Environ Health Perspect

DOI: 10.1289/EHP11882

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Long-Term Exposure to Ambient Air Pollution and Mortality among Four Million COVID-19 Cases in Italy: The EpiCovAir Study

Massimo Stafoggia, Andrea Ranzi, Carla Ancona, Lisa Bauleo, Antonino Bella, Giorgio Cattani, Federica Nobile, Patrizio Pezzotti, Ivano Iavarone, and the EpiCovAir Study Group

Table of Contents

The EpiCovAir Study Group

Table S1. Municipality-specific variables on: characteristics of the area, population, mobility, socio-economic and health status, and healthcare offer.

Table S2. Effect of air pollutants on mortality with inclusion of healthcare professionals, main approach and sensitivity analyses: percent increase in mortality risk (%IR), and 95% Confidence Intervals (95% CI) per 1 μ g/m³ increment in air pollutants. Italy, February 20, 2020 – June 15, 2021 (n=4,126,189 COVID-19 cases, n=124,522 deaths).

Table S3. Effect of air pollutants on <u>hospitalizations</u>, main approach and sensitivity analyses: percent increases of risk (%IR), and 95% Confidence Intervals (95% CI), per 1 μ g/m³ increment in air pollutants. Italy, February 20, 2020 – June 15, 2021 (n=3,995,202 COVID-19 cases, n=391,329 hospitalizations).

Table S4. Effect of air pollutants on usage of <u>intensive care units</u> (ICU), main approach and sensitivity analyses: percent increases of risk (%IR), and 95% Confidence Intervals (95% CI), per $1 \mu g/m^3$ increments in air pollutants. Italy, February 20, 2020 – June 15, 2021 (n=3,995,202 COVID-19 cases, n=54,699 accesses to intensive care units).

Table S5. Effect of air pollutants on mortality in the <u>three different waves</u> of the COVID-19 pandemic, by individual-level covariates and geographical area: percent increases of risk (%IR), and 95% Confidence Intervals (95% CI), per 1 μ g/m³ increment in air pollutants. Italy, February 20, 2020 – June 15, 2021 (first wave: n=201,210 COVID-19 cases, n=35,440 deaths; second wave: n=1,534,950 COVID-19 cases, n=41,620 deaths; third wave: n=2,259,042 COVID-19 cases, n=47,286 deaths). Results from the main model, adjusted for interaction terms between month, province, age, sex, and ventiles of the generalized propensity score.

Table S6. Results of the two-pollutant models: percent increases of risk (%IR), and 95% Confidence Intervals (95% CI), per 1 μ g/m³ increment in air pollutants. Italy, February 20, 2020 – June 15, 2021 (n=3,995,202 COVID-19 cases, n=124,346 deaths). Results from the main model, adjusted for interaction terms between month, province, age, sex, and ventiles of the generalized propensity score.

Figure S1. Flow-chart of data selection.

Figure S2. Map of COVID-19 case-fatality rates by municipality in the three different pandemic waves: 20/02/2020 - 31/05/2020, 15/09/2020 - 15/12/2020 and 16/12/2020 - 15/06/2021.

Figure S3. Map of COVID-19 hospitalization rates (left) and usage of intensive care units (ICU) rates (right) by municipality, Italy 20/02/2020 – 31/05/2020 and 15/09/2020 – 15/06/2021.

Figure S4. Map of air pollution levels (mean 2016-2019) by municipality in Italy.

Figure S5. Generalized Propensity Score (GPS) based on 4 selected principal components (PC): distribution of GPS by quintiles of exposure (positivity assumption (left) and absolute correlation between exposure and covariates pre- and post-GPS (balancing plot, right). Relevant data on mean absolute correlations in Excel Table S3.

Figure S6. Generalized Propensity Score (GPS) based on all 12 principal components (PC): distribution of GPS by quintiles of exposure (positivity assumption (left) and absolute correlation between exposure and covariates pre- and post-GPS (balancing plot, right). Relevant data on mean absolute correlations in Excel Table S4.

Figure S7. Generalized Propensity Score (GPS) based on selected contextual variables: distribution of GPS by quintiles of exposure (positivity assumption (left) and absolute correlation between exposure and covariates pre- and post-GPS (balancing plot, right). Relevant data on mean absolute correlations in Excel Table S5.

Additional File- Excel Document