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DETAILS OF SAND PENETRATION EXPERIMENTS

As described in the main text, sand was fluidized by
injecting air from the bottom in our first two experiments. The
fluidization process involves bubbling, which is not easy to
characterize. However, we attempted to visualize the bubbles
and quantify their influence in the tilting of the intruders, as
follows.

Fig. S1. Bubble visualization. (A) Four snapshots of the penetration of a
stone into an air-fluidized bed. (B) Bubble area asymmetry relative to the a
vertical axis passing by the stone’s center of mass (see text for further details)
as time goes by. (C) and (D) are analogous to (A) and (B), but for the case of
the Janus cylinder. The discontinuous lines rectangles show the region where
the bubbles’ areas were calculated.

We first established an area of interest for bubble analysis,
consisting in moving rectangles centered at the intruder’s

∗

center of mass of areas 21.78 cm2 for the cylinder and 32 cm2

for the rock (see dotted-line rectangles in the snapshots shown
in Fig. S1 (A) and (C)). The well-known Canny algorithm
(Song et al., [28]) was used to reveal the bubble shapes, and
then the dilate and erode technique was used for isolation of
individual bubbles (Ragnemalm, [29]). We checked by visual
inspection that the resulting bubble contours coincided with
the direct observation of the real video. Using the processed
videos, we measured various parameters, like the number of
bubbles in the area of interest, their average size, and their
area.

While extracting a trustable relation between these param-
eters and the resistive force exerted by the granular medium
against the intruder turns out to be extremely difficult, we
were able to provide strong evidence supporting the lack of
correlation between eventual bubbling asymmetries and the
asymmetric tilting of the intruder. We did it by defining the
Bubble Asymmetry as the the difference between the total
bubble area at the left of the vertical axis passing by the center
of mass of the intruder (Al) and its analogous area at the right
(Ar), divided by the total area, i.e. (Al −Ar)/(Al +Ar). Its
temporal evolution is shown for the sand-penetrating stone and
Janus intruder in S1 (B) an (D), respectively. It becomes clear
that there is no asymmetry in the bubbling of the granular
bed around the intruders, which strongly suggests that it is
not responsible for their systematic tilting, as declared in the
main text.

However, it must be underlined that our analysis only
included bubbles near the glass surface nearer to the camera,
so our observations cannot be mechanically extrapolated to
bubbling taking place far from the glasses.

So, the fact that when the intruder is flipped around an
horizontal axis the tilt direction inverts (as described in the
main text) is still a powerful argument indicating that the
imperfections of the intruder itself control the dynamics.

FURTHER DEM SIMULATIONS

Using LAMMPS (Plimpton, [34]) to perform 2D simulations
(following the protocols described in the Methods section of
the main text) we reproduce the motion of a circular disk,
of the same radius as the experimental cylinder, with a grain
of diameter 0.007m, attached to the surface of the intruder



at different angular positions: 30o, 60o, 90o relative to the
downward direction, in addition to the θ = 15o case discussed
in the main text. Fig. S2 shows the ability of the simulations to
reproduce at least semi-quantitatively the experimental results
for Scarface intruders.

Fig. S2. DEM simulations reproduce experimental results for Scarface
intruders. Top row: experimental results for 15o, 30o, 60o, 90o Scarface Janus
intruders. From left to right: vertical penetration, horizontal penetration, and
angular motion as a function of time. Bottom row: Two-dimensional DEM
simulations reproducing the experimental results shown above.

The force exerted on the adhered grain was obtained by
extracting from the simulations the average force of the grain-
grain interaction at each time step (∼ 2.82 × 10−7 s). With
this information we determined the average torque exerted by
the granular material on the glued grain on a small time scale,
which, as indicated in the main text, is responsible for the
sudden variations of the intruder’s motion. As described in
the main text for the case of θgrain = 15o, in Fig. S3 we
see the great influence that the glued grain has on the rotation
of the intruder. Our simulations adequately reproduce what is
expected according to experimental observations: the torque
should decrease for 60o, 90o with respect to 30o, which is
clearly brought out in Fig. S3.

In order to validate the theoretical model presented in the
main text, additional numerical simulations were conducted
to examine the torque generated by the friction between the
intruder and the free grains, as well as the torque exerted
by the normal force on the attached grain. The results of
the simulations are presented in Fig. S4, which demonstrates
that the positive rotation of the intruder is primarily driven
by the force transmitted by the glued grains. Meanwhile, the
tangential force resulting from the interaction between the
intruder and the granular bed only causes minimal dissipation.

DETAILS OF THE ANALYTICAL MODEL FOR THE
SCARFACE JANUS CYLINDERS

Considering Katsuragi-Durian force law [10], and neglecting
the inertial drag due to the slow-speed penetration dynamic,
we have:

Mz̈(t) = −Mg − kz(t) (1)

where k depends on the material properties of the granular
bed and the intruder geometry. To model the penetration of the
ScarFace intruder, we make the assumption that the attached

Fig. S3. Torques and force chains for 30o, 60o, 90o Scarface Janus intruders
based in DEM simulations. Top panels: Time evolution of the torque on a
single grain attached to the surface of a disk-shaped intruder at 30o, 60o, 90o
relative to the downward direction, resulting from DEM simulations. Bottom
panels: Four snapshots showing the force chains corresponding to peaks and
valleys in the top panels (force strength is proportional to the thickness of the
black lines)

grains exert a force, ~FgKD, onto the intruder. This force
is hypothesized to be dependent on the vertical position of
the attached grains, in accordance with the Katsuragi-Durian
model, multiplied by a quadratic cosine function. Moreover,
it is proposed that the orientation angle of ~FgKD scales as θ

4 .
This proportionality is based on the observation, demonstrated
in Fig. S3, that granular force chains exhibit a decreased
degree of verticality as their distance from the bottom of the
intruder increases. For simplicity, we assume a 2D model of
the intruder, meaning the grain row is modeled as a single
circular particle. As the mass of the grain is much smaller
than that of the intruder, the force acting on the grain can be
approximated as:



Fgrain ≈ −kzgrain(t) (2)

Where zgrain = z − (R+ r)cosθ.

Based on the force diagram shown in Fig. 4 of the
main text, we obtain:

Mz̈ = −Mg + FKD + FgKD cos(θ/4) (3)
Mẍ = −FgKD sin(θ/4) (4)

1

2
MR2θ̈ = FgKDR sin(3θ/4), (5)
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where we have not made explicit the time dependence of
x, z and θ for space reasons. We posit that the behavior of
FgKD is described by expression (7) for two reasons. Firstly,
the presence of the Heaviside step function accounts for the
fact that when θ = θmax, the attached grain is no longer
in contact with force chains and therefore cannot affect the
motion of the intruder, resulting in FgKD = 0. Secondly, this
expression takes into consideration the increased resistance
to motion at the bottom of the intruder by incorporating the
term cos2( θ(t)π2θmax

). It is noteworthy that the resistive force
acting on the intruder already decreases as θ(t) increases due
to the change in the vertical position of the glued grains,

Fig. S4. Characterization of torques acting on the intruder, based on DEM
simulations. Top: Torque generated by the normal force on the attached grain.
Bottom: Torque resulting from tangential friction between the cylinder and
granular bed. Insets show the rotational motion obtained through numerical
integration of both torques.

however, the rate of decrease was not in agreement with the
values obtained from experiments and DEM simulations.
The addition of the squared cosine function reduced the
root-mean-square errors between the theoretical predictions
and the experimental data (more than 30 %).

To numerically solve the Eqs. 3-5, two more considerations
were taken into account. The first is that we assume free-fall
(only gravity acting on the intruder), until z(t) = 0, i.e,
half of the intruder has penetrated into the granular bed.
The second is that, when vz = 0, we assume that the
intruder freezes in its current position, i.e., all forces, torques
and velocities are made zero. This approximation is used
to avoid the bouncing of the intruder, resulting from the
condition kz > Mg when vz = 0. In fact, it is a way to
mimic the experimental situation: when the intruder stops the
distribution of force chains is such that it equals the effect
of gravity acting on the intruder (i.e |kz| sharply decreases
from a value higher than Mg to a value equal to Mg at
the end of the trajectory). In fact, it is a method to simulate
the experimental scenario: when vz = 0, the intruder stops

Fig. S5. Model prediction vs experimental results. The lines made of
square dots represent the output of Eqs. 3-5, while the dotted curves are the
corresponding experimental results (see Fig. 2 of the main text). The legend
represents the initial angular position, θ(t = 0), of the attached grain.



breaking the granular force chains, thus ceasing to experience
a resistive force from it Note that adding an inertial drag term
will not remove the bouncing, it just dampens the oscillations.
Using this approximations, the model reduces the amount of
free parameters.

The output of the Eqs. 3-5 is shown in Fig. S5.

SETTLING OF A ROUGH CYLINDER
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Fig. 6S. Experimental results of the penetration of the Rough cylinder.
Results are averages over 10 repetitions of each experiment. The colored
bands represent the respective standard deviation.

In addition to the Janus and the ScarFace Janus cylinders,
other experiments were carried out to study the effect of
small irregularities in the surface of cylindrical objects on
their penetration into a granular bed. As mentioned earlier
when discussing the analytic model in the main text, a further
behavior could be expected from a cylindrical intruder with
evenly glued grains across the surface, which we will call
Rough cylinder.

As predicted by the model, the experimental results
showed that the Rough cylinder penetrates much less than
the Janus cylinder in the granular bed (Fig. 6S). Lateral
displacement and rotation are also greatly reduced, a fact
stemming from the intruder’s restored symmetry. The fact
that it rotates somewhat could be due to a slight difference
in the distribution of the grains between the halves of the
Rough cylinder (note that the grains were randomly selected
and stuck to the cylinder).

DENSITY JANUS CYLINDER
Although the main focus of the work is the study of roughness-
related asymmetries, an intruder with different material density

Fig. S7. Expected behavior of a Density Janus cylinder. (A) Schematic
representation of the front view of a cylinder with different densities. ρl and
ρr are the densities of each half, fr is a resistive force similar to that of
Katsuragi-Durian, CMl, CMr and CMb, represent the location of the center
of mass of the left side, the right side, and the whole body, respectively.
(B-C) Time evolution of intruder penetration and rotation angle for different
density ratios. Dotted and solid curves represent simulations and model results,
respectively.

for each half is also a type of Janus intruder. In this section
we analyze a simple case: a cylindrical intruder with inhomo-
geneous density as shown in Fig. S7 (A). The difference in
density results in the rotation of the intruder in the direction of
the denser half, as shown in the figure. Applying this condition
to the Katsuragi-Durian penetration law, we obtain:

V (ρr + ρl)

2
z̈ = −V (ρr + ρl)

2
g − kz (7)

θ̈ =
16(ρr − ρl)

3πR3(ρr + ρl)
(
gπR2

2
+

2kz

h(ρr + ρl)
), (8)

where ρr and ρl are the densities of the right and left side
respectively. R, h and V are the radius, height and volume



of the cylinder, respectively (same as the experimental
values). To solve Eqs. 7 and 8, the same considerations were
assumed as in the model presented in the main text for the
Scarface Janus cylinder. k is used as a fitting parameter to
reproduce the DEM simulations results for the values of
ρd/ρi = 1/3, 1/2 and 2/3. After fitting the data we obtained
k = 108 kgs−2.

Due to the simplicity of the physical system analyzed,
we were able to obtain a dynamic model that is easy to
understand and that allows us to explain the intruder’s rotation
by density differences in its volume. As we can see in the
Fig. S7 (B)-(C), it approximately reproduces the results of
the DEM simulations.

The first important characteristic to point out, which
completely differentiates this system from the Janus cylinder
described in the main text, is that its surface is smooth, which
implies that the rotation is caused by the imbalance associated
to the mass difference, i.e, while the rotation in the case of
the Janus cylinder is produced by a difference in the resistive
force acting on each half, the rotation of the Density Janus
cylinder is caused by a displacement of the center of mass
due to the different densities ρr and ρl, as shown in Fig. S7
(A). The larger the difference in density between each half,
the greater the displacement of the CM of the intruder, and
therefore, the greater the net torque exerted by the resistive
force, as we can observe in Fig. S7 (C). Note that in this case
(Density Janus cylinder), the symmetry of the force chains is
not broken and, consequently, there is no lateral displacement
of the intruder, so all our analysis focuses on rotation.

The density averages used for each distribution
are: ρ1/3 = 1800 kg/m3, ρ1/2 = 1350 kg/m3 and
ρ2/3 = 1125 kg/m3, respectively, while the experimental
density of the intruder is ρexp = 1236 kg/m3. The higher
the average density, the more the intruder penetrates into the
granular bed, as shown in Fig. S7 (B).

SETTLING OF A HUMAN SKULL
Taken to a physicist’s extreme, the Scarface intruder works as
a minimalist model of a human skull consisting in a sphere
with one tooth attached. Indeed, an actual human skull with
its mandible removed can be seen as a Janus intruder due
to its lack of symmetry when viewed from the side. This
suggests that a human skull released into granular matter
may follow a non-trivial motion, eventually involving both
rotation and horizontal motion. We have demonstrated that a
human skull also shows strong tilting and lateral shift as it
settles in a bed of polystirene particles in a way consistent to
our Janus intruders.

Here we quantify the penetration process of a human
skull released from the free surface of a granular bed made
of very light granular material. As in the case of the Janus
intruders experiments, the granular material was contained
into a Hele-Shaw cell –now obviously of larger dimensions.
Due to the complex shape of the skull, it was not possible

to track the center of mass of the intruder or measure its
rotation by directly filming it from the side of the cell, so a
thin steel rod was attached perpendicularly to the upper part
of the cranium, and filmed from various positions during the
penetration process.

The skull intruder was facilitated by the “Felipe Poey”
Museum of Natural History (University of Havana), with
catalog number 32.00314. The object –from unknown origin–
has belonged to their osteological collection for more than
30 years. The skull has a cranial breadth of 13.5 cm, and
length of 21.5 cm. A steel rod of 1 mm diameter and 30 cm
length was attached perpendicularly to the bone surface, in
such a way that the extrapolation of the rod axis passed by the
Center of Mass of the skull. The cranium, initially hanging
from the steel rod, was released electromagnetically, as in
the case of the cylindrical intruders. The CM was located by
hanging the skull from two different points (one at a time)
and crossing the two lines down from each support point.
The Hele-Shaw cell for these experiments was 39 cm length,
20 cm width and was filled up to a height of 30 cm, following
a protocol analogous to the one for the experiments with
cylindrical intruders, which resulted in a packing fraction of
0.69 ± 0.01. The granular material was the same as the one
used in the latter case, as well as the video camera, resulting
in a spatial resolution of 62.0± 0.2 pixels/mm.

Fig. S8(A) shows a photograph of the human skull under
scrutiny: the maxilla with some remaining teeth, as well as
the nasal and zygomatic bones can be taken as a “rougher”
surface, when compared to the relatively smooth occipital
and parietal bones located at the back of the skull. In spite
of many other differences, these prominent characteristics
resemble our Janus intruders. The sequence of snapshots
shown in Fig. S8(B) demonstrates that the analogy may not
be wrong: as the object is released into the granular medium
in “head-up” position, the skull rotates counterclockwise,
and laterally moves into the space near its “smoother” side
(rotation and lateral motion within a plane perpendicular to
the paper where shown to be negligible). Fig. S8(C) shows
the relatively complex trajectory of the skull’s center of
mass, as expected considering its rather complex geometry
as compared to our cylindrical Janus intruders. Figure S8 (D)
quantifies the rotation mentioned above. Curiously, the total
rotation angle of 40 degrees is very near the one observed
in the case of a θgrain = 15o ScarFace Janus cylinder, but
we are unable to explain it at the present stage. Fig. S8(E)
shows snapshots of the skull penetration when released
“head-down”. Fig. S8(F) indicates a slight lateral motion,
which seems to reflect the fairly smooth and symmetric
bottom of the intruder in this experiment. However, Fig.
S8(G) reveals a total rotation larger tan 15 degrees. One
may speculate that the clockwise rotation in both “head-up”
and “head-down” experiments could be influenced not only
by the shape of the skull, but also by its inhomogeneous
density distribution. A further surprising element here, is
that the vertical penetration in the “head-up” experiments is
substantially larger than that in the “head-down” experiments.



Fig. S8. Asymmetric penetration of a skull. (A) Photograph of the skull used
in the experiments (B) Snapshots of the head-up penetration process taken
from the experiment. (C) Trajectory of the skull’s CM in head-up penetration.
(D) Rotation angle vs. time for the head-up penetration (E) Snapshots of the
head-down penetration process taken from the experiment (F) Trajectory of
the skull’s CM in head-down penetration. (G) Rotation angle vs. time for
the head-down penetration. Rotation angle of the skull. The dotted lines in
graphs from (C), (D), (F) and (G) are averages over 10 repetitions of each
experiment; the colored bands around them represent the fluctuations of the
experimental values .



 “Imperfect bodies sink imperfectly when settling in granular matter”:  Description of the 

supplementary videos. 

Video adf623_Supplementary Movie_mov1_seq1_v1.mp4: Penetration of a stone into and air-fluidized 

bed of sand. 

Video adf623_Supplementary Movie_mov2_seq2_v1.mp4: Penetration of a Janus cylinder into an air-

fluidized bed of sand. 

Video adf623_Supplementary Movie_mov3_seq3_v1.mp4: Penetration of a Janus intruder into a 

granular bed made of expanded polystyrene beads. 

Video adf623_Supplementary Movie_mov4_seq4_v1.mp4: Penetration of a 15-degrees Scarface Janus 

cylinder into a granular bed made of expanded polystyrene beads. 

Video adf623_Supplementary Movie_mov5_seq5_v1.mp4: Penetration of a 30-degrees Scarface Janus 

cylinder into a granular bed made of expanded polystyrene beads. 

Video adf623_SupplementaryMovie_mov6_seq6_v1.mp4 Penetration of a 60-degrees Scarface Janus 

cylinder into a granular bed made of expanded polystyrene beads. 

Video adf623_SupplementaryMovie_mov7_seq7_v1.mp4 Penetration of a 90-degrees Scarface Janus 

cylinder into a granular bed made of expanded polystyrene beads. 

Video adf623_SupplementaryMovie_mov8_seq8_v1.mp4 Penetration of a human skull into a granular 

bed made of expanded polystyrene beads. 
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