1 Supplementary Information

p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response

Vincenzo Salemme^{1,2}, Mauro Vedelago¹, Alessandro Sarcinella¹, Federico Moietta¹, Alessio
Piccolantonio^{1,2}, Enrico Moiso¹, Giorgia Centonze^{1,2}, Marta Manco¹, Andrea Guala¹, Alessia
Lamolinara³, Costanza Angelini¹, Alessandro Morellato^{1,2}, Dora Natalini¹, Raffaele Calogero^{1,2},
Danny Incarnato⁴, Salvatore Oliviero^{2,5}, Laura Conti^{1,2}, Manuela Iezzi³, Daniela Tosoni⁶, Giovanni
Bertalot⁶, Stefano Freddi⁶, Francesco A. Tucci^{6,7}, Francesco De Santis⁸, Cristina Frusteri⁸, Stefano
Ugel⁸, Vincenzo Bronte⁸, Federica Cavallo^{1,2}, Paolo Provero⁹, Marta Gai¹, Daniela Taverna^{1,2}, Emilia
Turco¹, Salvatore Pece^{6,10*} and Paola Defilippi^{1,2**}.

- ¹¹ ¹Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52,
- 12 10126, Torino, Italy.
- 13 ²Molecular Biotechnology Center (MBC) "Guido Tarone", Via Nizza, 52, 10126, Turin, Italy
- ¹⁴ ³Immuno-Oncology Laboratory, Center for Advanced Studies and Technologies; Department of
- 15 Neurosciences, Imaging and Clinical Sciences. G. d'Annunzio University of Chieti-Pescara, Italy
- ⁴Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute
- 17 (GBB), University of Groningen, Groningen, the Netherlands.
- ⁵Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- ⁶European Institute of Oncology IRCCS, 20141 Milan, Italy
- ²⁰ ⁷School of Pathology, University of Milan, Milan, Italy.
- ⁸Immunology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
- ²² ⁹Neuroscience Department "Rita Levi Montalcini", University of Torino, Via Cherasco 15, 10126
- 23 Torino, Italy.
- ¹⁰Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20142 Milano,
 Italy.
- 26 **Corresponding Author: Paola Defilippi (paola.defilippi@unito.it)
- 27 *Co-corresponding Author: Salvatore Pece (salvatore.pece@ieo.it)

	TILs Neg	TILs Pos	Total
p140Cap Low	15 (36,5%)	66 (20,4%)	81
p140Cap High	26 (63.4%)	257 (79,5%)	283
Total	41	323	364

HER2⁻patients

	TILs Neg	TILs Pos	Total	
p140Cap Low	11 (29,1%)	51 (19,0%)	62	
p140Cap High	21 (65,6%)	217 (80,9%)	238	OR = 2.23 (1.01:4.9)
Total	32	268	300	P = 0,04

	TILs Neg	TILs Pos	Total		
p140Cap Low	4 (44,4%)	15 (27,2%)	19		
p140Cap High	5 (55,5%)	40 (72,7%)	45	OR = 2 13 (0 50.9	
Total	9	55	64	P = 0,30	

30 Supplementary Fig. 1

Left, The overall survival rates of the negative and positive stromal TIL groups were analyzed using
Kaplan-Meier survival analysis, and the statistical significance of between-group differences was
evaluated using the Log-rank Test. Univariate and multivariate Cox regression analyses were
performed to identify the prognostic significance of stromal TILs. Right, Analysis of the distribution
of TIL-positive and TIL-negative female patients according to their p140Cap status (p140Cap ^{HIGH} vs.
p140Cap ^{LOW}) in all patients (top) and in the subgroup of HER2-negative (middle) and HER2-positive
(bottom) patients; p-value, Pearson's Chi-Squared Test.

52

53 Supplementary Fig. 2

54 Left, Representative immunofluorescence images from the immunophenotypic characterization of the TIL infiltrate in n=3 different p140Cap^{HIGH} breast tumors performed on 3µm-thick FFPE sections 55 56 using an anti-CD3 (red) and anti-CD20 (green) antibody to recognize T- and B-lymphocytes, 57 respectively. For each tumor sample (n=3), a tile merge (top panels) of 12 representative regions of 58 interest (ROI) acquired independently is shown for each staining (blu, DAPI; red, CD3; green, CD20). 59 A representative ROI from the tile merge for each staining is magnified in bottom panels. Right, Representative immunohistochemistry images of the TMA cores of the three different p140Cap^{HIGH} 60 61 breast tumors (PT#1-3). Scale bars are indicated.

Correlation with p140Cap and molecular subtypes

	p140Cap High	p140Cap Low	Total	OR (CI)	р
ER+/HER2-	325 (80.7%)	78 (19.3%)	403	Reference	
HER2+	45 (67.2%)	22 (32.8%)	67	2.04 (1.16-3.59)	0.012
ER-/HER2-	16 (57.1%)	12 (42.9%)	28	3.13 (1.42-6.87)	0.0031
Total	386	112	498		

64

65 Supplementary Fig. 3

b

a Analysis of p140Cap expression across the different molecular subtypes of human BC. Violin plots
show the expression levels of *SRCIN1* transcripts (left) and p140Cap protein (right) in different
molecular subtypes of human BC patients from the 1095 BC female patients from TCGA-BRCA
cohort ³⁴. The black dots indicate the average. The number of patients for each subtype is shown in
parentheses. For the HER2+ subtype, tumors with presence or absence of *SRCIN1* co-amplification
are shown.

72 **b** Analysis of the distribution of p140Cap^{HIGH} and p140Cap^{LOW} female patients of the 498 BC female

73 patients of the IEO cohort, see Methods, according to the different molecular subtypes: luminal

74 (ER+/HER2-), HER2-amplified (HER2+) and triple-negative (ER-/HER2-); Odds Ratio (OR) with

75 95% Confidence Intervals (CI) are indicated; p-value, Pearson's Chi-Squared Test.

b а TuBo 4T1 p140Cap Mock p140Cap KDa Mock KDa 150p140Cap 150p140Cap 50 Tubulin 50 Tubulin

77

78 Supplementary Fig. 4

a-b Western Blot analysis of a pool of four clones with enforced p140Cap expression upon retroviral
infection in TuBo in **a**, and 4T1 cells in **b** (n=10 experimental repeats). Tubulin was used as loading
control.

- 82 c-d A set of representative H&E images of lung tissues from mice injected with mock or p140Cap
- 83 TuBo, or 4T1 cells, where each figure shows the metastatic area (see also Methods); TuBo, n=5 mice;
- 84 4T1, n= 10 mice.
- 85 .
- 86

PMN-MDSC in CD45⁺ cells (%) 0 0 0 0 0 (%)

0

f

PMN-MDSC in CD45⁺ cells (%)

40

30

20

10

0

Noct Isonpo

NUNCAP LOOP

Noct alle

TUMOR

P=0,0377

P=0,759

P=0,0037

88 Supplementary Fig. 5

Suppressive activity of tumor-infiltrating CD11b+ cells isolated from either p140Cap (red) or Mock
(blue) tumor-bearing mice co-cultured with activated T cells in presence, was evaluated by flow
cytometry tracking cell trace dilution in Cell Trace-labelled; peptide activated HA-specific T cells
after 3 days.

93 a Cell Trace dilution representative plots of CTLs co-cultured with 24% of tumor-isolated CD11b+ 94 cells are shown. Data are represented for n=4 mice/group as mean \pm SEM; two-tailed unpaired t test. 95 **b** T cell proliferative generations (from G0 to G5) under resting condition (not activated by peptide, 96 grey line) or stimulated and co-cultured with CD11b+ cells derived from Mock-derived (blues) or 97 p14Cap (red) tumors. Data are represented for n=4 mice/group as mean \pm SEM; 2way ANOVA test. 98 G: generations. Suppressive activity of splenic Ly6G+ cells isolated from either p140Cap (red) or 99 Mock (blue) tumor-bearing mice co-cultured with activated T cells in presence was evaluated by flow 100 cytometry tracking cell trace dilution in Cell Trace-labelled; peptide activated HA-specific T cells 101 after 3 days.

102 c Cell trace dilution representative plots of CTLs co-cultured with 24% of splenic Ly6G+ cells. (D)
103 T cell proliferative generations (from G0 to G5) under resting condition (not activated by peptide,
104 grey line) or stimulated and co-cultured with Ly6G+ cells derived from Mock-derived (blues) or
105 p140Cap (red) tumors. Data are represented for n=4 mice/group as mean ± SEM; 2way ANOVA test.
106 e-f In vivo anti-Ly6G treatment.

107 **e** 10^5 TuBo Mock and p140Cap cells were injected into the mammary fat pad of female BALB/c 108 mice. When tumors size reached 80 mm3, anti-Ly6G antibody treatment was performed by two IP 109 injections per week, of 100 µg of anti-Ly6G (n=5) or control IgG2a isotype antibodies (n=5/Mock 110 isotype; n=4/p140Cap isotype). Tumor growth was monitored and tumor size was measured. Data 111 are represented for n=5 mice/group as mean ± SEM; 2way ANOVA test.

112	f Flow cytometry analysis for PMN-MDSCs. Representative flow cytometry bar plots showed the
113	percentage (%) of PMN-MDSC (CD45+CD11b+Ly6G+Ly6Clow) cells normalised on CD45+ cells,
114	in tumor (n=5), blood (n=4/Mock isotype; n=4/p140Cap isotype; n=3/Mock anti-Ly6G), spleen
115	(n=5/Mock isotype; n=3/p140Cap isotype; n=5/Mock anti-Ly6G) and bone marrow (n=5/Mock
116	isotype; n=3/p140Cap isotype; n=5/Mock anti-Ly6G) of mice treated as in (E) with anti-Ly6G and
117	anti-isotype administrations. Data are represented for n=x mice/group as mean \pm SEM; two-tailed
118	unpaired t test.
119	

139 Supplementary Fig. 6

```
FACS analysis of PMN-MDSCs (CD45+CD11b+Ly6G+Ly6Clow) cells normalised on CD45+ cells
in lungs of Mock 4T1 tumor-bearing mice after 10, 12 and 14 days post-injection. Data are
represented for n=3 mice/group; dot plot represented as mean ± SEM; two-tailed unpaired t test.
```

P<0,0001 *P*<0,0001 15 • fold increase (a.u.) G-CSF secretion 10 5 0 ୧୦ 2^r <u>م</u> b С MDA-MB-231 MDA-MB-231 KDa p140Cap Mock RT-PCR ELISA assay 150p140Cap 800 1.5 P=0,0437 Csf3 mRNA fold change [G-CSF] pg/ml/10⁶ cells 50 600 Tubulin 1.0 400 0.5 200 0.0 0 Not Net NACO PACA

а

20

152

153

154 Supplementary Fig. 7

155 a ELISA assay of G-CSF secretion in Mock TUBO cell culture supernatants and in P1, P2 and P3

156 mammosphere supernatants. Data are represented for n=4 experimental repeats; bar plot represented

- 157 G-CSF fold increase as mean \pm SEM; two-tailed unpaired t test.
- 158 **b** Generation of MDA-MB-231 p140Cap overexpressing cells. Western Blot analysis of a pool of
- 159 four clones of MDA-MB-231 cells expressing p140Cap upon retroviral infection. Data are
- 160 represented for n=10 experimental repeats. Tubulin was used as loading control.

149

- 161 c G-CSF transcript and G-CSF protein levels were measured in Mock and p140Cap MDA-MB-231 162 cells, by quantitative RT-PCR or by ELISA on cell culture supernatants, respectively. Data are 163 represented for n=3 experimental repeats, bar plot represented as mean \pm SEM; two-tailed unpaired t 164 test.
- 165

- **Supplementary Fig. 8** 169
- a Gating strategy for the tumor immune infiltrate in Figure 2 (panel b-d), Figure 4 (panel a-b), Figure 170
- 6 (panel **j**), Figure 9 (panel **f**) 171
- **b** Gating strategy for the Cancer Stem Cell markers in Figure 5 (panel **d-e**). 172