Supplementary Material for

2	Purification and characterisation of heparin-like sulfated polysaccharides with
3	potent anti-SARS-CoV2 activity from snail mucus of Achatina fulica
4	
5	Kanchanok Kodchakorn, Tawan Chokepaichitkool, Prachya Kongtawelert*
6	
7	Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of
8	Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200
9	Thailand
10	
11	* Correspondence to; prachya.k@cmu.ac.th (P.K.)
12	
13	This PDF file includes:
14	Table S1 to S2
15	Figures. S1 to S4
16	
17	

Table S1. ¹³C NMR chemical shifts for acharan sulfate from snail mucus (AS-GAG). Carbons labeled as I and G refer to Iduronic
 acid (IdoA) and N-acetyl glucosamine (GlcNAc) units, respectively.

Sugar residues	Chemical Shifts / ppm							
Sugar residues	1	2	3	4	5	6	7	8
$I; \rightarrow 4) - \alpha - I doA \rightarrow 1$	99.233	73.281	63.721	69.743	66.397	174.801	_	_
$G; \rightarrow 4) - \alpha - GlcNAc \rightarrow 1$	93.927	53.680	68.573	77.250	71.220	59.679	174.801	22.217

Table S2. Determination of anti-SARS-ACE2 binding for the unfractionated
 polysaccharide inhibitors.

Inhibitors	IC50	IC50 95% CI	Ref.
AS-GAGs ^a	28.4 μg mL ⁻¹	4.33 – 5.29 μg mL ⁻¹	
Enoxaparin ^a	91.5 μg mL ⁻¹	5.20 – 5.65 μg mL ⁻¹	
Pentosan polysulfate ^a	57.1 μg mL-1	4.31 – 4.84 µg mL ⁻¹	
Heparan sulfate ^a	132.4 μg mL ⁻¹	$2.11 - 2.14 \ \mu g \ mL^{-1}$	
Heparin	0.12 μg mL ⁻¹	0.09 – 0.15 μg mL ⁻¹	[21]
Heparan sulfate	62 μg mL ⁻¹	>15 µg mL-1	[21]
LMWH	5 – 12 µg mL-1	-	[22]
UFH	1 – 4 µg mL-1	-	[22]
	5.99 μg L ⁻¹	2.90 – 11.96 µg L ⁻¹	[25]
Enoxaparin	1.08 mg L ⁻¹	$247 - 4164 \ \mu g \ L^{-1}$	[25]

27 ^a Values from this work.

31

32 Fig. S1. Effect of hydrolysis time on the relative change (Log(Abs232nm)) of the 33 unsaturated disaccharide content of mGAG-F3 enzymatic hydrolysis by treatment with a combination of heparin lyase I (EC 4.2.2.7), II 34 35 (Heparitinase II), and III (EC 4.2.2.8). The digested mixture was in 0.3 mL of 50 mM Tris-HCl buffer (pH 7.2) and 10 mM CaCl2 at 37°C for 24 hrs, 36 37 after which the reaction samples were heated in a boiling water for 3 38 minutes. Results are reported as mean ± SD. Error bar denotes standard 39 deviation.

40

44 Fig. S2. SAX-HPLC chromatogram of mGAG-F3 (solid line) and heparin (dashed line) disaccharides by treatment with a combination of heparin lyase I (EC 45 46 4.2.2.7), II (Heparitinase II), and III (EC 4.2.2.8), eluting with a linear gradient of 0.1 - 1.0 M NaCl (dotted line) at a flow rate of 1.0 mL/min. The 47 elutions were monitored by absorbance at 232 nm for detecting the 48 49 unsaturated non-reducing ends of the disaccharides. The standard 50 disaccharide positions are indicated by number labels; 1: Δ UA-GlcNAc, 2: 51 Δ UA-GlcNSO₃, 3: Δ UA-GlcNAc(6S), 4: Δ UA(2S)-GlcNAc, 5: Δ UA-GlcNSO₃(6S), 6: ΔUA(2S)-GlcNSO₃, 7: ΔUA(2S)-GlcNAc(6S), 8: ΔUA(2S)-52 53 GlcNSO₃(6S).

54

Fig. S3. 2D Structure of the commonly occurring unsaturated disaccharides derived from digestion with heparinase enzymes. Abbreviations: Ac, acetyl; ΔUA, Δ(4,5) unsaturated hexuronic acid; GlcNAc, *N*-acetylated glucosamine; GlcNSO₃, *N*-sulfated glucosamine; H, hydrogen; 2S and 6S, 2O-sulfate and 6-O-sulfate, respectively.

64

Fig. S4. (a) ¹H– and (b) ¹³C–NMR spectra of the AS-GAG from the mucus of *A. fulica*.
The assignment was based on comparison with the previously described acharan sulfate. The peaks are labeled as I or G for Iduronic acid (IdoA) and *N*-acetyl glucosamine (GlcNAc) units, respectively. The number after these letters indicate the positions of ¹H and ¹³C.

72 Figure S4.

73

74 Fig. S5. Size exclusion chromatography analysis of the partial digest product of 75 sulfated polysaccharide; mGAG-F3 between pre- (blue) and post- (red) 76 depolymerization, in comparison to LMWH (black). The mGAG-F3 was 77 depolymerized by partial digestion with a combination of heparin lyase I 78 (EC 4.2.2.7), II (Heparitinase II), and III (EC 4.2.2.8). The digests were 79 chromatographed on a Superdex 30 Increase 30/100 column using 0.1 M 80 ammonium acetate (pH 7.0) as the eluent at 1.5 CV at flow rate 0.5 ml/min. 81 tetrasaccharide, hexasaccharide, The centers of octasaccharide, 82 decasaccharide, and decasaccharide peaks are marked with arrows. A 83 calibration curve was plotted by the logarithm of molecular weights versus 84 retention time in each standard position. The molecular weight of mGAG-85 F3 fraction was estimated by compared with the calibration curve.

87

86