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SI Method 

Pre-Processing 

For the sample of patients, as data were collected only in one phase-encoded direction (“AP” in 

the majority of cases), we applied a deep learning approach (named Synb0-DisCo) after 

denoising and removing Gibbs Ringing Artifacts, to estimate the spatial distortions due to 

susceptibility- induced off-resonance fields (2, 3). This tool synthesizes an “undistorted” b=0 

image to be used in standard pipelines, such as FSL's TOPUP algorithm, which traditionally 

requires data acquired with two opposite phase encoding directions (4, 5).Thus, after performing 

image synthesis, FSL's TOPUP algorithm and removing non-brain tissue from the resulting 

undistorted and synthetized b=0 data, we applied eddy correction with outlier replacement as 

implemented in the FMRIB Software Library (FSL), to correct for eddy current and subject 

movements. The corrected images were finally co-registered to the AC-PC-aligned T1-weighted 

image and diffusion tensors were fitted to the volume using a least-squares estimate bootstrapped 

500 times (6). 

Aside from the initial off-resonance field compensation step, pre-processing steps were 

completed using the VistaSoft software package (Stanford University, Stanford, California). 

Processing was done independently for each participant. 

Data from the sample of controls were preprocessed by running the HCP Structural and 

Diffusion Preprocessing Pipelines, as part of the HCP Minimal Preprocessing pipeline (7).  

 

ROI Placement 

For both patients and controls, we used an automated method to identify regions of interest 

(ROIs) along the brain’s early visual pathway. Optic Chiasm (OC) and Primary Visual Cortex 

(V1) ROIs were generated automatically in native T1-weighted anatomical space using 

FreeSurfer (8). To segment the thalamus we used an additional tool of Freesurfer that generates a 

probabilistic atlas of the human thalamic nuclei for each participant, in the native T1-weighted 

anatomical space (9). In this way we extracted the Lateral Geniculate Nucleus (LGN) ROIs that 

allowed us to track the Optic Radiation. All the ROIs were coregistered to AC-PC space and 

downsampled to the diffusion resolution.  
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Visual System Tractography 

The optic tract and optic radiation white matter pathways were derived through probabilistic 

tractography using MRtrix3 in both patients and controls (Brain Institute, Melbourne, Australia) 

(10–19). First, we extracted a five-tissue-type segmented image from the T1-weighted data 

coregistered to AC-PC space. Then, we estimated response functions (20) and fiber orientation 

distribution (FOD) (21) using constrained spherical deconvolution (CSD) to generate fibers 

between left and right optic tract ROI pairs (OC » LGN) and left and right optic radiation ROI 

pairs (LGN » V1) by applying a Second-order Integration algorithm over Fiber Orientation 

Distributions (22). 

The maximum number of streamlines was set to 10,000. Final pathways were restricted to fibers 

passing between the specified ROIs, omitting any spurious results. This automatic fiber cleaning 

was performed by removing all fibers that terminate in the Thalamus but outside the ROIs. No 

additional manual cleaning was performed.  

In addition, a whole-brain tractography was completed using a maximum of 5,000,000 fibers. 

For all analyses, diffusion measures from the left and right optic tract and optic radiation 

pathways were averaged across hemispheres.  An illustration of these visual pathways in a 

representative patient (P02) is shown in Fig. 2A (left column). 

 

Cortical Pathway Tractography 

A total of 20 cortico-cortical whole-brain pathways were generated using the Automated Fiber 

Quantification toolkit (23–25). Whole-brain streamlines tracking (STT) tractography was 

performed for all subjects, with 20 major pathways isolated, constrained, and cleaned 

automatically. A total of eight combined pathways were included in the analysis: the callosum 

forceps major (or posterior callosum forceps), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), corticospinal tract (CST), 

cingulum cingulate (CC), callosum forceps minor (or anterior forceps) and the uncinate 

fasciculus (UF). For all analyses, the left and right IFOF, ILF, SLF, CST, CC and UF pathways 

were averaged between hemispheres. A render of these pathways in a representative patient is 

provided in Fig. 2A (central and right column). 
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Diffusion Measures 

Diffusion properties were sampled from all voxels within the volumetric region defined by each 

white matter pathway. The diffusion properties included in our analyses were mean diffusivity 

(MD, µm2/s) and fractional anisotropy (FA). MD is a measure of average diffusivity partially 

related to myelination (26), where immature developing pathways have higher measures of MD, 

with decreasing values over the developmental time course. FA provides a more complex 

measure of diffusion directionality and is highly sensitive to microstructural changes in a variety 

of pathologies. In the typical developmental trajectory, FA increases over time as pathways 

mature. Different pathways follow different developmental trajectories and vary in their average 

MD and FA values over time, but generally follow trends of decreasing MD and increasing FA 

with white matter maturation through middle to late adulthood (27–30). 

 

Analysis 

Individual white matter pathways were isolated from the MRI data collected during each 

subject’s longitudinal scan and diffusion properties were sampled from the volumetric region 

defined by these pathways in the corresponding longitudinal dMRI data point. 
To assess diffusion properties and normalize pathway lengths across subjects, 100 evenly-spaced 

samples were taken along the length of each pathway. Thus, 100 averaged MD and FA values 

were sampled from 10 white matter pathways for every longitudinal dMRI time point for all 

cataract patients. These cross-sectional samples were generated from a gaussian-weighted 

average, where diffusion measures extracted from tensors in the central “core” of each pathway 

were selectively weighted over tensors in outlying fibers. Of these 100 samples, only the middle 

80 were analyzed to reduce the risk of including aberrant diffusion measures occurring at the 

interface of gray- and white matter or in regions of crossing fibers (as in the optic chiasm) (1, 

31). These middle 80 samples were averaged, so a single mean MD/FA value was available for 

each pathway at each longitudinal time point for all cataract patients.  

Linear mixed effects (LME) models were used to evaluate the longitudinal effects of maturation 

and cataract surgery on white matter development in patients. The first family of LME models 

included only patient and were formatted as follows:  

Pathway MD/FA ~ Log DaysSinceSurgery * Age at Measurement + (1 | Subject)  
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In this case, each model included fixed effects of the age at diffusion measurement, the logarithm 

(log10) of the time since surgery (days since surgery; DSS), an interaction between age and DSS 

and the random effect of subjects. In the other sections of the paper, we will refer to this family 

of LME models as patients-only analysis. 

In order to be able to assess the typical development of diffusion measures in healthy controls 

and to discern between maturational and surgery changes in patients, we included a second 

family of LME models on the complete sample, adding the fixed-effect of Group: 

Pathway MD/FA ~ Group + Log DaysSinceSurgery * Age at Measurement + (1 | Subject)  

In the other sections of the paper, we will refer to this family of LME models as controls-

included analysis. 

For each family, a total of 20 LME models were evaluated, predicting MD and FA values for 

each of the 10 included pathways. From each model we extracted the Variational Inflation Factor 

(VIF) to avoid the presence of collinearity between predictors. Moreover, we performed a cross-

validation of the LME by performing a leave-one-out to predict the diffusion measure of one 

session based on all the other timepoints. Significant correlation coefficients would indicate that 

the model can correctly predict the empirical dependent variable. 

When including controls to the model, arose the problem of assigning values to the logarithmic 

scale of the time since surgery of controls. In order to assess the stability of the results, we 

assigned different values to this variable, going from a constant value (=log10(1) or the mean of 

log time since surgery of patients), to a random assignation of values belonging to a range from 0 

to the logarithmic scale of age at measurement of controls. To do that, we repeated each LME 

5000 times while assigning random values to time since surgery of controls. This sequence of 

iterations allows us to plot the distribution of p-values per tract (20), structural measure (2) and 

effect (time since surgery and interaction effect). The percentage of significant p-values will give 

a descriptive measure of how independent the results are from the specific value assigned to the 

controls.  

In the main manuscript we describe the results obtained by assigning the mean values of patients 

to controls, based on the lowest VIF and on the assumption that the structural measures extracted 

from controls should be more similar to the structural measures extracted from patients at a 

certain time after surgery than at the day of surgery. In addition, we provide a complete 

description of the results in the supplementary material, to show the stability of our findings. 
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Finally, in the attempt to reduce the differences in sequence acquisition between samples that 

could lead to a statistical difference in the structural measures, we performed the analysis either 

on all diffusion volumes of controls (199) and on a subsample of diffusion volumes with a b-

value close to the one used in the sequence of patients (b<1500). In the main manuscript we 

describe the results obtained by including only the subsample of diffusion volumes with a b-

value < 1500 because of a higher similarity with the sequence used for patients. We still provide 

the final results of the LME using all volumes of controls in Table S3 and S4. 

Before running the LME models, we removed the outliers separately for each group, for each 

measure and tract by applying the Median Absolute Deviation (MAD) method. As a result, we 

included a different number of points in the final analysis for different tracts. To correct for 

multiple-comparisons, the Benjamini and Hochberg False Discovery Rate (FDR) test was used 

(32) separately for FA and MD values. To do that, we pooled the P-values from ANOVAs of the 

fixed and interaction effects for each dMRI measure (FA and MD) and each tract (20) and 

calculated the corresponding FDR values. Thus, we obtained a total amount of 60 FDR values, 

30 for each dMRI measure (FA or MD). P-values from ANOVAs of the fixed and interaction 

effects for all 20 LME models were pooled and an FDR value was calculated for each (30 FDR 

values for FA and MD). Effects with an FDR value smaller than our target alpha (α < 0.05) were 

regarded statistically significant. For each tract we reported the F-statistic as well as the p-value 

before and after FDR correction for each fixed main effect and interaction. In Fig. S4 we 

reported R2 values adjusted for the number of predictor variables in the model.  

To assess the association between surgery, structural measures changes and behavioral outcome, 

we performed a mediation analysis using the MATLAB-based mediation toolbox described by 

Wager et al. (2008) (33) available at: https://github.com/canlab/MediationToolbox.  

The test is based on three criteria: 1). The initial variable (surgery) must be related to the 

mediator (structural measure) and this relation defines the path a; 2). The mediator must be 

related to the outcome (performance) after controlling for the initial variable and this relation 

defines the path b; 3). The mediation effect must be significant. This is defined as product of the 

a (initial variable-mediation) and b (mediator-outcome) path coefficients (a*b). A significant 

mediation effect indicates that the mediator significantly reduces the predictor-outcome 

relationship as their association is transmitted through a mediator. In this study, we tested the 

mediation effect either with and without controlling for the moderation effect, by adding or 
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removing the interaction between initial variable and mediator to the regression model. This was 

done to assess whether the structural measure was referable as a mediator, a variable through 

which the initial variable is transmitting its influence on the outcome, or as a moderator, a 

variable that affects the outcome by interacting with the initial variable.  

 

 

SI Results  

In the manuscript we explored different LME models and assigned multiple values to time since 

surgery in controls. In the following tables we are showing the results according to the different 

models or values used, starting from the patient-only model results (table S1). 

 

 
Table S1. Summary of fractional anisotropy and mean diffusivity changes in early-, late- and non-visual 

pathways in patients-only analysis. P-values for main effects of age, time since surgery (log10), and age * time 

since surgery (log10) interaction for ten visual and non-visual pathways. P-values smaller than 0.05 are colored light 

blue while bold values indicate significant effects after false-discovery rate (FDR) correction at α = 0.05.  
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The controls-included analysis was performed by assigning different values to the time since 

surgery of controls. Results described in the main manuscript refer to the assignment of the mean 

value of patients for all controls, but we performed the analysis also assigning 0, simulating that 

structural measures of controls would have been similar to structural measures of patients at the 

day of surgery. Table S2 shows the results assigning 0 to all controls. 

 

 
Table S2. Summary of fractional anisotropy and mean diffusivity changes in early-, late- and non-visual 

pathways in controls-included analysis. P-values for main effects of group, age, time since surgery (log10), and 

age * time since surgery (log10) interaction for ten visual and non-visual pathways when assigning 0 to the time 

since surgery of controls. P-values smaller than 0.05 are colored light blue while bold values indicate significant 

effects after false-discovery rate (FDR) correction at α = 0.05.  

 

P-values of the main fixed- and interaction-effect of the LME are shown in table S3 (FA) and S4 

(MD). In A) we describe the results using a reduced number of volumes, to control for 

differences in the acquisition sequence between patients (B=1000) and controls (multishell 

acquisition). In B) we describe the results using all volumes of controls. These results are less 

reliable as the differences in the acquisition protocol can be the source of the significant 
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differences observed between groups in almost all tracts. An example of a plot with all volumes 

is provided in Fig. S1, to show the huge difference between groups, which can bias all the 

results.  

 

 
Table S3. Summary of fractional anisotropy changes in early-, late- and non-visual pathways. P-values for 

main effects of group, age, time since surgery (log10), and age * time since surgery (log10) interaction for ten visual 

and non-visual pathways when considering a reduced number of volumes in controls (A) or all recorded volumes 

(B). P-values smaller than 0.05 are colored light blue while bold values indicate significant effects after false-

discovery rate (FDR) correction at α = 0.05.  
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Table S4. Summary of mean diffusivity changes in early-, late- and non-visual pathways. P-values for main 

effects of group, age, time since surgery (log10), and age * time since surgery (log10) interaction for ten visual and 

non-visual pathways when considering a reduced number of volumes in controls (A) or all recorded volumes (B). P-

values smaller than 0.05 are colored light blue while bold values indicate significant effects after false-discovery rate 

(FDR) correction at α = 0.05.  
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Table S5. Demographic and ocular characteristics of cataract patients. Characteristics of cataract patients 

including gender, age at the time of cataract surgery, diagnosis (where “BCC” refers to bilateral congenital cataracts, 

“Post. Polar” abbreviates Posterior Polar and “CC” refers to congenital cataracts), the number of longitudinal scans 

acquired for each patient, the pre-surgery acuity, the last post-surgery acuity and time range post-surgery on a 

logarithmic scale (log10). Patients highlighted in red are the ones excluded from the analysis. 
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Fig. S1. Maturational changes in late-visual pathways. Example of mean diffusivity values extracted from 

controls and patients when using all volumes (left) or a reduced number of volumes (right), as a function of age at 

measurement. The plots show two late-visual tracts: Inferior Longitudinal Fasciculus (upper row) which results are 

significant for both all and reduced volumes and Inferior Fronto-Occipital Fasciculus (lower row) which results are 

significant only when including all volumes. For an exhaustive explanation of the figure, see Figs.3/4/5 in the 

manuscript. 
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Fig. S2. Tract profiles of FA and MD. Tract mean profiles of FA and MD for patients (blue) and controls (red) 

along each tract following the anterior-posterior direction. Error bars indicate the standard deviation of FA or MD 

values of patients and controls along each tract. The range from 10 to 90 indicates the range within which the 

statistical analysis was performed. In this case values of controls are taken from the reduced number of volumes 

having a b-value < 1500. 
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Fig S3. Fixed-effect of group in early-visual pathways. Notch Boxplot showing FA (upper row) and MD values 

(lower row) of controls and patients when including a reduced number of volumes (A) or all volumes (B) of 

controls. The red line within the notch represents the median; the upper and lower limits of the boxplot represent the 

75th and 25th percentile respectively; the limits of the dashed line represent maximum and minimum values in the 

sample data.  
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Fig. S4. Predicted and observed values for each subject, structural measure and session for early-, late- and 

non-visual pathways. Closed dots indicate the predicted values with their Confidence Interval; closed diamonds 

indicate the observed measure for each subject and session. Different colors indicate different patients (see legend) 

while all controls are color-coded in light gray. Points with the same color indicate different sessions of the same 

patient represented in ascending order. On the y-axes we indicate the values of fractional anisotropy or mean 

diffusivity. OT: optic tract; OR: optic radiation; ILF: inferior longitudinal fasciculus; SLF: superior longitudinal 

fasciculus; IFOF: inferior fronto-occipital fasciculus; CFMajor: posterior callosum forceps; CFMinor: anterior 

callosum forceps; CST: cortico-spinal tract. 
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Fig. S5. Distribution of p-values of time since surgery, extracted from the 5000 iterations of the LME model for 

early-, late- and non-visual pathways. The blue dashed line represents the threshold of 0.05; the red dashed line 

represents the uncorrected p-value extracted from the LME assigning the mean value of patients to the time since 

surgery of controls; the green dashed line represents the uncorrected p-value extracted from the LME assigning 0 to 

the time since surgery of controls. The text in each plot indicates the percentage of significant p-values extracted 

from the 5000 iterations of the LME. The distributions skewed toward 0 indicate a higher number of low p-values, 

while more homogeneous distributions indicate a higher probability of extracting non-significant results. Significant 

results are described in the main text and they concern all the late-visual pathways and the anterior callosum forceps. 
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OT: optic tract; OR: optic radiation; ILF: inferior longitudinal fasciculus; SLF: superior longitudinal fasciculus; 

IFOF: inferior fronto-occipital fasciculus; CFMajor: posterior callosum forceps; UF: uncinate fasciculus; CFMinor: 

anterior callosum forceps; CST: cortico-spinal tract. 
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