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Supporting methods 
 
Quantitative RT-PCR  

RNA was extracted from monolayer cultures using TRIzol (ThermoFisher Scientific) following 
the manufacturer’s instructions. Typically, 100-200ng total RNA was used for cDNA synthesis 
in a total volume of 20µl using the QuantiTect® Reverse Transcription kit (Qiagen) according 
to the manufacturer’s instructions. Quantitative RT-PCR (qPCR) was performed in triplicate 
with the Brilliant III Ultra-Fast SYBR Green QRT-PCR Kit (Agilent) using 10 μl reactions 
consisting of 1× Brilliant III Ultra-Fast SYBR Green QRT-PCR Master Mix, 1 μl cDNA, and 1 μM 
each primer. Amplification was performed in a 384 well plate format on the LightCycler 480 
Instrument II (Roche Life Sciences), using a thermocycling protocol involving 40 cycles of 
denaturation at 95°C for 20 seconds, annealing at 55°C for 20 seconds, and amplification at 
72°C for 20 seconds. Gene-specific primers were designed using Primer-BLAST (NCBI) (Table 
S1). To avoid amplification from genomic DNA, primer sets were designed to span multiple 
exons and PCR products analyzed by agarose gel electrophoresis to confirm single products 
corresponding to the predicted cDNA amplicons for each gene. Analyses used LightCycler 
480 Software (release 1.5.1.62). Human β-actin (ACTB) was routinely used as a house-
keeping reference gene. Graphs were drawn using GraphPad Prism 9.  
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Fig. S1. (A) Gene expression of stage specific markers during the 6-day differentiation to 
sclerotome in iPSC line MCRIi019-A. N = 4 parallel differentiations. (B) The iPSC line 
MCRIi018-B was differentiated to sclerotome with cell pellets formed at day 4 and retained 
in static pellet culture throughout. At the end of day 6, pellets were supplemented with 
either 20 ng/ml BMP4 or 20 ng/ml FGF2 for 14 days. Toluidine blue (scale bar is 500 µm) and 
collagen II and X immunostained pellet sections (scale bar is 200 µm) at day 48. (C) 
MCRIi001-A-2 was adapted to feeder free conditions, then feeder-dependent and feeder-
free versions differentiated to chondrocytes with pellets transferred to rotary culture at the 
end of day 6. Toluidine blue stained chondronoids at day 62. Scale bar is 500 µm. (D, E) 
Rotary culture influences chondrocyte maturity. The iPSC lines MCRIi001-A-2 (D) and 
MCRIi019-A (E) were differentiated to sclerotome with cell pellets formed at day 4. At the 
end of day 6, pellets were supplemented with 20 ng/ml FGF2 for 14 days. Some pellets were 
transferred to rotary culture at the end of day 6, day 13, day 20 or day 27 and some 
remained in static culture. Toluidine blue and collagen X immunostained pellets at day 48. 
Scale bars are 500 µm. (F) TGFβ3 induces an articular chondrocyte phenotype. The iPSC line 
MCRIi019-A was differentiated to sclerotome with cell pellets formed at day 4. At the end of 
day 6 all sclerotome pellets were supplemented with 20 ng/ml FGF2 for 14 days and some 
pellets were treated with 10 ng/ml TGFβ3 from day 13. Pellets were transferred to rotary 
culture at day 20. Histology and collagen II, collagen X and PRG4 immunostaining at day 48. 
Scale bars are 500 µm. (G) mRNA abundance (log2 RPKM) of the 20 core matrisome 
components most highly expressed at day 48 in TGFβ3 treated chondronoids. Abundance in 
untreated chondronoids is shown for comparison. (H) mRNA abundance at day 48 in TGFβ3 
treated chondronoids (average log2 RPKM) of the 20 most upregulated and 20 most 
downregulated core matrisome genes (logFC, adj.P.value < 0.05, average RPKM >10 in at 
least one treatment group). (I) mRNA abundance (log2 RPKM) of the 20 transcription factors 
most highly expressed at day 48 in TGFβ3 treated chondronoids. Abundance in untreated 
chondronoids is shown for comparison. (J) mRNA abundance at day 48 in TGFβ3 treated 
chondronoids (average log2 RPKM) of the 20 most upregulated and 20 most downregulated 
transcription factor genes (logFC, adj.P.value < 0.05, average RPKM >10 in at least one 
treatment group). RNAseq data N = 4 parallel differentiations. 
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Fig. S2. Reproducible differentiation to hypertrophic cartilage in a second iPSC line. 
MCRIi018-B was differentiated to chondrocytes then some organoids were treated with T3 
for 3 weeks from D48 to D69. (A) Toluidine blue and collagen II and X immunostaining 
showing chondrocytes mature to hypertrophy. (B) Changes in mRNA abundance for selected 
cartilage, hypertrophic cartilage and bone proteins. N = 3 independent differentiation 
experiments. (C) The most highly expressed core matrisome genes. Each point represents a 
determination in three independent differentiations. Highly expressed genes not reaching 
the statistical threshold for differential expression (adj.P.value < 0.05) are indicated with a 
red asterisk. (D) Transcription factors dynamically regulated during maturation to 
hypertrophy. Transcription factors differentially expressed in the RNAseq D69T3 v D48 
comparison (adj.P.value ≤ 0.05, LogFC ≥ 1 or ≤ -1) and expressed at average RPKM >10 at 
one or more cell line/day/treatment are shown grouped by the direction of change and their 
known or poorly described role in cartilage development. The points show the average log2 
RPKM for each group, N = 3 independent differentiations. (E) IRX3 expression. IRX3 mRNA 
abundance fell below the cutoff for panel (D). (F) mRNA abundance of transcription factors 
in the KEGG circadian rhythm gene set that are dynamically regulated and not shown in 
panel (D).  
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Fig. S3. Reproducible iPSC to chondrocyte differentiation. (A) Images show MCRIi018-B 
chondronoids in 6 cm non-adherent dishes at D34 in three independent differentiations. 
Note the consistent chondronoid size within and between independent differentiations. (B) 
Replicate toluidine blue stained chondronoids from 3-5 independent differentiations in 
three iPSC lines, MCRIi019-A, MCRIi018-B and MCRIi001-A-2. The analysis day, D46, 47 or 48, 
is indicated for each differentiation. In all lines in all differentiations there is uniform 
cartilage tissue with no indication of other cell types. Scale bar is 500 µm. Note that the 
sections are not always at the centre of the chondronoid so they do not reflect the actual 
chondronoid size. 
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Fig. S4. Reproducible gene expression profiles in iPSC-derived chondrocyte maturation. The 
data relate to the differentiation experiments presented in Fig. 1B-E and Fig. S2. There were 
three independent differentiations of two iPSC lines, MCRIi018-B and MCRIi019-A. RNA was 
isolated from all samples at the same time and the RNAseq libraries were made at the same 
time using the same batch of reagents. (A) The number of differentially expressed genes 
(adj.P.val ≤ 0.05) at D48, D69 and D69 following 3 weeks supplementation with T3. There 
were no differentially expressed genes at D48. (B) The percentage variance explained by 
each principal component. (C) Principal component analysis (PCA) plot, PC1 v PC2, showing 
that samples from independent differentiations of two iPSC lines cluster closely and 
separate based on differentiation day and treatment. (D) Small multiples plot emphasising 
that PC1 and PC2, together accounting for 69% of the variation, are largely cell line and 
differentiation independent. It is only when looking at PC3, which accounts for only 7.3% of 
the variability that the samples can be separated by iPSC line. PCA was done using the 
function prcomp in base r. 
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Fig. S5. Hypertrophic chondrocyte to osteoblast/osteocyte transition in iPSC-derived 
organoid implants. (A) Hypertrophic chondronoids were implanted subcutaneously into 
immunocompromised mice and harvested after 13 weeks. Implants were sectioned and 
stained with toluidine blue for cartilage proteoglycans and fast green to highlight bone. The 
image on the right is an adjacent section stained with methyl green for cartilage and von 
Kossa for mineralization. Higher power images of the areas indicated with the boxes are 
shown below. The mineralized areas correspond to the fast green positive bone. Scale bars 
are 200 µm. (B) BGLAP immunostaining in 4-week-old mouse tibia cortical bone. (C) SOST 
immunostaining in 4-week-old mouse tibia cortical bone. (D) BGLAP immunostaining in a 
decalcified iPSC-derived implant. (E) SOST immunostaining in a decalcified iPSC-derived 
implant. The expression and distribution of BGLAP and SOST are similar in the implant bone 
and mouse bone. Images in panels B-E were taken at the same magnification. Scale bar is 
100 µm.  
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Fig. S6. Osteocytes in iPSC-derived organoid implants are human. Implants were decalcified, 
sectioned, and stained with safranin O for cartilage proteoglycans and fast green to highlight 
bone. Adjacent sections were immunostained with the human specific antibody Ku80. DAPI 
staining indicates cell nuclei. There was extensive blood vessel invasion into the implant and 
large areas of bone surrounding the blood vessels. (A) Blood vessels in the implant contain 
red blood cells that autofluoresce in the green channel and are DAPI negative (arrow heads). 
Blood vessels also contain mouse cells indicated by red nuclei that do not stain with Ku80 
(arrows). Osteocytes in the bone are Ku80 and DAPI positive indicating they are human and 
derived from the implanted iPSC-cartilage. (B) Image shows a cartilage area (safranin O 
stained) and an adjacent area where the chondrocytes are transitioning to osteoblasts, 
remodelling the cartilage ECM and depositing bone. The blood vessel (circled) contains 
human cells (Ku80 and DAPI positive) and mouse cells (Ku80 negative, DAPI positive). All the 
osteocytes in the bone are both Ku80 and DAPI positive indicating they are human. (C) The 
blood vessel in the center of the image contains autofluorescing red blood cells (arrowhead 
indicates some examples). Osteocytes in the bone are Ku80 and DAPI positive indicating they 
are human. (D) Mouse cells (DAPI positive, Ku80 negative) in a blood vessel (circled), and 
autofluorescing mouse red blood cells (DAPI negative) a blood vessel (arrowhead). 
Osteocytes in the bone are Ku80 and DAPI positive indicating they are human. We found no 
evidence that there were mouse cells in the bone. All scale bars are 200 µm. 
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Fig. S7. Reproducible in vitro hypertrophic chondrocyte to osteoblast transition. (A) T3 
treatment primes for transition to osteoblasts. MCRIi001-A-2 was differentiated to cartilage 
and allowed to mature until day 68. Some chondronoids were then treated with 10 nM T3 
for 14 days. From day 82 transition to osteoblasts was induced with osteogenic medium for 
3 weeks. There was more extensive and intense von Kossa staining in organoids that had 
been pre-treated with T3 compared to those without T3 treatment. Scale bar is 200 µm. (B) 
The relative average expression in MCRIi019-A iPSC-derived hypertrophic cartilage (T3) and 
osteoblasts (OC) of the 50 most highly expressed core matrisome genes in osteocytes 
isolated from mouse tibia (1). N = 4 parallel differentiations. (C) The most highly expressed 
core matrisome genes after 3 weeks in osteogenic conditions (OC) (MCRIi019-A) and their 
relative expression in hypertrophic cartilage (T3). (D) The 20 most upregulated and 20 most 
downregulated core matrisome genes in osteogenic conditions vs hypertrophic cartilage. (E) 
Expression of the top transcripts that correspond to osteoblast precursor, osteoblast and 
mature osteoblast clusters in scRNAseq of cells isolated from mouse calvaria (2) during in 
vitro transdifferentiation. Bubble plot shows logFC and adj.P.value during in vitro 
transdifferentiation. (F) Expression of genes that mark skeletal cell subpopulations in 
scRNAseq of in vivo mouse transdifferentiation (3) during in vitro transdifferentiation. (G) 
Expression of transcription factors known to regulate osteoblast differentiation (4) during in 
vitro transdifferentiation. N = 4 parallel differentiations. (H) The most highly expressed 
transcription factor genes after 3 weeks in osteogenic conditions (OC) and their relative 
expression in hypertrophic cartilage (T3). (I) The 20 most upregulated and 20 most 
downregulated transcription factor genes in osteogenic conditions vs hypertrophic cartilage. 

 
  



 
 

 
 

 
Table S1. RT-PCR primer sets for monitoring iPSC to sclerotome differentiation. 

Gene Primer Sequence 5’-3’ 

OCT4 hOCT4.F GAAGTGGGTGGAGGAAGCTG 
hOCT4.R TAGTCGCTGCTTGATCGCTT 

MIXL1 hMIXL1.F GGTACCCCGACATCCACTTG 
hMIXL1.R GGGCAGGCAGTTCACATCTA 

MSGN1 hMSGN1.F GGCCTGGTAGAGGTGGACTA 
hMSGN1.R ACAGGTGGCAGGTAATTCCG 

MEOX1 hMEOX1.F ACTCGGCTCCGCAGATATGA 
hMEOX1.R GAACTTGGAGAGGCTGTGGA 

PAX1 hPAX1.F ACTTCCCTGCCAAAGGTAGC 
hPAX1.R CCTCACACCTTCAAATGCCC 

SOX9 
hSOX9.F AAGTCGGTGAAGAACGGGC 
hSOX9.R TCTCGCTTCAGGTCAGCCTT 

COL2A1 hCOL2A1.F TCACGTACACTGCCCTGAAG 
hCOL2A1.R GCCCTATGTCCACACCGAAT 

ACTB 
hACTB.F AAGTCCCTTGCCATCCTAAAA 
hACTB.R ATGCTATCACCTCCCCTGTG 
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