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Supplemental Fig. S1. Renal histopathological and serum marker changes in different AKI mice.

(A and B) Levels of creatinine (Scr) and blood urea nitrogen (BUN) of the Control-group mice and AKI-mice induced by
cisplatin (CP), folic acid (FA), sodium oxalate (SO), ischemia reperfusion injury (IRI), and unilateral ureteral obstruction
(UUO). Since UUO mice are unilateral ureteral obstruction, it is normal that Scr and BUN levels do not change
significantly in the early stages of AKI; means+SEM. One-way ANOVA test, n = 3, **P<0.01 vs. Control group, ns: not
significant.

(C) Histologic renal injury scores of the Control-group mice and AKI-mice induced by different etiology. The scores were
obtained by counting the percentage of tubules that displayed tubular brush loss, necrosis and tubular dilation and cast
formation in panel (D). At least 10 fields were counted on each section; means3SEM. One-way ANOVA test, n = 3,
**P<(.01 vs. Control group, ns: not significant.

(D) Representative periodic acid-Schiff (PAS) staining of kidney sections from Control-group mice and AKI-mice. Scale
bars= 100 pm.

(E) The formation of crystals in FA and SO was confirmed by hematoxylin-eosin (HE) staining under polarized light
microscopy. Scale bars= 100 pm.
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Supplemental Fig. S2. Quality control and remove of batch effects of sScRNA data.

(A) The gene count, UMI count and mitochondrial ratio were mapped to the uniform manifold approximation and
projection (UMAP) graph after data quality control. Because tubular cells in the kidney are highly metabolically active,
therefore exhibit a higher mitochondrial ratio compared to other cell types. Due to the proportion of proximal tubules more
than 70% in Control samples, they exhibit a higher mitochondrial proportion.

(B) The principal component analysis (PCA) plots of the combined samples before and after removal of the batch effect,
the uniform manifold approximation and projection (UMAP) nonlinear dimensionality reduction plots, and the cluster-
UMAP plots. After removing the batch effect, the differences between cells were more obvious, and distal convoluted
tubules (DCTs) and loop of Henle (LOH) were separated. In contrast, before the removal of the batch effect, DCTs and
LOHs could not be separated even the resolution was substantially adjusted. For this dataset, the removal of the batch
effect is beneficial for the subsequent analysis. n = 2 each group.

(C) A total of 9075 doublets were identified by the DoubletFinder package, and these were removed in subsequent
analyses.

(D and E) After the onset of AKI induced by different etiologies, renal cells show different degrees of cell cycle arrest.
Since cell cycle arrest is one of the disease characteristics of AKI, we did not regress out the effect of cell cycle on the
dataset in the subsequent analysis. n = 2 each group.
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Supplemental Fig. S3. SoupX package to correct potential ambient RNA contamination and the accuracy

verification of cell type identification in the dataset.

(A) The correlation heatmap of each celltypes before and after SoupX correction.

(B) Expression of S100a8 before and after SoupX correction.

(C) Clustering heatmap of the average expression for each celltype, with immune cells and parenchymal cells clustered
into separate groups.

(D) The correlation heat map of the average expression of each celltype, with poor correlation between immune cells and
parenchymal cells.
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Supplemental Fig. S4. Flow cytometry analysis of the major renal immune cell subtypes in different AKI
model.

(A) Immune cell infiltration in the kidneys were further identified in CK, FA, IRI, SO, and UUO-induced AKI by Flow
cytometry. Immune cells were distinguished by CD45 (Ptprc), and subsequently identified by F4/80 (Adgrel) for

macrophages (M®), CD3e for T cells, Ly6G for neutrophils, CD11c (ltgax) for dendritic cells (DCs), and CD19 for B
cells.n=3.

(B) M1 (CD11b*CD206) and M2 (CD11b*CD206*) type macrophages, n = 3.
(C) Cell proportions of various immune cell subtypes in panel (A). n = 3.

(D) Cell proportions of M1 and M2 macrophages in panel (B). M1 and M2 type macrophages correspond to Macro_1 and
Macro 2.n=3. 5
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Supplemental Fig. S5. Reclustering of PTCs and identification of AKI-specific PTCs.

(A) Principal component analysis (PCA) plot of PTCs-samples before and after removal of batch effect by harmony
algorithm. And distribution of potential batch effect factors on uniform manifold approximation and projection (UMAP)
plots after removal of batch effects. n = 2 each group.

(B) Scoring of the top three components of the principal component analysis on UMAP. Displayed by model, it can be
found that the PTCs of the injury state are the main factor causing the differences between the models.

(C) The clustered heatmap of the average expression of the 11 clusters identified by PTCs after re-clustering, combined
with the spatial distribution of clusters after UMAP dimensionality reduction, two large subgroups could be distinguished.
(D) Correlation heat map of the average expression of the 7 PTCs. Cells within the PTCs were highly correlated with a
minimum correlation coefficient of 0.89.
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Supplemental Fig. S6. Expression of Krt20 in PTCs.

(A) Co-staining of sections from Control, cisplatin (CP), folic acid (FA), sodium oxalate (SO), ischemia reperfusion injury
(IR1), and unilateral ureteral obstruction (UUQO) kidneys for Krt20 (red) and Megalin (green) . Scale bars = 100uM. Krt20
is a biomarker of injury state PTCs (InjuredNewPT).

(B) The quantitative analysis of Krt20 fluorescence intensity; means+SEM. One-way ANOVA test, n = 3, ***P< 0.001,

****pP< (0,0001 vs. Control group.



>

0.6
0.47

Inflammatory

Spearson

R=0.714
10 20 30
Injured-S1(Haver1*) Cell Ratio(%)

> 0.84
«§ 0.6
£ 0.4
(]
€ 0.2 ,
E 0.01
P oo
§ 0.2 ‘ Spearson
-0.4 R=0.714
1 2 3 4 5
Maladaptive-S1 Cell Ratio(%)
g
E 0.5
E
[}
2 ool
o 0
o
g S
8 -0.5- pearson
(%] R=0.200
10 20 30

w

Score- Pro Fibrosis Score- Pro Fibrosis

Score- Pro Fibrosis

InjuredNewPT(Krt20") Cell Ratio(%)

1.0
0.5
0.0
. Spearson
U8 R=0.886
10 20 30
Injured-S1(Haver1*) Cell Ratio(%)
1.5
1.0
N /
0.0 1 >
0.5 Spearson
R=0.600
1 2 3 4 5
Maladaptive-S1 Cell Ratio(%)
1.0
0.5
0.0 e P
-0.5
1.0 Spearson
R=0.257
10 20 30

antigen p

C Gene ontology-BP
ib P plex biog ]
cytoplasmic translation [
gati g ion of cy! organization [ ] @
positive regulation of cytoskeleton organization @ o
ing and p ion of exog antigen- ®
necrotic cell death [ ] ]
cell death in response to oxidative stress L ]
ion of lipid bolic p ]
response to oxidative stress o o O o O
ion of sup fiber L ] e o O
regulation of actin cytoskeleton organization [ ] e o
gulation of ial cell mig ® o o O
positive regulation of proteolysis- ® o . e @
neuron death ® o o o
positive regulation of kinase activity- . . L .
ion of apoptotic signaling p " i
leukocyte cell-cell adhesion e @ o
ion of resp to ding e o @
wound healing - ]
positive regulation of cell adhesion{ ®
fatty acid metabolic process L J
small molecule catabolic process- L ]
ion of small bolic p ® o 0 o o
response to toxic substance; ® ©® © @ o @
sodiumiontransport{ ® ® ©® ¢ @
cellular amino acid metabolic process{ @
p.adjust 6{5‘ \\.\é” _‘(}4\@@"’ N \406\#@5\43"
F e
0025 005 0.075 ¢ N P K¢
& W0
o &
N

InjuredNewPT(Krt20*) Cell Ratio(%)

Supplemental Fig. S7. Correlation analysis of the ratio of injured cells with pro-inflammatory and pro-

fibrotic scores and gene ontology analysis of PTC subclusters.
(A and B) The cell proportions of injury state PTCs in different models: InjuredS1 (Havcrl*), Maladaptive-S1, and
InjuredNewPT (Krt20*) were correlated with the pro-inflammatory (A) and pro-fibrotic (B) scores of these models, and it
was found that the cell proportions of InjuredS1 (Havcrl*) and Maladaptive-S1 were positively correlated with the pro-
inflammatory and pro-fibrotic scores of the models, while InjuredNewPT (Krt20*) showed relatively weak correlation.

(C) Biological processes involved in 7 different states of PTCs in gene ontology analysis as a complement to Figure 3A.
Positive and negative cytoskeletal reorganization events and inflammatory processes associated with cell death are
common features of injured PTCs.
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Supplemental Fig. S8. Overall cell death score for all cell types.

(A-C) Necroptosis (A), Pyroptosis (B), and Ferroptosis (C) scores for all cell types, Supplement to Figure3A-C.
Necroptosis had high pathway activity in most parenchymal and immune cells, more significantly in neutrophils,
endothelial cells, T cells, dendritic cells, and macrophages. Pyroptosis had high pathway activity in specific immune cells,
especially in macrophages, NK cells, and neutrophils. Ferroptosis showed high pathway activity in different segments of
renal tubular cells, macrophages and neutrophils.
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Supplemental Fig. S9. Expression of key cell death markers in different models of PTCs.

(A) The quantitative analysis of Rip3 fluorescence intensity, as a complement to Figure3G; means=SEM. One-way
ANOVA test, n = 3, ***P< 0.001, ****P< 0.0001 vs. Control group, ns: not significant.

(B) The quantitative analysis of 4HNE fluorescence intensity, as a complement to Figure3H; means+SEM. One-way
ANOVA test, n = 3, ***P< 0.001, ****P< 0.0001 vs. Control group.

(C and E) Co-staining of sections from Control, cisplatin (CP), folic acid (FA), sodium oxalate (SO), ischemia reperfusion
injury (IRI), and unilateral ureteral obstruction (UUQ) kidneys for Gsdmd (C, red), Gsdme (E, red) and Megalin (green).
Scale bars = 100puM. Gsdmd and Gsdme are involved in Pyroptosis. Gsdmd as a novel biomarker for PTCs in IRl models
and Gsdme-mediated Pyroptosis in UUO models have been demonstrated.

(D and F) The quantitative analysis of Gsdmd (D) and Gsdme (F) fluorescence intensity; means=SEM. One-way
ANOVA test, n = 3, *P< 0.05, ***P< 0.001, ****P< 0.001 vs. Control group, ns: not significant.
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Supplemental Fig. S10. Expression of Ninj1 and Zbpl in different models of PTCs.

(A and C) Co-staining of sections from Control, cisplatin (CP), folic acid (FA), sodium oxalate (SO), ischemia reperfusion
injury (IRI), and unilateral ureteral obstruction (UUO) kidneys for Ninj1 (A, red), Zbpl (C, red) and Megalin (green).
Scale bars = 100uM. Ninjl and Zbpl were demonstrated to be involved in various cell deaths, but have not been
extensively studied in AKI. Ninjl expressed in renal tubular cells and immune cells, while Zbpl expressed in interstitial
immune cells.

(B and D) The quantitative analysis of Ninjl (B) and Zbpl (D) fluorescence intensity; means=SEM. One-way ANOVA
test, n = 3, *P< 0.05, ***P< 0.001, ****P< 0.001 vs. Control group, ns: not significant.
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Supplemental Fig. S11. Expression of Tmsb4x in different models of PTCs and detection the level of
Tmsb4x in urine.

(A) Co-staining of sections from Control, cisplatin (CP), folic acid (FA), sodium oxalate (SO), ischemia reperfusion injury
(IR1), and unilateral ureteral obstruction (UUO) kidneys for Tmsb4x (A, red) and Megalin (green). Scale bars = 100uM.
Tmsh4x was associated with cellfatel differentiation in monocle analysis of PTCs and combined with gene enrichment
analysis and previous relevant studies, Tmsb4x appeared to affect the transition of PTCs to cellfatel outcome by
participating in the remodeling of the PTCs cytoskeleton.

(B) The quantitative analysis of Tmsh4x fluorescence intensity; means3SEM. One-way ANOVA test, n = 3, **P< 0.01,
****P< (0.001 vs. Control group.

(C) The level of Tmsh4x detected in urine of mice by enzyme linked immunosorbent assay (ELISA). means 2 SEM. One-
way ANOVA test, n = 6, ****P< 0.001 vs. Control group. Notably, only one kidney in UUO model is injured since the
mice cannot survive with both ureteral ligation, thus the level of Tmsb4x are closely to Control-group.
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Supplemental Fig. S12. Identification of differentially expressed proteins and phosphorylated proteins in
AKI by mass spectrometry.

(A and B) Volcano plots of differentially expressed proteins in UUO-AKI proteomics (A) and UUO-AKI
phosphoproteomics (B) , highlighting the five proteins with the greatest degree of Log2 Fold change among the up- and
down-regulated proteins.

(C) GSEA analysis of differentially expressed proteins in the proteomics, and the most significantly enriched pathway in
the KEGG was the oxidative phosphorylation pathway.

(D) Cytoskeleton reorganization-related protein Arpclb is simultaneously highly expressed at the transcriptional and
translational levels.

(E) The quantitative analysis of Arpclb fluorescence intensity, as a complement to Figure4J; means+SEM. One-way
ANOVA test, n = 3, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001 vs. Control group, ns: not significant.

(F) The level of Arpclb detected in urine of mice by enzyme linked immunosorbent assay (ELISA). means+SEM. One-
way ANOVA test, n = 6, ****P< 0.001 vs. Control group. Notably, only one kidney in UUO model is injured since the
mice cannot survive with both ureteral ligation, thus the level of Arpclb are closely to Control-group.
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Supplemental Fig. S13. Validation the diagnostic performance of Tmsb4x, Arpclb through AKI public
dataset.

(A-H) Diagnostic efficacy of Havcrl, Arpclb, Tmsdbx and combined genes (Tmsh4x, Arpclb, and Havcrl) in GSE98622
(A-D) and GSE139061 (E-H) dataset. The larger value of the area under the curve (AUC) in receiver operating

characteristic curve (ROC) indicates the better specificity and sensitivity of the gene for differentiating disease. Havcrl
(KIM1) is a known marker of kidney injury in AKI.
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Supplemental Fig. S14. AKI-PTCs specific biomarker screening strategy and validation in bulk dataset.
(A) AKI-PTCs-specific biomarker screening strategy. The aim is to screen for biomarkers of PTCs that are specifically
highly expressed in one or more AKIs.
(B) The expression of 18 genes (Nectinl is missing in this dataset) was validated in a bulk dataset (Liu J et.al, GSE98622)
which contains different injury time points of IRI. Most of the genes were expressed starting at IRI-4h and part of them
would continue to be highly expressed until 28d.
(C) Expression of 18 genes was verified in the renal tubular dataset of acute cisplatin AKI (Li C et.al, GSE165100), and
almost all genes were upregulated during AKI.
(D) Exploring the correlation of 18 genes with clinical traits of AKI (GFR: glomerular filtration rate, serum creatinine level)
in the Nephroseq database (Acat3, Ugt2b34, Nectinl, Cyp4alO, Cyp4a3l, and Cyp4ald are missing in Nephroseq

database).
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Supplemental Fig. S15. Validation of AKI-PTCs specific biomarkers in two independent sScCRNA datasets.
(A-C) Expression of 18 genes was validated in single-cell datasets from different injury time points of
Ischemia-reperfusion injury (IRI) (A) (Kirita Y et.al, GSE139107). Most genes showed elevated
expression during IR1 4-12h (B) and restricted expression in PTCs (C) .

(D-F) The expression of 18 genes was validated in a single-cell dataset of unilateral ureteral obstruction
(UUO) (D) (Conway BR et.al, GSE139107) at different time points of injury. Most genes showed elevated
expression during UUO2-7 days (E) and restricted expression to PTCs (F) .
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Supplemental Fig. S16. Validation of 6 mouse specific AKI-PTCs biomarkers by Real-time PCR.

(A-F) Expression of Acat3(A), Cyp4al0 (B), Cyp4als (C), Cypda3l (D), Nectinl (E), and Ugt2b34 (F)
was validated by Real-time PCR ; means+SEM. One-way ANOVA test, n = 3, *P< 0.05, **P< 0.01,
***P< 0.001vs. Control group, ns: not significant.
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Supplemental Fig. S17. Reclustering of AKI-endothelial cells (ECs) and Top10 gene expression profiles
of different endothelial subpopulations.

(A) The clustering heat map of 7 subclusters of EC with samples. AKI models are separated from Control,
and the clustering within AKI depends on the variability between different models.

(B) Heat map of Topl0 differentially expressed genes in three endothelial cell types distributed in 7
clusters.

(C) The quantitative analysis of Rip3 fluorescence intensity, as a complement to Figure6J; means=+ SEM.
One-way ANOVA test, n = 3, *P< 0.05, ****P< 0.0001 vs. Control group, ns: not significant.

(D) The level of S100a6 detected in urine of mice by enzyme linked immunosorbent assay (ELISA).
means = SEM. One-way ANOVA test, n = 6, ****P< 0.001 vs. Control group. Notably, only one kidney in
UUO model is injured since the mice cannot survive with both ureteral ligation, thus the level of S100a6
are closely to Control-group.
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Supplemental Fig. S18. Module clustering tree of WGCNA for different groups and the regulatory pattern

of key transcription factors.

(A) Control and 5 groups of AKI samples formed the topological overlap matrix (TOM) during the weighted gene co-
expression network analysis (WGCNA). Genes in the TOM matrix were spontaneously formed into clusters based on
expression patterns, and similar modules were merged by the dynamic shear tree method to finally generate the module

clustering tree.

(B) Nine key transcription factors are involved in the cellular homeostasis of DCTs, LOH, CDIC and CDPC in AKI under
stress conditions by regulating most genes of a series of basic biological processes (ion transfer, water homeostasis, pH
regulation). Among them, Atf3, Jun, Fos, Jund, and Zmiz1 are also involved in the regulation of apoptosis and autophagy

pathways. In these four cell types, autophagy and apoptosis are the more common modes of injury.
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Supplemental Fig. S19. Model heterogeneity of signaling pathways corresponding to the significantly

enriched ligand-receptors in Macro_2 cells.

(A) The overall cellular communication network map of Control and each AKI model, incorporated cells included 11
immune cell subtypes, 7 subtypes of PTCs, DCTs, LOH, CDIC, and CDPC. Compared with Control, the number and
weight of intercellular communications markedly increased after the occurrence of AKI. Corresponding to Figure 7B.
Share legend colors with panel B.

(B) The five signaling pathways corresponding to significantly enriched ligand-receptors (Figure 7E) are separately
identified as the primary senders, receivers, mediators, and influencers in the AKI network by calculating the degree of
information flow outside, inside, and in-between the communication network. It will help to assess the specific role of
each cell type in the signaling pathways.

(C) The specific ligand-receptor signals of the five signaling pathways in Panel B were enriched in Control and each AKI
model. The direction of Information flow is from Macro_2 cells to all parenchymal cells (PTC subtypes, DCTs, LOH,
CDIC, and CDPC). Compared to Control, Argl* Macro_2 cells targeted more parenchymal cells and activated more
enriched intercellular ligand-receptor signaling in the AKI model.
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Captions for Supplementary Tables S1 to S6

Supplemental Table S1: Differentially expressed genes in each cell cluster during initial cell clustering
and cell re-clustering.

Supplemental Table S2: Differentially expressed genes in each celltypes.

Supplemental Table S3: Differentially expressed genes in each PTC sub-types.

Supplemental Table S4: Genes associated with cell differentiation in BEAM analysis of PTCs.
Supplemental Table S5: Differentially expressed genes in each ECs sub-types.

Supplemental Table S6: Key genes of DCTs, LOH, CDIC and CDPC in Control and each AKI model
screened by WGCNA.
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