabarés Seisdedos R. Health effects of overweight and obesity in 195 countries over 25
17	338	years. New England Journal of Medicine, 2017, vol 377, num 1, p 13-27. 2017.
18	339	5. Dai H, Alsalhe TA, Chalghaf N, Riccò M, Bragazzi NL, Wu J. The global burden of
19		
20	340	disease attributable to high body mass index in 195 countries and territories, 1990–2017: An
21	341	analysis of the Global Burden of Disease Study. PLoS medicine. 2020;17(7):e1003198.
22	342	6. Ford ND, Patel SA, Narayan KV. Obesity in low-and middle-income countries: burden,
23	343	drivers, and emerging challenges. Annual review of public health. 2017;38:145-64.
24	344	7. Mahumud RA, Sahle BW, Owusu-Addo E, Chen W, Morton RL, Renzaho A.
25	345	Association of dietary intake, physical activity, and sedentary behaviours with overweight and
26 27	346	obesity among 282,213 adolescents in 89 low and middle income to high-income countries.
27 28	347	International Journal of Obesity. 2021;45(11):2404-18.
28 29	348	8. Heidkamp RA, Piwoz E, Gillespie S, Keats EC, D'Alimonte MR, Menon P, et al.
29 30	349	Mobilising evidence, data, and resources to achieve global maternal and child undernutrition
31	350	targets and the Sustainable Development Goals: an agenda for action. The Lancet.
32	351	2021;397(10282):1400-18.
33	352	
34		9. Osendarp S, Akuoku JK, Black RE, Headey D, Ruel M, Scott N, et al. The COVID-19
35	353	crisis will exacerbate maternal and child undernutrition and child mortality in low-and middle-
36	354	income countries. Nature Food. 2021;2(7):476-84.
37	355	10. World Health Organisation Fact Sheets—Malnutrition. Available online:
38	356	https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 26 Nov 2022).
39	357	11. Adepoju AA, Allen S. Malnutrition in developing countries: nutrition disorders, a leading
40	358	cause of ill health in the world today. Paediatrics and Child Health. 2019;29(9):394-400.
41	359	12. Sunguya BF, Zhu S, Mpembeni R, Huang J. Trends in prevalence and determinants of
42	360	stunting in Tanzania: an analysis of Tanzania demographic health surveys (1991–2016).
43 44	361	Nutrition Journal. 2019;18(1):1-13.
44 45	362	13. Yang YY, Kaddu G, Ngendahimana D, Barkoukis H, Freedman D, Lubaale YA, et al.
46	363	Trends and determinants of stunting among under-5s: evidence from the 1995, 2001, 2006 and
47	364	2011 Uganda Demographic and Health Surveys. Public health nutrition. 2018;21(16):2915-28.
48	365	14. Singh KJ, Chiero V, Kriina M, Alee NT, Chauhan K. Identifying the trend of persistent
49		
50	366	cluster of stunting, wasting, and underweight among children under five years in northeastern
51	367	states of India. Clinical Epidemiology and Global Health. 2022;18:101158.
52	368	15. Organization. WH. WHO Global Anaemia Estimates, 2021 Edition. Anaemia in Women
53	369	and Children. Available online: <u>https://www</u> . who.
54	370	int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 1 December
55	371	2022).
56		
57 58		10
58 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	372	16. Koli HB, Nair MG, Shah MC. Impact of structured pre-natal counselling on early
4	373	initiation of breast feeding and adherence to exclusive breast feeding: a comparative
5 6	374	interventional study. International Journal of Reproduction, Contraception, Obstetrics and
о 7	375	Gynecology. 2021;10(7):2699-704.
8	376	17. Scott N, Delport D, Hainsworth S, Pearson R, Morgan C, Huang S, et al. Ending
9	377	malnutrition in all its forms requires scaling up proven nutrition interventions and much more: a
10	378	
11		129-country analysis. BMC medicine. 2020;18(1):1-19.
12	379	18. Mistry SK, Hossain M, Arora A. Maternal nutrition counselling is associated with
13	380	reduced stunting prevalence and improved feeding practices in early childhood: a post-program
14	381	comparison study. Nutrition Journal. 2019;18(1):1-9.
15	382	19. Norman K, Haß U, Pirlich M. Malnutrition in older adults—recent advances and
16	383	remaining challenges. Nutrients. 2021;13(8):2764.
17	384	20. Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of
18	385	maternal and early life malnutrition on health: a diet-microbe perspective. BMC medicine.
19 20	386	2020;18(1):1-15.
20 21	387	21. Kirolos A, Goyheneix M, Eliasz MK, Chisala M, Lissauer S, Gladstone M, et al.
22	388	Neurodevelopmental, cognitive, behavioural and mental health impairments following childhood
23	389	malnutrition: a systematic review. BMJ global health. 2022;7(7):e009330.
24	390	22. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Current
25	391	opinion in infectious diseases. 2018;31(3):231.
26	392	23. Castro-Rodríguez DC, Rodríguez-González GL, Menjivar M, Zambrano E. Maternal
27	393	interventions to prevent adverse fetal programming outcomes due to maternal malnutrition:
28	394	Evidence in animal models. Placenta. 2020;102:49-54.
29	395	24. Desyibelew HD, Dadi AF. Burden and determinants of malnutrition among pregnant
30	395 396	
31 32		women in Africa: A systematic review and meta-analysis. PloS one. 2019;14(9):e0221712.
32 33	397	25. Sachs JD, Schmidt-Traub G, Mazzucato M, Messner D, Nakicenovic N, Rockström J. Six
34	398	transformations to achieve the sustainable development goals. Nature sustainability.
35	399	2019;2(9):805-14.
36	400	26. Fonseca LM, Domingues JP, Dima AM. Mapping the sustainable development goals
37	401	relationships. Sustainability. 2020;12(8):3359.
38	402	27. Siddiqui F, Salam RA, Lassi ZS, Das JK. The intertwined relationship between
39	403	malnutrition and poverty. Frontiers in Public Health. 2020;8:453.
40	404	28. Rah JH, Melse-Boonstra A, Agustina R, van Zutphen KG, Kraemer K. The Triple Burden
41	405	of Malnutrition Among Adolescents in Indonesia. SAGE Publications Sage CA: Los Angeles,
42	406	CA; 2021. p. S4-S8.
43 44	407	29. Luo H, Zyba SJ, Webb P. Measuring malnutrition in all its forms: An update of the net
44 45	408	state of nutrition index to track the global burden of malnutrition at country level. Global Food
46	409	Security. 2020;26:100453.
47	410	30. Kumar P, Chauhan S, Patel R, Srivastava S, Bansod DW. Prevalence and factors
48	411	associated with triple burden of malnutrition among mother-child pairs in India: a study based on
49	412	National Family Health Survey 2015–16. BMC Public Health. 2021;21(1):1-12.
50	413	31. Sunuwar DR, Singh DR, Pradhan PMS. Prevalence and factors associated with double
51	414	and triple burden of malnutrition among mothers and children in Nepal: evidence from 2016
52	415	Nepal demographic and health survey. BMC Public Health. 2020;20(1):1-11.
53 54	715	1000010010010010000000000000000000000
54 55		
56		
57		
58		19
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	416	32. Ahinkorah BO, Amadu I, Seidu A-A, Okyere J, Duku E, Hagan Jr JE, et al. Prevalence
4 5	417	and factors associated with the triple burden of malnutrition among mother-child pairs in Sub-
6	418	Saharan Africa. Nutrients. 2021;13(6):2050.
7	419	33. Kumar P, Chauhan S, Patel R, Srivastava S, Bansod DW. Prevalence and factors
8	420	associated with triple burden of malnutrition among mother-child pairs in India: a study based on
9	421	National Family Health Survey 2015–16. BMC Public Health. 2021;21:1-12.
10 11	422	34. Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of
12	423	malnutrition and the changing nutrition reality. The Lancet. 2020;395(10217):65-74.
13	424	35. Christian AK, Dake FA. Profiling household double and triple burden of malnutrition in
14	425	sub-Saharan Africa: Prevalence and influencing household factors. Public Health Nutrition. 2022;25(6):1563-76.
15 16	426 427	36. Wong C, Zalilah M, Chua E, Norhasmah S, Chin Y, Siti Nur'Asyura A. Double-burden
17	427	of malnutrition among the indigenous peoples (Orang Asli) of Peninsular Malaysia. BMC Public
18	429	Health. 2015;15(1):1-9.
19	430	37. Villena-Esponera MP, Moreno-Rojas R, Molina-Recio G. Food insecurity and the double
20	431	burden of malnutrition of indigenous refugee Épera Siapidara. Journal of immigrant and minority
21 22	432	health. 2019;21(5):1035-42.
23	433	38. Tiwari N. The Influence of Single Parent Environment on Children's Learning and
24	434	Development.
25	435	39. Molitoris J. Breastfeeding during pregnancy and its association with childhood
26 27	436	malnutrition and pregnancy loss in low-and middle-income countries. Lund Papers in Economic
27	437	Demography. 2018;2018(3):1-81.
29	438	40. Raihana S, Alam A, Huda TM, Dibley MJ. Factors associated with delayed initiation of
30	439	breastfeeding in health facilities: secondary analysis of Bangladesh demographic and health
31	440	survey 2014. International Breastfeeding Journal. 2021;16(1):1-13.
32 33	441	41. Belachew A. Timely initiation of breastfeeding and associated factors among mothers of
34	442 443	infants age 0–6 months old in Bahir Dar City, Northwest, Ethiopia, 2017: a community based
35	444	 cross-sectional study. International breastfeeding journal. 2019;14(1):1-6. 42. Saaka M, Hammond AY. Caesarean section delivery and risk of poor childhood growth.
36	445	Journal of nutrition and metabolism. 2020;2020.
37 38	446	43. Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation
39	447	in childhood malnutrition-the role of short chain fatty acids. Clinical Nutrition. 2019;38(2):615-
40	448	30.
41	449	44. Kibria A, Muhammed G, Swasey K, Hasan MZ, Sharmeen A, Day B. Prevalence and
42 43	450	factors associated with underweight, overweight and obesity among women of reproductive age
45 44	451	in India. Global health research and policy. 2019;4(1):1-12.
45	452	45. Sekiyama M, Jiang HW, Gunawan B, Dewanti L, Honda R, Shimizu-Furusawa H, et al.
46	453	Double burden of malnutrition in rural West Java: household-level analysis for father-child and
47	454	mother-child pairs and the association with dietary intake. Nutrients. 2015;7(10):8376-91.
48 49	455	46. Liguori J, Trübswasser U, Pradeilles R, Le Port A, Landais E, Talsma EF, et al. How do
50	456	food safety concerns affect consumer behaviors and diets in low-and middle-income countries?
51	457 458	 A systematic review. Global Food Security. 2022;32:100606. 47. Drammeh W, Hamid NA, Rohana A. Determinants of household food insecurity and its
52	458 459	47. Drammeh W, Hamid NA, Rohana A. Determinants of household food insecurity and its association with child malnutrition in Sub-Saharan Africa: A review of the literature. Current
53 54	460	Research in Nutrition and Food Science Journal. 2019;7(3):610-23.
55	100	1000 m m multion and 1 000 Selence Journal. 2017, (3).010 25.
56		
57		
58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Serbesa ML, Iffa MT, Geleto M. Factors associated with malnutrition among pregnant 48. women and lactating mothers in Miesso Health Center, Ethiopia. European Journal of Midwifery. 2019;3. 49. Bhavadharini B, Anjana RM, Deepa M, Jayashree G, Nrutya S, Shobana M, et al. Gestational weight gain and pregnancy outcomes in relation to body mass index in Asian Indian women. Indian Journal of Endocrinology and Metabolism. 2017;21(4):588. Sinha RK, Dua R, Bijalwan V, Rohatgi S, Kumar P. Determinants of stunting, wasting, 50. and underweight in five high-burden pockets of four Indian states. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine. 2018;43(4):279. 51. Pal A, Manna S, Dalui R, Mukhopadhyay R, Dhara PC. Undernutrition and associated factors among children aged 5-10 years in West Bengal, India: a community-based cross-sectional study. Egyptian Pediatric Association Gazette. 2021;69(1):1-12. Anuradha R, Sivanandham R, Salome SD, Francis R, Roopa D, Sampavi S, et al. 52. Nutritional status of children aged 3-6 years in a rural area of Tamilnadu. Journal of clinical and diagnostic research: JCDR. 2014;8(10):JC01. 53. Hawkes S, Buse K. Gender and global health: evidence, policy, and inconvenient truths. The Lancet. 2013;381(9879):1783-7. Thurstans S, Opondo C, Seal A, Wells J, Khara T, Dolan C, et al. Boys are more likely to 54. be undernourished than girls: a systematic review and meta-analysis of sex differences in undernutrition. BMJ global health. 2020;5(12):e004030. Asfaw M, Wondaferash M, Taha M, Dube L. Prevalence of undernutrition and associated 55. factors among children aged between six to fifty nine months in Bule Hora district, South Ethiopia. BMC Public health. 2015;15(1):1-9. Nagarkar AM, Kulkarni SS. Obesity and its effects on health in middle-aged women 56. from slums of Pune. Journal of Mid-life Health. 2018;9(2):79. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

country Year of survey
Ibania $2017/18$ enin $2017/18$ urundi $2016/17$ ameroon 2018 thiopia 2016 ambia $2019/20$ autica $2019/20$ autica $2019/21$ iberia $2019/21$ fadagascar 2021 fali 2018 fauritania $2019/21$ faldives $2016/17$ figeria 2018 fepal 2016 wanda $2019/20$ ierra Leone 2019 ajikistan 2017 2016 imor Leste 2016 figenda 2016 outh Africa 2016 overall,

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	2, 3
		was done and what was found	2, 5
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
•	5	State specific objectives, metuding any prespective hypotheses	5
Methods	4	Descent have also and a fate design contrain the new or	5
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7
		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
	0	of assessment (measurement). Describe comparability of assessment	<i>′</i>
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	10	Explain how the study size was arrived at Explain how quantitative variables were handled in the analyses. If	7
Quantitative variables	11	applicable, describe which groupings were chosen and why	'
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	70
Statistical methods	12	(a) Describe an statistical methods, methoding those used to control for confounding	7,8
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		Controls was audicescu	1
		Cross-sectional study_If applicable describe analytical methods taking	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	8
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8,9
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	10/1
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12/1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	15
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
			1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Triple burden of malnutrition among mother-child pairs in low and middle-income countries: A cross-sectional study

BMJ Open
bmjopen-2022-070978.R2
Original research
15-Apr-2023
Chilot, Dagmawi; University of Gondar College of Medicine and Health Sciences, Department of Human Physiology Belay, Daniel; University of Gondar College of Medicine and Health Sciences, Department of Human Anatomy Merid, Mehari ; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Biostatistics Kibret, Anteneh; University of Gondar College of Medicine and Health Sciences, Department of Human anatomy Alem, Adugnaw ; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Bio statistics Asratie, Melaku; University of Gondar College of Medicine and Health Sciences, Department of Epidemiology and Bio statistics Asratie, Melaku; University of Gondar College of Medicine and Health Sciences, Department of women and family health Teshager, Nahom ; University of Gondar College of Medicine and Health Sciences, Department of pediatrics Aragaw, Fantu Mamo; University of Gondar College of Medicine and Health Sciences, Department of pediatrics
Epidemiology
Nutrition and metabolism, Public health
NUTRITION & DIETETICS, EPIDEMIOLOGY, PUBLIC HEALTH, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Community child health < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Triple burden of malnutrition among mother-child pairs in low and middle-income countries: A cross-sectional study

4 Dagmawi Chilot*¹, Daniel Gashaneh Belay^{3,4}, Mehari Woldemariam Merid⁴, Anteneh Ayelign
5 Kibret³, Adugnaw Zeleke Alem⁴, Melaku Hunie Asratie⁵, Nahom Worku Teshager⁶ and Fantu
6 Mamo Aragaw⁴

- ¹Department of Human Physiology, University of Gondar, College of Medicine and Health
 Science, School of Medicine, Gondar, Ethiopia;
- ¹⁹ 10 ³Department of Human Anatomy, University of Gondar, College of Medicine and Health Science,
- 2021 11 School of Medicine, Gondar, Ethiopia;
- ²² 12 ⁴Department of Epidemiology & Biostatistics, University of Gondar, College of Medicine and
- Health Science, Institute of Public Health, Gondar, Ethiopia;
- ²⁶ 14 ⁵Department of women and family health, University of Gondar, College of Medicine and Health
- 2728 15 Science, School of Midwifery, Gondar, Ethiopia;
- ²⁹ 16 ⁶Department of Pediatrics and Child Health, University of Gondar, College of Medicine and Health
- Science, School of Medicine, Gondar, Ethiopia;
 Science, School of Medicine, Gondar, Ethiopia;

19 Correspondence: Dagmawi Chilot: dagimchilot21@gmail.com. ¹Department of Human
20 Physiology, University of Gondar, College of Medicine and Health Sciences, University of
21 Gondar, P.O. Box 196, Gondar, Ethiopia,

1		
2 3 4	30	
5 6 7	31	Abstract
8 9	32	Objective: This study aimed to assess the prevalence and determinants of the triple burden of
10 11	33	malnutrition among mother-child pairs in low-and middle-income countries.
12 13 14	34	Design: Cross-sectional study
15 16	35	Setting: Low-and middle-income countries
17 18	36	Participants: Women and children
19 20 21	37	Primary outcome: Triple burden of malnutrition (overweight/obese mother with undernourished
22 23	38	and anemic under 5 years child)
24 25	39	Methods: Data for this study were drawn from recent 22 low and middle-income countries
26 27 28 29 30	40	Demographic and Health Surveys (DHSs). A total weighted sample of 116,795 mother-child pairs
	41	was included in the study. STATA version 14.2 was used to clean, code and analyze the data.
31 32	42	Multilevel logistic regression was employed to identify factors associated with the problem.
33 34 35	43	Adjusted odds ratio with 95% CI and a P value <0.05 was reported to indicate statistical
36 37	44	association. Model fitness and comparison were done using ICC, MOR, PCV, and deviance.
38 39 40	45	Result: The pooled prevalence of the triple burden of malnutrition among mother-child pairs was
41 42 43 44 45 46 47 48 49	46	11.39%. It showed statistically significant positive associations with mothers aged \geq 35 years
	47	(AOR=2.25,95%CI 2.08-2.44), family size >10 (AOR=1.17,95%CI 1.08-1.26), delivery by CS
	48	(AOR=1.93,95%CI 1.83-2.03), the richest household (AOR=1.72,95%CI 1.56-1.88), grand
	49	multiparous (AOR=1.62, 95% CI 1.46-1.81), age of child 36-47 months (AOR=1.77, 95% CI 1.64-
50 51	50	1.90), at a p-value of <0.05. Whereas breastfeeding (AOR=0.94,95%CI 0.89-0.99), married
52 53 54	51	mothers (AOR=0.87,95%CI 0.78-0.96), female children (AOR=0.88,95%CI 0.84-0.92), improved
55 56	52	toilet (AOR=0.23,95%CI 0.17-0.29), improved source of drinking water (AOR=0.28,95%CI 0.21-
57 58		2

0.35), rural residents (AOR=0.66,95%CI 0.62-0.69) had a contrasting relationship with the triple burden of malnutrition

Conclusion: About 1 out of 10 households suffer from the triple burden of malnutrition in low and middle-income countries. This study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs.

Keywords: Triple burden, mother-child pairs, malnutrition, low and middle-income countries.

Strengths and limitations of this study

- The findings were supported by large datasets covering 22 LMICs. \geq
- We employed multilevel analysis which is an appropriate methodology for such data \geq
- The data were collected using a common internationally acceptable methodological procedure. \geq
- > DHS used a cross-sectional survey design, and the causal relationship between the triple burden of malnutrition and the independent variables cannot be established.
 - We didn't include important covariates such as dietary intake, physical activity level, or \geq comorbidities as the DHS did not collect information on these variables

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

74 Background

The triple burden of malnutrition, which is the coexistence of overnutrition, undernutrition, and micronutrient deficiencies is increasing in low and middle-income countries (LMICs) (1). The World Health Organization (WHO) characterized overnutrition (Obesity and overweight) as a pandemic of a major public health concern due to the increased frequency of the problem in many countries (2). It is ranked as the sixth leading cause of disability-adjusted life years (DALYs) and accounts for approximately 4 million people dying each year worldwide (3-5). Several previous studies have shown that following marked dietary change, obesity/overweight is increasing more rapidly in LMICs compared to higher-income countries (6, 7).

Similarly, undernutrition continues to be a major public health concern throughout the developing world (8, 9). Nearly half of all deaths in children under 5 are attributable to undernutrition and it encompasses wasting, stunting, underweight, and micronutrient deficiencies (anemia) (10, 11). Despite stunting having declined steadily, faster progress is needed to reach the 2030 target (12, 13). Wasting and underweight persisting at alarming rates, require a reversal in trajectory if the 2030 target is to be achieved (14). Since 2000, a significant reduction in the prevalence of anemia in children under five has been observed in many LMICs (15). Children are more vulnerable to inadequate pre-natal, infant, and young child nutrition, particularly in resource-constrained settings (16, 17). Endorsing early childhood feeding best practices is crucial to improve the health of children (18).

Malnutrition has a tremendous negative impact on the normal functioning of every organ system
(19). It can cause permanent, widespread damage to a child's growth, development, and well-being
(20). Scientific evidence has shown that malnutrition in children is associated with poorer school
performance, increased susceptibility to infections, and slow recovery from illness (21, 22).

97 Maternal malnutrition increases the risk of poor pregnancy outcomes including obstructed labor, 98 premature or low-birth-weight babies, and postpartum hemorrhage (23, 24). To reduce the problem 99 the United Nations (UN) adopted the Sustainable Development Goals (SDGs), targeted to end 100 poverty in all its forms everywhere (SDG 1), end hunger, achieve food security, improve nutrition, 101 promote sustainable agriculture (SDG 2), ensure healthy lives, and promote well-being for all at 102 all ages (SDG 3) (25, 26).

Previous literature recognized the basic and underlying causes of malnutrition including the environmental, economic, and sociopolitical contextual factors, with poverty having a central role (11, 27-29). The triple burden of malnutrition among mother-child pairs is a relatively new issue and only a few country-based studies explored the problem which couldn't give a panoramic view of the problem in LMICs (30-32). Given the persistent and high levels of the problem in these countries, there is a strong need for action. To design and deliver effective interventions adequate understanding of the socioeconomic, environmental, and cultural factors is highly important. Besides if the SDG targets are to be met, coordinated action is required toward not only sustaining current rates of decline but also accelerating progress. Therefore, the objective of this study was to assess the prevalence of the triple burden of malnutrition among mothers and children and the potential factors associated with it in low and middle-income countries.

Materials and methods

Study design, setting, and period

The present study is based on 22 low and middle-income countries that have had Demographic and Health Surveys (DHS) from 2016-2020. The DHS used a cross-sectional survey study design to collect data and provide population and health indicators at the national level. The list of those countries and the respective year of surveys is provided in Table 1.

Cou	ntry	Year of survey	Region
Alba	nia	2017/18	Southeastern Europe
Beni	n	2017/18	West Africa
Buru	ndi	2016/17	East-central Africa
Cam	eroon	2018	West-central Africa
Ethic	opia	2016	East Africa
Gam	-	2019/20	West Africa
Guin	ea	2018	West Africa
Haiti		2016/17	Caribbean
India	L A	2019/21	South Asia
Liber	ria	2019/20	West Africa
Mada	agascar	2021	East Africa
Mali		2018	West Africa
Mau	ritania	2019/21	Northwest Africa
Malc	lives	2016/17	South Asia
Nige	ria	2018	West Africa
Nepa	ıl	2016	South Asia
Rwa	nda	2019/20	East Africa
Sierr	a Leone	2019	West Africa
Tajik	tistan	2017	Central Asia
Time	or Leste	2016	South Asia
Ugar	nda	2016	East Africa
Sout	h Africa	2016	South Africa

The current analysis was based on pooled data from DHSs in 22 LMICs. These are nationally representative surveys that collect data on reproductive, maternal, neonatal, child health, and nutrition in LMIC. The surveys are similarly designed that used standardized questionnaires and data collection procedures, allowing therefore comparability of results. The survey employed a two-stage cluster sampling technique. In the first stage, the selection of proportional clusters/enumeration areas was performed using each country's most recent population and housing census as a sampling frame. In the second stage, a systematic selection of households from the newly created cluster was performed. A detailed description of the DHS sampling design and data collection procedures has been found in each country's DHS report. The study population for

this study was mother-child pairs. Weighting was done using the complex sample design weighting
and the "svyset" Stata command was applied. Variables v005 (sampling weight), v021 (primary
sampling unit), and v023 (stratification used in sample design) were used, and as the result, a total
weighted sample of 116,795 mother-child pairs was included in the analysis.

Definition of variables

Outcome variable:

The triple burden of malnutrition was the outcome variable of this study where the mother was overweight/obese and children under 5 years of age were undernourished and anemic (31, 33). At the same household level, first, we created four different categories of malnutrition such as overweight/obese mother and stunted child, overweight/obese mother and wasted child, overweight/obese mother and underweight child, and overweight/obese mother and anemic child. Then we further combined overweight/obese mothers, undernourished children, and anemic children to generate the triple burden of malnutrition. Categorization was made based on height-for-age z-score (HAZ), standard deviations (SD), weight-for-height z-score (WHZ), weight-for-age z-score (WAZ), hemoglobin level, and body mass index (BMI).

Stunting dichotomized and coded into 0=Not stunted (HAZ -2SD and above) & 1= Stunted
 (HAZ <-2SD);

43 149 Wasting dichotomized and coded into 0=Not wasted (WHZ-2SD to +2SD) and 1=Wasted
44
45 150 (WHZ < -2SD);

Underweight dichotomized and coded into 0= Not underweight (WHZ-2SD and above) & 1=
Underweight (WAZ < -2SD);

⁵² 153 Child anemia dichotomized and coded into 0= Not anemic (hemoglobin level > 11 g/dl), & 1=
 ⁵⁴ 154 Anemic (hemoglobin level < 11 g/dl);

Page 9 of 24

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
47 48	
47 48 49	
47 48 49	
47 48 49 50	
47 48 49 50 51	
47 48 49 50 51 52	
47 48 49 50 51 52	
47 48 49 50 51 52 53	
47 48 49 50 51 52 53 54	
47 48 49 50 51 52 53 54	
47 48 49 50 51 52 53 54 55	
47 48 49 50 51 52 53 54 55 56	
47 48 49 50 51 52 53 54 55 56	
47 48 49 50 51 52 53 54 55 56 57	
47 48 49 50 51 52 53 54 55 56 57 58	
47 48 49 50 51 52 53 54 55 56 57	

155 Mother's BMI dichotomized and coded into 0= Normal (18.5–24.9 kg/m2) & 156 1=Overweight/Obese (\geq 25 kg/m2)

157 The triple burden of malnutrition was dichotomized and coded into 0= NO (not overweight/obese
158 mother and not undernourished child plus not anemic child, and 1= YES (overweight/obese mother

- 159 and undernourished child plus anemic child)
- 160 An undernourished child is a child who is stunted or wasted or underweight.
- 161 **Independent variables:**

Based on previous works of literature and the likelihood of influencing the outcome of interest, several explanatory variables including the age of mothers, mother's education, marital status, current breastfeeding, delivery by cesarean section, family size, wealth index, media access, parity, age of the child, sex of the child, type of toilet facility, source of drinking water, residence and distance to health facility were considered.

167 **Statistical analyses**

168 We append the dataset of each country to generate pooled data. The data extraction, coding, and 169 analysis were carried out using STATA software version 14.2. We weighted the sample to restore 170 the representativeness of the sample so that the total sample looks like the country's actual population. Due to the hierarchical nature of the DHS, the multilevel analysis was fitted to identify 171 172 significantly associated factors. Four models were fitted; the null model (with no predictors), 173 model I (adjusted for individual-level variables only), model II (adjusted for community-level 174 variables only), and model III (model adjustment for both individual and community-level 175 variables simultaneously). Adjusted OR (AOR) with 95% CI and p<0.05 were used to determine 176 significant predictors. Model fitness and comparison were done using Intraclass Correlation

177 Coefficient (ICC), Proportional Change in Variance (PCV), Median Odds Ratio (MOR), the
178 Likelihood Ratio test (LR), and deviance computed.

180 Patient and public involvement statement

181 As our study used secondary analysis of DHS data, participants and the public were not involved 182 in the study design or planning of the study. The study participants were not consulted to interpret 183 the results and write or editing of this document for readability or accuracy.

Results

Demographics and socioeconomic characteristics

A total of 116,795 mother-child pairs were included in the study. Over half (56.48%) of mothers were in the age category of 25-34 years. About 22,98% of mothers were illiterate and the majority (46.39%) had attended secondary education. Approximately 95.73% of mothers were married and 62.89% were currently breastfeeding. About 20.33% and 21.21% of the households were in the low wealth quintile of poorest and poorer respectively. Over a quarter (27.62%) of the families had never been exposed to any type of media. The majority of the children (32.59%) were aged \leq 12 months. A large proportion (83.60%) of the households had improved sources of drinking water and almost two-thirds (67.02%) of the households had improved toilet facilities. Almost three fourth (71.03%) of participants lived in rural areas and for over a quarter (27.42%) of those participants, the distance to access health facilities was a big problem (**Table 2**).

196 Table 2. Socio-demographic characteristics of the study participants

Variables	Categories	Unweighted	Weighted
		frequency (%)	frequency (%)
Age of mothers	15-24	34,983 (29.05)	35,918 (30.75)
-	25-34	68,386 (56.78)	65,971 (56.48)

Page 11 of 24

	≥35	17,073 (14.18)	14,906 (12.76)
Mothers education	No education	27,995 (23.24)	26,845 (22.98)
	Primary education	19,684 (16.34)	18,633 (15.95)
	Secondary	57,008 (47.33)	54,185 (46.39)
	Higher	15,755 (13.08)	17,131 (14.67)
	Not in union	5,583 (4.64)	4,987 (4.27)
Mothers marital status	Married	114,859 (95.36)	111,807 (95.7.
	No	44,160 (36.66)	43,338 (37.11)
Currently breastfeeding	Yes	76,282 (63.34)	73,457 (62.89)
Delivery by cesarean	No	99,291 (82.49)	93,974 (80.51
section	Yes	21,077 (17.51)	22,748 (19.49)
Family size	≤5	56,365 (46.80)	53,677 (45.96)
	6-10	54,605 (45.34)	53,258 (45.60)
	>10	9,472 (7.86)	9,859 (8.44)
Wealth index	Poorest	28,097 (23.33)	23,749 (20.33
	Poorer	27,352 (22.71)	24,774 (21.21
	Middle	24,741 (20.54)	24,330 (20.83
	Richer	22,180 (18.42)	23,880 (20.45
	Richest	18,072 (15.00)	20,061 (17.18
Media access	No	33,942 (28.18)	32,256 (27.62
	Yes	86,500 (71.82)	84,539 (72.38
Parity	Primiparous	36,241 (30.09)	35,333 (30.25
5	Multiparous	76,092 (63.18)	73,823 (63.21
	Grand Multiparous	8,109 (6.73)	7,639 (6.54)
	≤12	38,959 (32.35)	38,059 (32.59
	13-23	25,382 (21.07)	24,819 (21.25
Age of child	24-35	22,208 (18.44)	21,478 (18.39
5	36-47	17,948 (14.90)	17,204 (14.73
	48-59	15,945 (13.24)	15,234 (13.04
G 0.1.11	Male	63,660 (52.86)	62,008 (53.09
Sex of child	Female	56,782 (47.14)	54,787 (46.91
T	Unimproved	37,519 (31.15)	38,518 (32.98
Type of toilet facility	Improved	82,923 (68.85)	78,277 (67.02
Source of drinking water	Unimproved	20,959 (17.40)	19,159 (16.40
e	Improved	99,483 (82.60)	97,636 (83.60
Residence	Urban	28,722 (23.85)	33,838 (28.97
Restuctive		/ / /	· · · ·
Residence	Rural	91,720 (76.15)	82,957 (71.03
Distance to a health facility	Rural No problem	91,720 (76.15) 84,605 (70.25)	82,957 (71.03) 84,776 (72.58)

Prevalence of triple burden of malnutrition

199 In 22 low and middle-income countries, the pooled prevalence of the triple burden of malnutrition

among mother-child pairs was found at 11.39 % (95% CI 9.56%, 13.23%). Ethiopia has the lowest

201 (3.54 %) prevalence of triple burden while Mauritania (31.66%) bears the highest (Figure 1).

Fig 1. The pooled prevalence of the triple burden of malnutrition

203 Multilevel analyses

204 Random parameter estimation and model selection

Based on the result of random effect analysis, the ICC of the null model was 0.30, indicating that 30% of the total variability in triple burden prevalence was attributable to between-cluster variability, while about 70% was due to individual differences. The null model MOR was 3.04, which indicates that a mother/child from a cluster with a high triple burden prevalence has a 3.04 times higher probability of being malnourished than a mother/child from a cluster with a lower prevalence. Model III was the best-fitted model since it has the highest log likelihood (-91665) and the lowest deviance (183,330) value (**Table 3**).

212 Factors associated with the triple burden of malnutrition (Fixed effects)

The triple burden of malnutrition was statistically significant with mothers aged 25-34 years $(AOR=1.54, 95\% \text{ CI } 1.45 - 1.63), \geq 35 \text{ years} (AOR=2.25, 95\% \text{ CI } 2.08 - 2.44), \text{ mothers attended}$ secondary education (AOR=1.08, 95% CI 1.02-1.15), family size >10 (AOR=1.17, 95% CI 1.08 -1.26), delivery by CS (AOR=1.93, 95% CI 1.83 - 2.03), the richer household (AOR=1.63, 95% CI 1.49 - 1.76), the richest household (AOR=1.72, 95% CI 1.56 - 1.88), multiparous (AOR=1.42, 95% CI 1.34 - 1.49), grand multiparous (AOR=1.62, 95% CI 1.46 - 1.81), age of child 36-47 months (AOR=1.77, 95% CI 1.64 - 1.90), age of child 48-59 (AOR=1.51, 95% CI 1.39 - 1.64), breastfeeding (AOR=0.94, 95% CI 0.89 - 0.99), married mothers (AOR=0.87, 95% CI 0.78 - 0.96),

221 female children (AOR=0.88, 95% CI 0.84 - 0.92), improved toilet facility (AOR=0.23, 95% C					
2/1 temale children (AUR=0.88, 95% CL 0.84 - 0.97) improved totlet facility (AUR=0.73, 95% C	221	C = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	0.70/(0.1004)	1 + 1 + 0 + 1 + 0	10D 0 22 0 CO/ CI
		temale children (AUR=UXX)	95% (10×4 - 09/)	improved tollet facility (A	AUR=U / 4 97% (1
			3370 CI 0.01 0.727		1010 0.25, 7570 01

222 0.17 - 0.29), improved source of drinking water (AOR=0.28, 95% CI 0.21 - 0.35), rural residents

223 (AOR=0.66, 95% CI 0.62 - 0.69) at a p-value of <0.05 (**Table 3**).

Table 3. Multivariable multilevel logistic regression analysis of the triple burden of malnutrition.

Variables	Categories	Null model	Model I AOR 95% CI	Model II AOR 95% CI	Model III AOR 95% CI
Age of mothers	15-24		1.00		1.00
8	25-34		1.54 (1.46 - 1.63)**		1.54 (1.45 - 1.63)*
	≥35		2.28 (2.11 - 2.47)**		2.25 (2.08 - 2.44)*
Mothers	No education		1.00		1.00
education	Primary education		1.04 (0.97 - 1.12)		1.04 (0.97 - 1.12)
	Secondary		1.08 (1.01 - 1.15)*		1.08 (1.02 - 1.15)*
	Higher		0.94 (0.86 - 1.02)		0.94 (0.86 - 1.02)
Mothers	Not in union		1.00		1.00
marital status	Married		0.83 (0.75 - 0.93)*		0.87 (0.78 - 0.96)*
Currently	No		1.00		1.00
breastfeeding	Yes		0.92 (0.87 - 0.97)*		0.94 (0.89 - 0.99)*
Delivery by	No		1.00		1.00
CS	Yes		1.94 (1.84 - 2.04)**		1.93 (1.83 - 2.03)*
Family size	≤5		1.00		1.00
2	6-10		1.00 (0.97 - 1.08)		1.01 (0.98 - 1.08)
	>10		1.14 (1.06 - 1.24)**		1.17 (1.08 - 1.26)*
Wealth index	Poorest		1.00		1.00
	Poorer		1.41 (1.31 - 1.52)**		1.38 (1.28 - 1.49)*
	Middle		1.60 (1.48 - 1.73)**		1.49 (1.38 - 1.62)*
	Richer		1.86 (1.72 - 2.02)**		1.63 (1.49 - 1.76)*
	Richest		2.15 (1.97 - 2.35)**		1.72 (1.56 - 1.88)*
Media access	No		1.00		1.00
	Yes		1.01 (0.98 - 1.08)		1.02 (0.99 - 1.11)
Parity	Primiparous		1.00		1.00
2	Multiparous		1.42 (1.34 - 1.50)**		1.42 (1.34 - 1.49)*
	Grand Multiparous		1.61 (1.44 - 1.79)**		1.62 (1.46 - 1.81)*
	≤12		1.00		1.00
	13-23		1.41 (1.32 - 1.50)**		1.41 (1.32 - 1.50)*
Age of child	24-35		1.62 (1.52 - 1.73)**		1.63 (1.53 - 1.74)*
-	36-47		1.75 (1.62 - 1.89)**		1.77 (1.64 - 1.90)*
	48-59		1.50 (1.38 - 1.62)**		1.51 (1.39 - 1.64)*
C	Male		1.00		1.00
Sex of child	Female		0.88 (0.84 - 0.92)**		0.88 (0.84 - 0.92)*

Type of toilet	Unimproved		1.00		1.00
facility	Improved		0.24 (0.18 - 1.31)	—	0.23 (0.17 - 0.29)**
Source of	Unimproved		1.00		1.00
drinking water	Improved		0.21 (0.16 - 0.28)	—	0.28 (0.21 - 0.35)*
Community-lev	el variables				
Residence	Urban			1.00	1.00
	Rural		—	0.49 (0.46 - 0.52)**	0.66 (0.62 - 0.69)**
Distance to a	No problem			1.00	1.00
health facility	Big problem		—	0.87 (0.82 - 0.91)**	0.94 (0.89 - 0.98)*
Random effect					
	Variance	1.40	1.24	1.31	1.23
	ICC	0.30	0.27	0.28	0.27
	MOR	3.04	2.88	2.96	2.85
	PCV	Reff	11.42	6.43	12.14
Model compari	son				
	Log likelihood ratio	-100585	-92108	-97815	-91665
	Deviance	201,170	184,216	195,630	183,330

ICC = *Inter cluster correlation coefficient, MOR* =*Median odds ratio, PCV* = *proportional change in variance. AOR=adjusted odds ratio; CI= confidence interval,*

Discussion

LMICs are increasingly facing the triple burden of malnutrition where women and children are among the hardest hit by the problem (34, 35). This study assessed the triple burden of malnutrition (co-occurrence of undernutrition, overweight/obesity, and anemia among mother-child pairs) in the same household, using nationally representative data in LMICs. The result showed that the pooled prevalence of triple burden was 11.39 % (95% CI 9.56%, 13.23%); Ethiopia had the lowest (3.54 %) prevalence while Mauritania (31.66%) had the highest. The variation among countries could be attributed to differences in socio-economic status, food environment, physical activity, genetic factors, health care system strength, national policy, and political commitments.

The study revealed that several maternal, child, household, and community-level factors have a significant impact on the triple burden of malnutrition among mother-child pairs. It has found a parallel correlation between the triple burden of malnutrition and maternal age. The odds of being Page 15 of 24

BMJ Open

malnourished increase as the age of the mother increases. This is in agreement with previous studies where older mothers bear the highest risk compared to younger ones (31, 36). The possible explanation could be because of reduced physical activity, less energy requirement, and hormonal changes among older mothers. Similarly, mothers who have attended secondary education were more likely to be malnourished (31). A plausible explanation for this could be the shifts from manual labor to more sedentary occupations and the related decline in physical activity.

Being married reduced the risk of the triple burden of malnutrition. Partners together could generate more money, reduce food insecurity, and tend to take better care of themselves and their children. It is been reported that children in single-parent households suffered from undernutrition significantly more than children brought up by both parents (37, 38). Likewise, this study revealed breastfeeding reduced the triple burden of malnutrition. Breastfeeding plays a vital role in the prevention of different forms of childhood malnutrition (39). However, delivery by cesarean section (C-section) delays the timely initiation of breastfeeding and pre-lacteal feeding (40). Previous studies have reported that C-section increases maternal obesity and negatively affect the breastfeeding of children, which results in malnutrition (41, 42). Moreover, malnutrition in children is related to gut microbiota alteration and C-section contributes to microbial alterations in the small intestine (43).

Our study revealed a parallel relationship between the household wealth quintiles and the triple burden of malnutrition. As household income increases, the odds of malnutrition increase (30, 44). High income could increase the purchasing power for food, influencing the type of foods consumed and the intake of prepared or processed food (34). Economic growth and the food industry's rapid penetration into the market have resulted to depend on energy-dense and nutrient-

poor foods (45). In recent years, the dietary preference in LMICs has changed as the food
environment is dominated by media advertising, and relatively cheap, energy-dense foods (46).

The odds of the triple burden of malnutrition were higher in a household with a family size >10. A plausible explanation is that in a household with a large family, providing optimum nutritious food to all the family members and children could be difficult (47, 48). Moreover giving proper care and time to children and the family could be unlikely and this could lead to malnutrition. Likewise, parity was found to be a determinant of the triple burden of malnutrition. Higher parity increased the odds of malnutrition. The possible explanation could be that women could gain weight during pregnancy, and weight loss might not occur in the post-partum period which could lead to child malnutrition. (49).

The present study revealed that child age and sex were significant factors for malnutrition. Older under-five children were more likely to be malnourished compared to younger ones (50). A previous study (51) revealed that there was an increased frequency of parasite infection in older children leading to a higher prevalence of malnutrition compared to the younger ones. In addition, gender was found a significant determinant of malnutrition where a female child was less likely to be malnourished (52). The cause of the gender gap in malnutrition is unknown, however, some studies argued that male children are known to be more vulnerable than females to diseases including lower respiratory infections, diarrhoeal diseases, malaria, and preterm birth. Those diseases have been reported as factors for undernutrition among young male children (53, 54). Others also claimed that boys are more vulnerable to environmental problems while playing, such as exposure to toxins and air pollution than girls (55).

Being rural residents was associated with lower odds of the triple burden of malnutrition. The
urban-rural difference could be attributable to factors including access to different food types,

Page 17 of 24

BMJ Open

overcrowding, concurrent disease, and sedentary lifestyles. Previous studies depicted that urbanization affects the way of life, access to processed and junk foods could exacerbate malnutrition among women and children (30, 56).

Our study has some strengths and limitations. It used large nationally representative samples with appropriate statistical modeling. The use of large nationally representative data and multilevel analysis helps to provide more robust estimates of observed associations as well as enhance the generalizability of the results. Despite the strengths, this study used cross-sectional data, which did not indicate a temporal relationship between the factors and triple burden. No important covariates, such as dietary intake, physical activity level, comorbidities, and nutrition status during pregnancy, were incorporated into the study as the DHS did not provide a complete record of these variables.

Conclusions and recommendations

About 1 out of 10 households suffer from the triple burden of malnutrition in low and middleincome countries. This study revealed that several maternal, child, household, and communitylevel factors have a significant impact on the triple burden of malnutrition among mother-child pairs. The triple burden requires the governments, the scientific and medical communities, and the industry's efforts in changing dietary and lifestyle habits to address all forms of malnutrition and should focus on women's nutrition to break the intergenerational triple burden of malnutrition.

Abbreviations

303 AOR, Adjusted Odds Ratio; DHSs, Demographic and Health Surveys; ICC, Intra cluster
304 correlation coefficient; LMICs, low and middle-income countries; MOR, median odds ratio; PCV,
305 a proportional change in variance; SDGs, Sustainable Development Goals; WHO, World Health
306 Organization

2 3 4	3
4 5 6	3
7 8 9	3
) 10 11	3
12 13	3
14 15 16	3
17 18 19	3
20 21 22	3
23 24 25	3
26 27	3
28 29 30	3
31 32 33	3
34 35 36	3
37 38 39	3
39 40 41	3
42 43 44	3
45 46	3
47 48	3
49 50 51	3
52 53	3
54 55 56	3
57 58	
59 60	

307 **Declarations**

308 Ethics approval and consent to participate

809 Permission to access the data was obtained from the measure DHS program 10 (http://www.dhsprogram.com) via online request. The website and the data used were publicly 11 available with no personal identifier. All methods were carried out in accordance with relevant 12 guidelines and regulations.

313 **Consent for publication**

314 Not applicable.

315 Availability of data and materials

316 Data are available online in a public, open-access repository (www.measuredhs.com/data).

317 **Competing interests**

318 The authors declare that they have no competing interests.

319 Funding

320 No funder.

Author Contributions

- 3 322 Conceptualization: DC. Study design: DC, DGB, MWM, AAK, AZA, MHA, NWT, and FMA.
- Execution: DC, DGB, MWM, AAK, AZA, MHA, NWT, and FMA. Acquisition of the data: DC,
- [']₈ 324 DGB, MWM, AAK, AZA, MHA, NWT, and FMA. Analysis and interpretation: DC, DGB,
- 50 325 MWM, AAK, AZA, MHA, NWT, and FMA. Writing: DC, DGB, MWM, AAK, AZA, MHA,
- ² 326 NWT, and FMA. Review and editing: DC, DGB, MWM, AAK, AZA, MHA, NWT, and FMA.

327 Acknowledgments

BMJ Open

2 3 4	328	The authors acknowledge the Measure DHS for providing us with the data set.
5 6 7	329	
8	330	References
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 9 30 132 33 45 36 37 38 9 40 41 42 43 44 50 51 52 34 55 56 57	331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 360 361 362 363 364 365 366 367 368 369 370	 Meenakshi J. Trends and patterns in the triple burden of malnutrition in India. Agricultural Economics. 2016;47(S1):115-34. Hepatology TLG. Obesity: another ongoing pandemic. 2021. p. 411. Organization WH. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation: World Health Organization; 2003. Tabarés Scisdedos R. Hcalth effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine, 2017, vol 377, num 1, p 13-27. 2017. Dai H, Alsalhe TA, Chalghaf N, Riccó M, Bragazzi NL, Wu J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. PLoS medicine. 2020;17(7):e1003198. Ford ND, Patel SA, Narayan KV. Obesity in low-and middle-income countries: burden, drivers, and emerging challenges. Annual review of public health. 2017;38:145-64. Mahumud RA, Sahle BW, Owusu-Addo E, Chen W, Morton RL, Renzaho A. Association of dietary intake, physical activity, and sedentary behaviours with overweight and obesity among 282,213 adolescents in 89 low and middle income to high-income countries. International Journal of Obesity. 2021;45(11):2404-18. Heidkamp RA, Piwoz E, Gillespie S, Keats EC, D'Alimonte MR, Menon P, et al. Mobilising evidence, data, and resources to achieve global maternal and child undernutrition targets and the Sustainable Development Goals: an agenda for action. The Lancet. 2021;397(10282):1400-18. Osendarp S, Akuoku JK, Black RE, Headey D, Ruel M, Scott N, et al. The COVID-19 crisis will exacerbate maternal and child undernutrition and child mortality in low-and middle-income countries. Nature Food. 2021;2(7):476-84. World Health Organisation Fact Sheets/detail/malnutrition (accessed on 26 Nov 2022). Adepoju AA, Allen S. Malnutrition in developing countries: nutrition disorders, a lead
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	371	16. Koli HB, Nair MG, Shah MC. Impact of structured pre-natal counselling on early
4	372	initiation of breast feeding and adherence to exclusive breast feeding: a comparative
5	373	interventional study. International Journal of Reproduction, Contraception, Obstetrics and
6 7	374	Gynecology. 2021;10(7):2699-704.
8	375	17. Scott N, Delport D, Hainsworth S, Pearson R, Morgan C, Huang S, et al. Ending
9	376	malnutrition in all its forms requires scaling up proven nutrition interventions and much more: a
10	370	129-country analysis. BMC medicine. 2020;18(1):1-19.
11	378	
12		
13	379	reduced stunting prevalence and improved feeding practices in early childhood: a post-program
14	380	comparison study. Nutrition Journal. 2019;18(1):1-9.
15	381	19. Norman K, Haß U, Pirlich M. Malnutrition in older adults—recent advances and
16	382	remaining challenges. Nutrients. 2021;13(8):2764.
17	383	20. Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of
18	384	maternal and early life malnutrition on health: a diet-microbe perspective. BMC medicine.
19 20	385	2020;18(1):1-15.
20	386	21. Kirolos A, Goyheneix M, Eliasz MK, Chisala M, Lissauer S, Gladstone M, et al.
22	387	Neurodevelopmental, cognitive, behavioural and mental health impairments following childhood
23	388	malnutrition: a systematic review. BMJ global health. 2022;7(7):e009330.
24	389	22. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Current
25	390	opinion in infectious diseases. 2018;31(3):231.
26	391	23. Castro-Rodríguez DC, Rodríguez-González GL, Menjivar M, Zambrano E. Maternal
27	392	interventions to prevent adverse fetal programming outcomes due to maternal malnutrition:
28	393	Evidence in animal models. Placenta. 2020;102:49-54.
29	394	24. Desyibelew HD, Dadi AF. Burden and determinants of malnutrition among pregnant
30 31	395	women in Africa: A systematic review and meta-analysis. PloS one. 2019;14(9):e0221712.
32	396	25. Sachs JD, Schmidt-Traub G, Mazzucato M, Messner D, Nakicenovic N, Rockström J. Six
33	397	transformations to achieve the sustainable development goals. Nature sustainability.
34	397 398	
35		2019;2(9):805-14.
36	399	26. Fonseca LM, Domingues JP, Dima AM. Mapping the sustainable development goals
37	400	relationships. Sustainability. 2020;12(8):3359.
38	401	27. Siddiqui F, Salam RA, Lassi ZS, Das JK. The intertwined relationship between
39	402	malnutrition and poverty. Frontiers in Public Health. 2020;8:453.
40	403	28. Rah JH, Melse-Boonstra A, Agustina R, van Zutphen KG, Kraemer K. The Triple Burden
41 42	404	of Malnutrition Among Adolescents in Indonesia. SAGE Publications Sage CA: Los Angeles,
42	405	CA; 2021. p. S4-S8.
44	406	29. Luo H, Zyba SJ, Webb P. Measuring malnutrition in all its forms: An update of the net
45	407	state of nutrition index to track the global burden of malnutrition at country level. Global Food
46	408	Security. 2020;26:100453.
47	409	30. Kumar P, Chauhan S, Patel R, Srivastava S, Bansod DW. Prevalence and factors
48	410	associated with triple burden of malnutrition among mother-child pairs in India: a study based on
49	411	National Family Health Survey 2015–16. BMC Public Health. 2021;21(1):1-12.
50	412	31. Sunuwar DR, Singh DR, Pradhan PMS. Prevalence and factors associated with double
51	413	and triple burden of malnutrition among mothers and children in Nepal: evidence from 2016
52 53	414	Nepal demographic and health survey. BMC Public Health. 2020;20(1):1-11.
55 54		ropur demographie una neural survey. Divie i done median. 2020,20(1).1 11.
55		
56		
57		
58		19
59		For near review only http://hmienen.http://ite/shevit/svidelines.uktrol
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	415	32. Ahinkorah BO, Amadu I, Seidu A-A, Okyere J, Duku E, Hagan Jr JE, et al. Prevalence
4 5	416	and factors associated with the triple burden of malnutrition among mother-child pairs in Sub-
6	417	Saharan Africa. Nutrients. 2021;13(6):2050.
7	418	33. Kumar P, Chauhan S, Patel R, Srivastava S, Bansod DW. Prevalence and factors
8	419	associated with triple burden of malnutrition among mother-child pairs in India: a study based on
9	420	National Family Health Survey 2015–16. BMC Public Health. 2021;21:1-12.
10 11	421	34. Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of
12	422	malnutrition and the changing nutrition reality. The Lancet. 2020;395(10217):65-74.
13	423	35. Christian AK, Dake FA. Profiling household double and triple burden of malnutrition in
14	424	sub-Saharan Africa: Prevalence and influencing household factors. Public Health Nutrition.
15 16	425 426	 2022;25(6):1563-76. 36. Wong C, Zalilah M, Chua E, Norhasmah S, Chin Y, Siti Nur'Asyura A. Double-burden
17	420 427	of malnutrition among the indigenous peoples (Orang Asli) of Peninsular Malaysia. BMC Public
18	428	Health. 2015;15(1):1-9.
19	429	37. Villena-Esponera MP, Moreno-Rojas R, Molina-Recio G. Food insecurity and the double
20	430	burden of malnutrition of indigenous refugee Épera Siapidara. Journal of immigrant and minority
21 22	431	health. 2019;21(5):1035-42.
22	432	38. Tiwari N. The Influence of Single Parent Environment on Children's Learning and
24	433	Development.
25	434	39. Molitoris J. Breastfeeding during pregnancy and its association with childhood
26	435	malnutrition and pregnancy loss in low-and middle-income countries. Lund Papers in Economic
27 28	436	Demography. 2018;2018(3):1-81.
29	437	40. Raihana S, Alam A, Huda TM, Dibley MJ. Factors associated with delayed initiation of
30	438	breastfeeding in health facilities: secondary analysis of Bangladesh demographic and health
31	439	survey 2014. International Breastfeeding Journal. 2021;16(1):1-13.
32 33	440	41. Belachew A. Timely initiation of breastfeeding and associated factors among mothers of
34	441	infants age 0–6 months old in Bahir Dar City, Northwest, Ethiopia, 2017: a community based
35	442	cross-sectional study. International breastfeeding journal. 2019;14(1):1-6.
36	443 444	42. Saaka M, Hammond AY. Caesarean section delivery and risk of poor childhood growth. Journal of nutrition and metabolism. 2020;2020.
37	444	43. Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation
38 39	446	in childhood malnutrition–the role of short chain fatty acids. Clinical Nutrition. 2019;38(2):615-
40	447	30.
41	448	44. Kibria A, Muhammed G, Swasey K, Hasan MZ, Sharmeen A, Day B. Prevalence and
42	449	factors associated with underweight, overweight and obesity among women of reproductive age
43 44	450	in India. Global health research and policy. 2019;4(1):1-12.
44 45	451	45. Sekiyama M, Jiang HW, Gunawan B, Dewanti L, Honda R, Shimizu-Furusawa H, et al.
46	452	Double burden of malnutrition in rural West Java: household-level analysis for father-child and
47	453	mother-child pairs and the association with dietary intake. Nutrients. 2015;7(10):8376-91.
48	454	46. Liguori J, Trübswasser U, Pradeilles R, Le Port A, Landais E, Talsma EF, et al. How do
49 50	455	food safety concerns affect consumer behaviors and diets in low-and middle-income countries?
51	456	A systematic review. Global Food Security. 2022;32:100606.
52	457	47. Drammeh W, Hamid NA, Rohana A. Determinants of household food insecurity and its
53	458	association with child malnutrition in Sub-Saharan Africa: A review of the literature. Current
54 55	459	Research in Nutrition and Food Science Journal. 2019;7(3):610-23.
56		
57		
58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Serbesa ML, Iffa MT, Geleto M. Factors associated with malnutrition among pregnant 48. women and lactating mothers in Miesso Health Center, Ethiopia. European Journal of Midwifery. 2019;3. 49. Bhavadharini B, Anjana RM, Deepa M, Jayashree G, Nrutya S, Shobana M, et al. Gestational weight gain and pregnancy outcomes in relation to body mass index in Asian Indian women. Indian Journal of Endocrinology and Metabolism. 2017;21(4):588. Sinha RK, Dua R, Bijalwan V, Rohatgi S, Kumar P. Determinants of stunting, wasting, 50. and underweight in five high-burden pockets of four Indian states. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine. 2018;43(4):279. 51. Pal A, Manna S, Dalui R, Mukhopadhyay R, Dhara PC. Undernutrition and associated factors among children aged 5-10 years in West Bengal, India: a community-based cross-sectional study. Egyptian Pediatric Association Gazette. 2021;69(1):1-12. Anuradha R, Sivanandham R, Salome SD, Francis R, Roopa D, Sampavi S, et al. 52. Nutritional status of children aged 3-6 years in a rural area of Tamilnadu. Journal of clinical and diagnostic research: JCDR. 2014;8(10):JC01. 53. Hawkes S, Buse K. Gender and global health: evidence, policy, and inconvenient truths. The Lancet. 2013;381(9879):1783-7. Thurstans S, Opondo C, Seal A, Wells J, Khara T, Dolan C, et al. Boys are more likely to 54. be undernourished than girls: a systematic review and meta-analysis of sex differences in undernutrition. BMJ global health. 2020;5(12):e004030. Asfaw M, Wondaferash M, Taha M, Dube L. Prevalence of undernutrition and associated 55. factors among children aged between six to fifty nine months in Bule Hora district, South Ethiopia. BMC Public health. 2015;15(1):1-9. Nagarkar AM, Kulkarni SS. Obesity and its effects on health in middle-aged women 56. from slums of Pune. Journal of Mid-life Health. 2018;9(2):79. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Albania $2017/18$ Benin $2017/18$ Benin $2016/17$ Cameroon 2018 Ethiopia 2016 Gambia $2019/20$ Guinea 2018 Iaiti $2019/20$ Guinea $2019/20$ Adagascar 2021 Aali $2019/20$ Madagascar 2021 Aali $2019/20$ Aadagascar 2021 Mali 2018 Mauritania $2019/21$ Maldives $2016/17$ Vigeria 2018 Jepal 2016 Ewanda $2019/20$ ierra Leone 2019 'ajikistan 2017 Jganda 2016 Overall,-20IOTE:Weights are from random

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	2, 3
		was done and what was found	2, 5
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
•	5	State specific objectives, mending any prespective hypotheses	5
Methods	1	Descent have also and a fate design contrain the new or	5
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7
		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
	0	of assessment (measurement). Describe comparability of assessment	<i>′</i>
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	10	Explain how the study size was arrived at Explain how quantitative variables were handled in the analyses. If	7
Quantitative variables	11	applicable, describe which groupings were chosen and why	'
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	70
Statistical methods	12	(a) Describe an statistical methods, methoding those used to control for confounding	7,8
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		Controls was audicescu	1
		Cross-sectional study_If applicable describe analytical methods taking	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	8
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8,9
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	10/
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12/
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	15
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
			1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.