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S.1 Technical lemmas

We first present two lemmas that connect the operator Vy

XiXj |X−(i,j)
with the con-

ditional distribution (Xi, Xj)
T | [X−(i,j), Y = y]. For any subvector A ⊆ V, let

My

XA|XAc
=
[
Vy

X
Ac
X

Ac

]†
Vy

X
Ac
XA

.

Lemma S1 If Assumptions 1 to 3 hold, then, for any (i, j) ∈ V × V and y ∈ ΩY ,

(i) For any (f, g) ∈ ΩXi
× ΩXj

, (〈f,Xi〉 〈g,Xj〉)T | [X−(i,j), y] follows a bivariate

Gaussian distribution, and cov(〈f,Xi〉, 〈g,Xj〉 | X−(i,j), y) = 〈f,Vy

XiXj |X−(i,j)
g〉;

(ii) Vy

XiXj |X−(i,j)
= 0 if and only if Xi Xj | [X−(i,j), Y = y];

(iii) Vy

XiXj |X−(i,j)
=
∑

a,b∈NE(αaiα
b
j | X−(i,j), y)ηai ⊗ ηbj .

Proof. Let A = (i, j). By Assumption 3, for any f ∈ ΩXA
, g ∈ ΩX

Ac
, and y ∈ ΩY ,

E
(

exp
{
ι
[
t1

(
〈f,XA〉 − 〈My

XA|XAc
f,XAc〉

)
+ t2〈g,XAc〉

]}
| y
)

= t21〈f,Vy

XAXA
f〉 − 2t21〈f,Vy

XAXAc
My

XA|XAc
f〉+ 2t1t2〈f,Vy

XAXAc
g〉

−2t1t2〈g,Vy

X
Ac
X

Ac
My

XA|XAc
f〉+ t21〈My

XA|XAc
f,Vy

X
Ac
X

Ac
My

XA|XAc
f〉+ t22〈g,Vy

X
Ac
X

Ac
g〉

= t21〈f,Vy

XAXA|XAc
f〉+ t22〈g,Vy

X
Ac
X

Ac
g〉.

Therefore, 〈f,XA〉 − 〈My

XA|XAc
f,XAc〉 and 〈g,XAc〉 are independent for all g ∈ ΩX

Ac
,

which implies assertion (i). Assertion (ii) follows immediately by (i). Assertion (iii)

can be shown using an argument similar to the proof of Proposition 4 and (i). This

completes the proof. 2

Note that Lemma S1 (ii) generalizes the classical result that, under the Gaussian

setting, the conditional independence is equivalent to the zero conditional covariance,

from the case when X is a vector of random variables to the case when X is a vector of

random functions. The next lemma provides an alternative expression of Vy

XiXj |X−(i,j)

using CyXiXj .
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Lemma S2 If Assumptions 1 to 5 hold, then, for any (i, j) ∈ V × V,

Vy

XiXj |X−(i,j)
= Vy

XiXj
− [Vy

XiXi
]1/2CyXiX−(i,j)

[CyX−(i,j)X−(i,j)
]−1CyX−(i,j)Xj

[Vy

XjXj
]1/2.

Proof. Denote the right hand side of the above quantity as Σy

XiXj |X−(i,j)
. Then by

direct calculation, for any f ∈ ΩXi
and h ∈ ΩX−(i,j)

, we have

E [(〈f,Xi〉 − 〈h,X−(i,j)〉)2 | y] = 〈f,Σy

XiXj |X−(i,j)
f〉+ ‖[CyX−(i,j)X−(i,j)

]−1/2CyX−(i,j)Xi

×[Vy

XiXi
]1/2f − [CyX−(i,j)X−(i,j)

]1/2Dy

X−(i,j)
h‖2 ≡ V1(f) + V2(f, h).

Following a similar proof in Fukumizu et al. (2009, Proposition 2), we have

V1(f) = inf
{
E [(〈f,Xi〉 − 〈h,X−(i,j)〉)2 | y] : h ∈ ΩX−(i,j)

}
= E [(〈f,Xi〉 − 〈h′, X−(i,j)〉)2 | y] ,

where h′ = My

Xi|X−(i,j)
f , and the last equality holds by Lemma S1(i), and the definition

of conditional expectation. This implies that V2(f, h
′) = 0, and

[CyX−(i,j)X−(i,j)
]−1/2CyX−(i,j)Xi

[Vy

XiXi
]1/2f = [CyX−(i,j)X−(i,j)

]1/2Dy

X−(i,j)
My

Xi|X−(i,j)
f,

for all f ∈ ΩXi
. Denote the above relation as V3f = V4f ; therefore,

Vy

XiXj
+ V ∗3 V3 = Σy

XiXj |X−(i,j)
= Vy

XiXj
+ V ∗4 V4 = Vy

XiXj |X−(i,j)
.

This completes the proof. 2

We next present a lemma that extends the classical Bernstein inequality to Hilbert

spaces. Its proof immediately follows Bosq (2000, Theorem 2.5) and is omitted.

Lemma S3 (Bernstein’s inequality in Hilbert space) Suppose U 1, . . . , Un are

i.i.d. samples from U in ΩU , where U is a random element with E(U) = 0, and

ΩU is a generic Hilbert space. If, for any ` ∈ N, E‖U‖`Ω ≤ b` `!, then, for any t > 0,

P
[
‖EnU‖ΩU

> t
]
≤ 2 exp

(
−nt2

4b2 + 2bt

)
.

Note that the function f(t) = t2/(4b2 + 2bt) > t/(4b) if t > 2b, and f(t) ≥ t2/(8b2)

if t ≤ 2b. Therefore,
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P
[
‖EnU‖ΩU

> t
]
≤ 2 exp[−cn(t ∧ t2)], (S1)

for some constant c > 0. This means, when the moment condition E‖U‖`Ω ≤ b` `!

holds, the probability of {‖EnU‖ΩU
> t} behaves as a sub-Gaussian when t is small,

and as a sub-Exponential when t is large; see also Hanson and Wright (1971).

The next lemma gives a result on the perturbation of linear operators.

Lemma S4 Let V and V̂ be the population and sample covariance operators of U ∈
ΩU , and {(λa, ηa)}Na=1 and {(λ̂a, η̂a)}na=1 be their eigenvalue and eigenfunction pairs,

with λ1 > λ2 > · · · , and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n. Then maxa=1,...,m ‖η̂a − ηa‖Ω ≤
4κ−1

m ‖V̂−V‖, where κm = min{λa − λa+1 : a = 1, . . . ,m+ 1}.

Proof. Suppose {λ̃1, . . . , λ̃n} are the closest members to {λ1, . . . , λn} in the spectrum

of V̂. Then by Kato (1980, Theorem 4.10), max{|λ̃a−λa| : i = 1, . . . , n} ≤ ‖V̂−V‖.
This implies that λ̃a < λa, for all a = m + 1, . . . , n. Therefore, we have λ̃a <

λm+1+‖V̂−V‖ for all a = m+1, . . . , n. Similarly, we can show that λ̃a > λm−‖V̂−V‖
for all a = 1, . . . ,m.

When κm ≤ 2‖V̂−V‖, the asserted inequality of this lemma holds.

When κm > 2‖V̂−V‖, we have λm−‖V̂−V‖ > λm+1 +‖V̂−V‖, which, together

with the above bounds for λ̃a, implies that min{λ̃1, . . . , λ̃m} > max{λ̃m+1, . . . , λ̃n}.
Moreover, for any a = 1, . . . ,m, λ̃a+1 ≤ λa+1 + ‖V̂ − V‖ < λa − ‖V̂ − V‖ ≤ λ̃a,

indicating that λ̂a = λ̃a, for all a = 1, . . . ,m. Therefore, max{|λ̂a − λa| : a =

1, . . . ,m} ≤ ‖V̂−V‖. By Kazdan (1971, Lemma 2), we obtain the asserted inequality,

and complete the proof. 2

The next lemma shows that the intermediate operator Py(ε2) and the estimated

conditional correlation operator ĈyXX(d, εY , ε1) are both semi-positive definite.

Lemma S5 If Assumptions 1 to 5 hold, then Py(ε2) is semi-positive definite and

bounded. Moreover, if κY (y1, y2) ≥ 0 for any y1, y2 ∈ ΩY , then ĈyXX(d, εY , ε1) is also

semi-positive definite.

Proof. By Proposition S3, CyXX is positive definite, which implies that Py(ε2) is

semi-positive definite. Moreover, Py(ε2) is bounded because ‖Py(ε2)‖ ≤ ‖Py‖. Also

note that, from the proof of Proposition 5, V̂y
XX(d, εY ) is semi-positive definite. Fur-

thermore, for any f = (f1, . . . , fp)
T ∈ ΩX,
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〈
f,
(
ĈyXX(d, εY , ε1)− {[D̂y

X(d, εY )]†ε1}1/2V̂y

XX(d, εY ){[D̂y

X(d, εY )]†ε1}1/2

)
f
〉

= ε1

∑
p

i=1
〈fi, [V̂y

XiXi
(d, εY )]†ε1fi〉 ≥ 0,

where D̂y
X(d, εY ) is a block diagonal matrix with [D̂y

X(d, εY )]ii = V̂y
XiXi

(d, εY ), for i ∈ V.

This implies ĈyXX(d, εY , ε1) is semi-positive definite. 2

S.2 Proofs

Proof of Proposition 1: For VY Y , note that for any h1, h2 ∈ HY , E [h1(Y )h2(Y )] ≤
‖h1‖ ‖h2‖E‖κY (·, Y )‖2, which is bounded by MY ‖h1‖ ‖h2‖ by Assumption 1. Then

the existence and uniqueness of VY Y are ensured by the Riesz representation theorem.

For VXiXj
, because E‖Xi‖2

ΩXi
is finite by Assumption 1, the existence and unique-

ness of VXiXj
can be proved by a similar argument as that for VY Y .

For VYXij
, note that the expectation E[〈Xi, f〉 〈Xj, g〉h(Y )] is bounded by

E|〈Xi, f〉 〈Xj, g〉h(Y )| ≤ E1/2〈h, κY (·, Y )〉2E1/2 [E2(|〈Xi, f〉 〈Xj, g〉| | Y )] . (S2)

Moreover, the conditional expectation E(|〈Xi, f〉 〈Xj, g〉| | Y ) ≤ ‖f‖ ‖g‖E1/2(‖Xi‖2 |
Y )E1/2(‖Xi‖2 | Y ) < M 2

0‖f‖ ‖g‖ by Assumption 1. This implies the right hand side

of (S2) is bounded by ‖h‖ ‖f‖ ‖g‖M 2
0 E

1/2κY (Y, Y ). This completes the proof. 2

Proof of Proposition 2: By definition, for any (f, g) ∈ ΩXi
× ΩXj

, and h ∈ HY ,

E[〈f,Xi〉 〈g,Xj〉h(Y )] = 〈VY Y h,MXij |Y (f ⊗ g)〉 = E[MXij |Y (f ⊗ g) ◦ (Y )h(Y )],

implying E{[〈f,Xi〉 〈g,Xj〉 −MXij |Y (f ⊗ g) ◦ (Y )]h(Y )} = 0, for h ∈ HY . By the

definition of conditional expectation and the fact that HY is dense in L2(PY ), the

proof is completed. 2

Proof of Proposition 4: By Definition 2, we have range(Vy
XiXj

) ⊆ span({ηai }∞a=1),

and ker(Vy
XiXj

)⊥ ⊇ span({ηbj}∞b=1)
⊥. Therefore,

〈f,Vy

XiXj
g〉 =

∑
a,b∈NE(αaiα

b

j | y)〈f, ηai 〉 〈g, ηbj〉 =
∑

a,b∈NE(αaiα
b

j | y)〈f, (ηai ⊗ ηbj)g〉,

for any f ∈ span({ηai }∞a=1) and g ∈ span({ηbj}∞b=1), where the last equality is by the

definition of tensor product. This completes the proof. 2
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Proof of Theorem 1: Let Cyij|−(i,j) = CyXiX−(i,j)
[CyX−(i,j)X−(i,j)

]−1CyX−(i,j)Xj
. By Lemma

S2, we have Vy

XiXj |X−(i,j)
= [Vy

XiXi
]1/2[CyXiXj − Cyij|−(i,j)][V

y
XjXj

]1/2, implying that

Vy

XiXj |X−(i,j)
= 0 ⇔ CyXiXj − Cyij|−(i,j) = 0. (S3)

It suffices to show that CyXiXj − Cyij|−(i,j) = 0 if and only if [Py]i,j = 0, which, together

with (S3) and Lemma S1, imply that Xi Xj | (X−(i,j), y) if and only if [Py]i,j = 0.

Let A = (i, j). Then by rules of matrix inversion,

[([Py]i,j∈A)
−1]1,2 = [([Py]i,j∈A)

−1]1,1[P
y]i,j([P

y]j,j)
−1.

Because [([Py]i,j∈A)
−1]1,1 = I − Cii|−(i,j) ≥ I − Cii|−i = ([Py]1,1)

−1, which is invertible,

we have CyXiXj − Cyij|−(i,j) = 0 if and only if [Py]i,j = 0. This completes the proof. 2

Proof of Theorem 2: This is a direct result of Lemma S1 and Proposition 3. 2

Proof of Proposition 5: By definition, ‖[ĈyXX(d, εY , ε1)]i,j‖ = sup{‖[ĈyXX(d, εY , ε1)]i,j

f‖ : f ∈ ΩXi
, ‖f‖ = 1} = sup{〈g, [ĈyXX(d, εY , ε1)]i,jf〉 : f ∈ ΩXi

, g ∈ ΩXj
, ‖f‖ =

‖g‖ = 1}, which, by (8), can be computed by solving

maxf∈ΩXi
,g∈ΩXj

〈g, V̂y

XiXj
(d, εY )f〉

subject to 〈f, (V̂y

XiXi
(d, εY ) + ε1I)f〉 = 〈g, [V̂y

XjXj
(d, εY ) + ε1I]g〉 = 1.

(S4)

Note that, by (6) and (7), for all (i, j) ∈ V × V, and a, b = 1, . . . , d,

[M̂Xij |Y (εY )](η̂ai ⊗ η̂bj) = (V̂Y Y + εY )−1En

[
〈Xi ⊗Xj, η̂

a

i ⊗ η̂bj〉κY (·, Y )
]
,

which equals to En[α̂
a
i α̂

b
jc(·)] with c(·) = (V̂Y Y + εY )−1κ(·, Y ). Therefore, for any

f ∈ span({η̂ai }da=1) and g ∈ span({η̂bj}db=1) the three inner products in (S4) are:

〈f, V̂y

XiXj
(d, εY )g〉 = fT

i ADyB
Tgj

〈f, (V̂y

XiXi
(d, εY ) + ε1I)f〉 = fT

i ADyA
Tfi + ε1‖f‖2

〈g, (V̂y

XjXj
(d, εY ) + ε1I)g〉 = gT

j BDyB
Tgj + ε1‖g‖2,

where Dy is diagonal with [Dy]kk = 〈c(·), κY (·, Y k)〉, k = 1, . . . , n, fi = (f 1
i , . . . , f

d
i )T ∈

Rd with f ai = 〈f, η̂ai 〉 for a = 1, . . . , d, and A ∈ Rd×n with [A]s,t = α̂t,si . Similarly, we
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define gj = (g1
j , . . . , g

d
j )

T, with gbj = 〈g, η̂bj〉 for b = 1, . . . , d and [B]s,t = α̂t,sj . Then by

Cauchy-Schwarz inequality, fT
i ADyB

Tgj ≤ (fT
i ADyA

Tfi)
1/2(gT

j BDyB
Tgj)

1/2, and thus

〈g, V̂y

XiXj
(d, εY )f〉 ≤ [〈f, (V̂y

XiXi
(d, εY ) + ε1I)f〉]1/2[〈g, (V̂y

XjXj
(d, εY ) + ε1I)g〉],

which is no greater than 1 by the constraints in (S4). This completes the proof. 2

Proof of Proposition 6: The representation of V̂Y Y can be derived following Fuku-

mizu et al. (2009). The representation of V̂XiXi
is

bV̂XiXi
c =

(
bV̂XiXi

B1(·)c, . . . , bV̂XiXi
Bm(·)c

)
= n−1

∑
n

k=1
(〈Xk

i ,B1(·)〉bXic, . . . , 〈Xk

i ,Bm(·)〉bXic) = EnbXicbXicT,

where the last equality is because 〈Xk
i ,Bn(·)〉 = bXk

i cTej, where ej is a vector of size m

whose jth element is one and zero otherwise. Similarly we can derive bV̂YXij
(f ⊗ g)c,

for (f, g) ∈ ΩN × ΩN . This completes the proof. 2

Proof of Proposition 7: It suffices to show (14), from which the representations in

(15) follow immediately. First, by (6) and Proposition 6, the coordinates of M̂Xij |Y (f⊗
g), for all (f, g) ∈ ΩN × ΩN , can be written as

bM̂Xij |Y (f ⊗ g)c = (KY + εY In)
−1
[
(bfcTbX1

i c bgcTbX1

j c), . . . , (bfcTbXn

i c bgcTbXn

j c)
]T
,

for each (i, j) ∈ V × V. Therefore, by (13), [M̂Xij |Y (εY )(η̂ai ⊗ η̂bj)] ◦ (y) is equal to

BT

Y (y)bM̂Xij |Y (εY )(η̂ai ⊗ η̂bj)c = (aai )
T (diag [(KY + εY In)

−1BY (y)]) abj,

for any a, b = 1, . . . , d. Then by (7), the proof is completed. 2

For notational simplicity, for two sets A,B and two integers A,B, we use
∑

A,B

a,b
and∑

A,B

a,b
to abbreviate the double sums

∑
a∈A

∑
b∈B and

∑
A

a=1

∑
B

b=1
, respectively.

Proof of Theorem 3: For (i), by definition, we have,

V̂XiXj
−VXiXj

= En[Xi ⊗Xj − E(Xi ⊗Xj)].

Therefore, by Lemma S3 and (S1), we have the asserted bound if there exists c > 0

such that, for all ` ∈ N,
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E‖Xi ⊗Xj − E(Xi ⊗Xj)‖`HS ≤ c` `!. (S5)

To bound (S5), we note that,

E‖Xi ⊗Xj − E(Xi ⊗Xj)‖`HS

≤ 2`−1 {E[E(‖Xi ⊗Xj‖`HS | Y )] + E‖E(Xi ⊗Xj | Y )‖`HS} ≡ 2`−1[EΛ1(Y ) + EΛ2(Y )].

Next we show that both Λ1(y) and Λ2(y) can be uniformly bounded for all y ∈ ΩY .

For Λ1(y), when ` > 1, it is equal to

E[(
∑Ni,Nj

a,b
〈Xi ⊗Xj, η

a

i ⊗ ηbj〉2HS)
`/2 | y] ≤M `

0

{∑Ni,Nj
a,b

(λaiλ
b

j/M
2

0 )E[(ξai )
2(ξbj)

2 | y]`/2
}
,

where the inequality is by Jensen’s inequality, Ni = {a ∈ N : λai 6= 0}, and ξai =

(λai )
−1/2αai , for all a, b. Furthermore, when conditioning on Y , ξai = (λai )

−1/2αai is

standard normal by Assumption 3. Therefore, due to that
∑Ni,Nj

a,b
λaiλ

b
j ≤ (

∑N
a
λai )

2,

which equals E2‖Xi‖2
ΩXi

, and that for all i ∈ V, E‖Xi‖2
ΩXi
≤ M0 by Assumption 1,

we have Λ1(y) ≤ (2M0)
` `!. When ` = 1, for any y ∈ ΩY ,

Λ1(y) ≤ E1/2(‖Xi ⊗Xj‖2

HS | y) = {
∑Ni,Nj

a,b
λaiλ

b

jE[(ξai )
2(ξbj)

2 | y]}1/2 ≤M0.

Combining the above bounds, we have, for any ` ∈ N and y ∈ ΩY , Λ1(y) ≤ (2M0)
` `!.

For Λ2(y), we have

Λ2(y) = (
∑N,N

a,b
E〈Xi ⊗Xj, η

a

i ⊗ ηbj〉2HS)
`/2 ≤

(∑Ni,Nj
a,b

λaiλ
b

jE[(ξai )
2(ξbj)

2 | y]
)`/2 ≤M `

0 ,

Combining the bounds for Λ1(y) and Λ2(y) leads to (S5), with c = 4M0.

For (ii), again by definition, we have,

V̂YXij
−VYXij

= En[κY (·, Y )⊗Xi ⊗Xj − E(κY (·, Y )⊗Xi ⊗Xj)],

which implies that, for any ` ∈ N,

E‖κY (·, Y )⊗Xi ⊗Xj‖`HS = E[κ1/2

Y (Y, Y ) ‖Xi ⊗Xj‖HS]
` ≤M `/2

Y E‖Xi ⊗Xj‖`HS,

where the inequality is by Assumption 1. Moreover, by Jensen’s inequality,

‖E[κY (·, Y )⊗Xi ⊗Xj]‖`HS ≤ E`/2‖κY (·, Y )⊗Xi ⊗Xj‖2

HS ≤M `/2

Y E`/2‖Xi ⊗Xj‖2

HS.
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Then following a similar argument as in the proof of (i), we have

E‖κY (·, Y )⊗Xi ⊗Xj − E(κY (·, Y )⊗Xi ⊗Xj)‖`HS ≤ (4M0

√
MY )` `!,

which, again by Lemma S3, leads to the asserted bound.

For (iii), it can be proved by following the proof in Bach (2009, Proposition 13).

For (iv), we have, for any t ≥ 0,

P

(
max
i,j∈V
‖V̂YXij

−VYXij
‖ > t

)
≤
∑

V,V

i,j
P (‖V̂YXij

−VYXij
‖ > t)

≤ C3p
2 exp[−C4n(t ∧ t2)],

where the last inequality is by assertion (i). Hence, by the condition log p/n → 0 as

n→ 0, we have,

max
i,j∈V
‖V̂YXij

−VYXij
‖ = OP [(log p/n)1/2].

By similar arguments, we can prove (v) and (vi). 2

Proof of Theorem 4: First note that,

max
i,j∈V
‖V̂y

XiXj
(d, εY )−Vy

XiXj
(d)‖HS ≤ Λy

3 + Λy

4,

where

Λy

3 = max
i,j∈V
‖
∑

d,d

a,b
{[M̂Xij |Y (εY )](η̂ai ⊗ η̂bj) ◦ (y)− E(αaiα

b

j | y)} η̂ai ⊗ η̂bj‖HS,

Λy

4 = max
i,j∈V
‖
∑

d,d

a,b
E(αaiα

b

j | y) [(η̂ai − ηai )⊗ η̂bj + ηai ⊗ (η̂bj − ηbj)]‖HS.

We next derive the bounds of Λy
3 and Λy

4, respectively.

For Λy
3, by Proposition 2, it is further bounded by

∑
4

k=1
Λy

3,k, where

Λy

3,1 = max
i,j∈V
‖
∑

d,d

a,b
{[M̂Xij |Y (εY )−MXij |Y ](ηai ⊗ ηbj)} ◦ (y) η̂ai ⊗ η̂bj‖HS,

Λy

3,2 = max
i,j∈V
‖
∑

d,d

a,b
{[M̂Xij |Y (εY )][(η̂ai − ηai )⊗ (η̂bj − ηbj)]} ◦ (y) η̂ai ⊗ η̂bj‖HS,

Λy

3,3 = max
i,j∈V
‖
∑

d,d

a,b
{[M̂Xij |Y (εY )][ηai ⊗ (η̂bj − ηbj)]} ◦ (y) η̂ai ⊗ η̂bj‖HS,

Λy

3,4 = max
i,j∈V
‖
∑

d,d

,a,b
{[M̂Xij |Y (εY )][(η̂ai − ηai )⊗ ηbj ]} ◦ (y) η̂ai ⊗ η̂bj‖HS.

We next derive the bounds of Λy
3,k, k = 1, 2, 3, 4, respectively. For Λy

3,1,
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Λy

3,1 ≤ max
{∑

d,d

a,b
|〈[M̂Xij |Y (εY )−MXij |Y ](ηai ⊗ ηbj), κY (·, y)〉| : i, j ∈ V

}
≤ d2M 1/2

Y ×max
i,j∈V
‖M̂Xij |Y (εY )−MXij |Y ‖,

where the first inequality is because ‖η̂ai ‖ ‖η̂bi‖ = 1, for all i, j, a, b, and the last

inequality is by Assumption 1, and that ‖ηai ⊗ ηbj‖HS = 1. Moreover,

max
i,j∈V
‖M̂Xij |Y (εY )−MXij |Y ‖ ≤ max

i,j∈V
‖V̂†εYY Y (V̂YXij

−VYXij
)‖

+ max
i,j∈V
‖(V̂†εYY Y −V

†εY
Y Y )VYXij

‖+ max
i,j∈V
‖V†εYY Y VYXij

−MXij |Y ‖.
(S6)

The first term on the right-hand-side of S6) is no greater than ε−1
Y maxi,j∈V ‖V̂YXij

−
VYXij

‖ because ‖V̂†εYY Y ‖ ≤ ε−1
Y . The second term is bounded by

max
i,j∈V
‖(V̂†εYY Y −V

†εY
Y Y )VYXij

‖ ≤ ‖V̂†εYY Y ‖ ‖V̂Y Y −VY Y ‖ ×max
i,j∈V
‖V†εYY Y VYXij

‖

≤ ε−1

Y ‖V̂Y Y −VY Y ‖ ×max
i,j∈V
‖MXij |Y ‖ ≤ cMβ

Y ε
−1

Y ‖V̂Y Y −VY Y ‖,

where the second inequality is because VYXij
= VY YMXij |Y , and the last inequality is

because, by Assumption 6, ‖MXij |Y ‖ ≤ ‖Vβ
Y Y ‖ ‖M0

ij‖, and that ‖Vβ
Y Y ‖ ≤ ‖VY Y ‖βHS ≤

Eβ‖κ(·, Y )⊗ κ(·, Y )‖HS ≤Mβ
Y . The last term, by Assumption 6, is bounded by

max
i,j∈V
‖V†εY YVYXij

−MXij |Y ‖ = εY ×max
i,j∈V
‖V†εY YMXij |Y ‖ ≤ c εβY ,

where the inequality is because ‖V†εY YVβ
Y Y ‖ ≤ εβ−1

Y .

Similarly, for Λy
3,2, by Lemma S4, and that maxi,j∈V ‖VYXij

‖ ≤ 2M0M
1/2
y ,

Λy

3,2 ≤ ε−1

Y M
1/2

Y ×max
i,j∈V

{∑
d,d

a,b
‖V̂YXij

[(η̂ai − ηai )⊗ (η̂bj − ηbj)]‖
}

≤ 16ε−1

Y d
2κ−2

d M
1/2

Y ×max
i∈V
‖V̂XiXi

−VXiXi
‖ ×max

j∈V
‖V̂XjXj

−VXjXj
‖

× (max
i,j∈V
‖V̂YXij

−VYXij
‖+ 2M0M

1/2

Y ).

Furthermore, both Λy
3,3 and Λy

3,4 are bounded by

4ε−1

Y d
2κ−1

d M
1/2

Y ×max
j∈V
‖V̂XjXj

−VXjXj
‖ × (max

i,j∈V
‖V̂YXij

−VYXij
‖+ 2M0M

1/2

Y ).

For Λy
4, by Proposition 2 and Assumption 6,
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Λy

4 ≤ 4d2κ−1

d M
1/2

Y ×max
i,j∈V

[‖MXij |Y ‖(‖V̂XiXi
−VXiXi

‖+ ‖V̂XjXj
−VXjXj

‖)]

≤ 4cM 1/2+β

Y d2κ−1

d (max
i∈V
‖V̂XiXi

−VXiXi
‖+ max

j∈V
‖V̂XjXj

−VXjXj
‖).

Combining the bounds of Λy
3,1 to Λy

3,4, and Λy
4, and applying the results in Theorem

3(iv) to (vi), we have

max
i,j∈V
‖V̂y

XiXj
(d, εY )−Vy

XiXj
(d)‖HS

=OP{d2[ε−1

Y (log p/n)1/2 + ε−1

Y n
−1/2 + εβY ]}+OP{d2ε−1

Y κ
−2

d [(log p/n)3/2 + log p/n]}

+Op{d2ε−1

Y κ
−1

d [log p/n+ (log p/n)1/2]}+OP [d2κ−1

d (log p/n)1/2].

By the conditions εY ≺ 1, (log p/n) ≺ κ2
d, we can eliminate the terms with smaller

order. This then completes the proof. 2

Proof of Lemma 1: We first note that,

max
i,j∈V
‖[ĈyXX(d, εY , ε1)]i,j − [CyXX(d, ε1)]i,j‖HS ≤ Λy

5 + Λy

6 + Λy

7,

where
Λy

5 = max
i,j∈V
‖[(Σ̂†ε11 )1/2 − (Σ†ε11 )1/2]Σ̂2(Σ̂

†ε1
3 )1/2‖HS,

Λy

6 = max
i,j∈V
‖(Σ†ε11 )1/2(Σ̂2 − Σ2)(Σ̂

†ε1
3 )1/2‖HS,

Λy

7 = max
i,j∈V
‖(Σ†ε11 )1/2Σ2[(Σ̂

†ε1
3 )1/2 − (Σ†ε13 )1/2]‖HS,

Σ1 = Vy
XiXi

(d), Σ̂1 = V̂y
XiXi

(d, εY ),Σ2 = Vy
XiXj

(d), Σ̂2 = V̂y
XiXj

(d, εY ),Σ3 = Vy
XjXj

(d),

and Σ̂3 = V̂y
XjXj

(d, εY ). We next derive the bounds of Λy
5, Λy

6, and Λy
7, respectively.

For Λy
5, we have that, for any (i, j) ∈ V × V,

‖[(Σ̂†ε11 )1/2 − (Σ†ε11 )1/2]Σ̂2(Σ̂
†ε1
3 )1/2‖HS ≤

{
‖(Σ†ε11 )1/2[(Σ†ε11 )−3/2 − (Σ̂†ε11 )−3/2]Σ̂†ε11 ‖HS

+‖(Σ1 − Σ̂1)Σ̂
†ε1
1 ‖HS

}
× ‖(Σ̂†ε11 )1/2Σ̂2(Σ̂

†ε1
3 )1/2‖.

(S7)

There are three norms in (S7). The first norm is bounded by 3ε−3/2
1 (‖Σ̂1−Σ1‖+M0 +

ε1)‖Σ̂1 − Σ1‖HS, because ‖(Σ†ε11 )−1/2‖+ ‖(Σ̂†ε11 )−1/2‖ ≤ [‖Σ̂1 − Σ1‖+ ‖(Σ†ε11 )−1‖]1/2, and

that ‖(Σ†ε11 )−1‖ = ‖Vy
XiXi

(d)‖+ ε1 ≤ tr(Vy
XiXi

) + ε1 ≤M0 + ε1 by Assumption 1. The

second norm is in a smaller order than the first norm, and thus can be ignored. The

third norm is bounded by 1 by Proposition 5. Therefore,
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Λy

5 � ε−3/2

1 [max
i∈V
‖V̂y

XiXi
(d, εY )−Vy

XiXi
(d)‖2

HS + max
i∈V
‖V̂y

XiXi
(d, εY )−Vy

XiXi
(d)‖HS],

whose order of magnitude is OP [ε−3/2
1 {d2ε−1

Y κ
−1
d (log p/n)1/2 + d2εβY }] by the condition

that d2ε−1
Y κ

−1
d (log p/n)1/2 + d2εβY ≺ 1.

For Λy
6 and Λy

7, following a similar argument, we have

Λy

6 + Λy

7 = OP [ε−3/2

1 {d2ε−1

Y κ
−1

d (log p/n)1/2 + d2εβY }] .

Combining the bounds of Λy
5, Λy

6, and Λy
7 leads to the asserted rate. 2

Proof of Lemma 2: Let [CyXX(ε1)]i,j = ([Dy
X]i,i)

†ε1Vy
XiXj

([Dy
X]j,j)

†ε1 for (i, j) ∈ V × V

with i 6= j, and maxi,j∈V0 be the maximum over all (i, j) ∈ V × V with i 6= j. Then,

max
i,j∈V0
‖[CyXX(d, ε1)]i,j − [CyXX]i,j‖HS ≤ Λy

8 + Λy

9,

where
Λy

8 = max
i,j∈V0
‖[CyXX(d, ε1)]i,j − [CyXX(ε1)]ij‖HS,

Λy

9 = max
i,j∈V0
‖[CyXX(ε1)]i,j − [CyXX]ij‖HS.

We next derive the bounds of Λy
8 and Λy

9, respectively.

For Λy
8, following a similar argument as the proof in Lemma 1, we have,

Λy

8 � ε−2/3

1 [max
i∈V
‖Vy

XiXi
(d)−Vy

XiXi
‖HS + max

j∈V
‖Vy

XjXj
(d)−Vy

XjXj
‖HS]

+ ε−1

1 max
i,j∈V0
‖Vy

XiXj
(d)−Vy

XiXj
‖HS.

Moreover, by Assumption 7, we have,

max
i,j∈V0
‖Vy

XiXj
(d)−Vy

XiXj
‖HS = max

i,j∈V0
‖
∑N\d,N\d

a,b
E(αaiα

b

j | y)(ηai ⊗ ηbj)‖HS

≤ max
i,j∈V0
{
∑N\d,N\d

a,b
E[(αai )

2 | y]E[(αbj)
2 | y]}1/2 = O(d−γy).

Therefore, Λy
8 = O(ε−3/2

1 d−γy).

For Λy
9, by direct calculation, we have,

(Λy

9)
2 = max

i,j∈V0
‖[CyXX(ε1)]i,j − [CyXX]ij‖2

HS ≤ max
i,j∈V0

∑
a,b∈N[∆y,a,b

i,j (ρy,a,bi,j )2],

where ∆y,a,b
i,j = 2λy,ai λy,bj +ε1(λ

y,a
i +λy,bj )+ε2

1−2[(λy,ai λy,bj )(λy,ai λy,bj +ε1(λ
y,a
i +λy,bj )+ε2

1)]
1/2.
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It is further bounded by 2ε1(maxi∈V ‖Vy
XiXi
‖) + ε2

1. Therefore, by Assumption 4, we

have Λy
9 = O(ε1/2).

The proof is completed by combining the bounds of Λy
8 and Λy

9. 2

Proof of Lemma 3: By Lemma S5, ‖P̂y(d, εY , ε1, ε2)−Py(ε2)‖HS is bounded by

‖ĈyXX(d, εY , ε1)− CyXX‖HS ‖Py(ε2)‖

≤ ε−1

2 ‖ĈyXX(d, εY , ε1)− CyXX‖HS ≤ ε−1

2 p×max
i,j∈V
‖[ĈyXX(d, εY , ε1)]i,j − CyXiXj‖HS.

By Theorem 5, we then have the asserted rate. 2

Proof of Lemma 4: Note that [Py]A,A = (CyXAXA|XAc
)−1 with A = {i, j}. By the rule

of matrix inversion, for any distinct pair (i, j) ∈ V × V,

[Py]i,j = −(CyXiXi|X−(i,j)
)−1CyXiXj |X−(i,j)

(CyXjXj |X−j)
−1 ≡ −Ψ−1

1 Ψ2Ψ
−1

3 .

Let CyXiXj |X−(i,j)
(ε2) = CyXiXj + ε2δijI − CyXiX−(i,j)

(CyX−(i,j)X−(i,j)
+ ε2I)−1CyX−(i,j)Xj

. Then,

[Py(ε2)]i,j = −[CyXiXi|X−(i,j)
(ε2)]

−1CyXiXj |X−(i,j)
(ε2)[C

y

XjXj |X−j
(ε2)]

−1

≡ [Ψ1(ε2)]
−1[Ψ2(ε2)][Ψ3(ε2)]

−1.

This further implies that

max
i,j∈V0
‖[Py(ε2)]i,j −Py

i,j‖HS ≤ ∆1 + ∆2 + ∆3,

where
∆1 = max

i,j∈V0
‖{[Ψ1(ε2)]

−1 −Ψ−1

1 }Ψ2(ε2)[Ψ3(ε2)]
−1‖HS,

∆2 = max
i,j∈V0
‖Ψ−1

1 [Ψ2(ε2)−Ψ2][Ψ3(ε2)]
−1‖HS,

∆3 = max
i,j∈V0
‖Ψ−1

1 Ψ2{[Ψ3(ε2)]
−1 −Ψ−1

3 }‖HS.

We next derive the bounds of ∆1, ∆2, and ∆3, respectively.

For ∆1, first note that ‖[Ψ1(ε2)]
−1 −Ψ−1

1 ‖ is bounded by

‖[Ψ1(ε2)]
−1 −Ψ−1

1 ‖ ≤ ‖Ψ1(ε2)‖−1 ‖Ψ1‖−1

×‖ε2I − CyXiX−(i,j)
{[CyX−(i,j)X−(i,j)

+ ε2I]−1 − [CyX−(i,j)X−(i,j)
]−1}CyX−(i,j)Xi

‖.
(S8)

Moreover, because CyXiXi|X−i ≤ Ψ1(ε2) and ‖(CyXiXi|X−i)
−1‖ = ‖[Py]i,i‖ ≤ ‖Py‖ < ∞,

the first two norms on the right of (S8) are bounded. The third norm is in a smaller
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order than ε2 because (CyX−(i,j)X−(i,j)
)−1− (CyX−(i,j)X−(i,j)

+ ε2I)−1 ≤ cminε(C
y
X−(i,j)X−(i,j)

)−1

by Proposition S3, and that CyXiX−(i,j)
(CyX−(i,j)X−(i,j)

)−1CyX−(i,j)Xi
≤ I. Therefore, we

have maxi,j∈V0 ‖[Ψ1(ε2)]
−1 − Ψ−1

1 ‖ � ε2. Because Ψ3(ε2) ≥ CyXjXj |X−j , ‖Φ3(ε2)‖ is also

bounded. Moreover,

max
i,j∈V0
‖CyXiX−(i,j)

[CyX−(i,j)X−(i,j)
+ ε2I]−1CyX−(i,j)Xj

‖HS

≤ max
i,j∈V0
‖CyXiX−(i,j)

[CyX−(i,j)X−(i,j)
]−1CyX−(i,j)Xj

‖HS,

which is finite by Proposition S2 and Assumption 8. This implies ‖Ψ2(ε2)‖HS is uni-

formly bounded. Therefore, we have ∆1 � ε2.

For ∆2, it suffices to show that ‖Ψ2(ε2)−Ψ2‖HS is uniformly bounded. Following

a similar argument as that for ∆1, we obtain that,

max
i,j∈V0
‖Ψ2(ε2)−Ψ2‖HS ≤ cminε2 ×max

i,j∈V0
‖CyXiX−(i,j)

[CyX−(i,j)X−(i,j)
]−1CyX−(i,j)Xj

‖HS � ε2,

which implies that ∆2 � ε2.

For ∆3, we can similarly show that ∆3 � ε2.

The proof is completed by combining the orders of ∆1, ∆2, and ∆3. 2

Proof of Theorem 6: The first assertion follows Lemmas 3 and 4. For the second

assertion, we have, by Lemma S1, Ey = {(i, j) : i 6= j, ‖[Py]i,j‖HS > 0}. Furthermore,

P
[
ÊyCPO(d, εY , ε1, ε2, ρCPO) 6= Ey

]
≤P

{
‖[P̂y(d, εY , ε1, ε2)]i,j > ρCPO and [Py]i,j = 0, for some i, j ∈ V

}
+ P

{
‖[P̂y(d, εY , ε1, ε2)]i,j ≤ ρCPO and [Py]i,j 6= 0, for some i, j ∈ V

}
,

where both terms are bounded by P{maxi,j∈V0 ‖[P̂y(d, εY , ε1, ε2)]i,j−[Py]i,j‖HS ≥ ρCPO},
which tends to zero as n → ∞ by the condition that ρCPO � [ε2 + ε−1

2 pδy]. This

completes the proof. 2

S.3 Discussion of Assumptions 4 and 5

We discuss Assumptions 4 and 5 in more detail. Assumption 4 characterizes the level

of smoothness for the underlying distributions of the random functions. We first note
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that the quantity
∑Ny

i
,Ny
j

a,b (ρy,a,bi,j )2 in (5) is zero if and only if ρy,a,bi,j = 0, for a ∈ Ny
i and

b ∈ Ny
j , which is equivalent to the conditional independence between Xi and Xj given

Y . We next provide an equivalent condition of Assumption 4. Its proof immediately

follows by the definition of conditional correlation operator and is omitted.

Proposition S1 Suppose Assumptions 1 and 2 hold. For each (i, j) ∈ V× V, i 6= j,

and y ∈ ΩY , if Cy,0i,j =
∑

a,b∈Nρ
y,a,b(ηy,ai ⊗ ηy,bj ), then

(i) CyXiXj = (Vy
XiXi

)1/2Cy,0i,j (Vy
XjXj

)1/2;

(ii) (5) holds if and only if maxi,j∈V,i 6=j ‖Cy,0i,j ‖2
HS ≤ c1.

We note that, in the context of unconditional functional graphical model, Li and

Solea (2018, Assumption 4) has introduced a similar condition,

CXiXj = (VXiXi
)1/2+βC0

i,j(VXjXj
)1/2+β, (S9)

where β > 0, and CXiXj , VXiXi
, C0

i,j, and VXjXj
are the unconditional counterparts

of CyXiXj , V
y
XiXi

, Cy,0i,j , and Vy
XjXj

, respectively. Proposition S1(i) and condition (S9)

are imposed in a similar fashion. However, Assumption 4 is more transparent than

(S9), because it is based on the variances and covariances of the eigenfunctions of the

conditional covariance operators.

To provide some further insight to Assumption 4, let τ y,a,bi,j = var−1/2(〈ηy,ai , Xi〉 |
y) cov(〈ηy,ai , Xi〉, 〈ηy,bj , Xj〉 | y) var−1/2(〈ηy,ai , Xi〉 | y), which is the correlation between

〈ηy,ai , Xi〉 and 〈ηy,aj , Xj〉 given Y = y. Assumption 4 then implies that both quan-

tities
∑

a,b∈N(τ y,a,bi,j )2(λy,ai )−1(λy,aj )−1 and
∑

a∈Nλ
y,a
i need to be uniformly bounded. For

example, if λy,ai � a−α and τ y,a,bi,j � (ab)−(β+α)/2 with α, β > 1, then Assumption 4

holds. Note that because λy,ai vanishes fast, τ y,a,bi,j needs to vanish faster, which implies

that the conditional dependency between Xi and Xj given Y needs to be adequately

concentrated on the leading eigenfunctions of Vy
XiXi

and Vy
XjXj

.

Under Assumption 4, the next proposition shows that CyXiXj is Hilbert-Schmidt,

and thus it is compact.

Proposition S2 If Assumptions 1 to 4 hold, then there exists a constant cHS, such

that maxi,j∈V,i 6=j ‖CyXiXj‖HS ≤ cHS.
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Proof. By definition, ‖CyXiXj‖
2
HS is equal to

∑Ny
i
,Ny
j

a,b 〈η̃y,ai ,Vy

XiXj
η̃y,bj 〉2 =

∑Ny
i
,Ny
j

a,b E2(〈η̃y,ai , Xi〉 〈η̃y,bj , Xj〉 | y),

where η̃y,ai = ηy,ai /(λy,ai )1/2 for any y ∈ ΩY and (i, j) ∈ V × V. By Assumptions 3, the

right-hand side of the above quantity is further bounded by

∑Ny
i
,Ny
j

a,b cov2(〈η̃y,ai , Xi〉 〈η̃y,bj , Xj〉 | y) =
∑Ny

i
,Ny
j

a,b

[
λy,ai λy,bj (ρy,a,bi,j )2

]
≤ c1(

∑
a,b∈Nλ

y,a

i λy,bj ),

where (ρy,a,bi,j )2 is defined in (5), and the last inequality is by Assumption 4. Note that

the last term in the above relation is c1(
∑

a∈Nλ
y,a
i )2 = c1tr

2(Vy
XiXi

) which is no greater

than c1M
2
0 by Assumption 1. 2

Assumption 5 is to prevent the existence of a constant function consisting of a

linear combination of non-constant functions. To see this, for f = (f1, . . . , fp)
T ∈ ΩX,

we have that, ker(Vy
XX) = {f ∈ ΩX : E[(

∑
p

i=1
〈fi, Xi〉ΩXi )

2 | Y ] = 0}, which is further

equal to {f ∈ ΩX :
∑

p

i=1
〈fi, Xi〉ΩXi = 0 almost surely}.

Under Assumptions 4 and 5, the next proposition shows that CyXX is lower bounded

by a strictly positive constant, which immediately implies that CyXX is invertible.

Proposition S3 If Assumptions 1 to 5 hold, then there exists cmin > 0, such that

cminI ≤ CyXX, where I is the identity mapping.

Proof. Note that CyXX can be expressed as CyXX = I + C′, with C′ being a compact

operator. Therefore, by Bach (2008), if CyXX is invertible, then there exists c > 0

such that CyXX must be bounded below by cI. Moreover, by Assumption 5, Vy
XX is

invertible, which implies that CyXX is also invertible. This completes the proof. 2

S.4 Estimation via conditional partial correlation operator

As an alternative approach, we briefly discuss how to estimate the graph Ey via the

conditional partial correlation operator Ry

XiXj |X−(i,j)
. First, we estimate Vy

XiXj |X−(i,j)

by, for each (i, j) ∈ V × V,

V̂y

XiXj |X−(i,j)
(d, εY , ε3) = V̂y

XiXj
(d, εY )− V̂y

XiX−(i,j)
(d, εY )

×
[
V̂y

X−(i,j)X−(i,j)
(d, εY ) + ε3I

]−1

V̂y

X−(i,j)Xj
(d, εY ),
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where ε3 > 0 is the ridge parameter. By Proposition 3, we estimate Ry

XiXj |X−(i,j)
by

R̂y

XiXj |X−(i,j)
(d, εY , ε3, ε4) = (V̂y

XiXi|X−(i,j)
(d, εY , ε3) + ε4I)−1/2

× V̂y

XiXj |X−(i,j)
(d, εY , ε3)(V̂

y

XiXi|X−(i,j)
(d, εY , ε3) + ε4I)−1/2,

where ε4 > 0 is a ridge parameter to enable the inversion of V̂y

XiXi|X−(i,j)
(d, εY , ε3) and

V̂y

XjXj |X−(i,j)
(d, εY , ε3). Then, for each y ∈ ΩY , we can estimate the graph Ey by

ÊyCPCO(d, εY , ε3, ε4, ρCPCO)={(i, j) ∈ V × V : ‖R̂y

XiXj |X−(i,j)
(d, εY , ε3, ε4)‖HS>ρCPCO, i 6= j},

where ρCPCO > 0 is the thresholding parameter.

At the sample level, we estimate the coordinates of R̂XiXj |X−(i,j) |Y
as

B∗i
bV̂y

XiXj |X−(i,j)
(d, εY , ε3)cB∗j = [M(y)]i,j − [M(y)]i,−(i,j)×(

[M(y)]−(i,j),−(i,j) + ε3I(p−2)d×(p−2)d

)−1
[M(y)]−(i,j),j ≡ Ni,j|−(i,j)(y),

B∗i
bR̂y

XiXj |X−(i,j)
(d, εY , ε3, ε4)cB∗j = [Ni,i|−(i,j)(y) + ε4Id×d]

−1/2 Ni,j|−(i,j)(y)×

[Nj,j|−(i,j)(y) + ε4Id×d]
−1/2 ,

where M(y) =B∗ bV̂y
XX(d, εY )cB∗ , and its (i, j)th block [M(y)]i,j is of dimension d× d.

S.5 Additional sparsity structure

Recall in Theorem 6, our CPO estimator depends on the rate of p(log p/n1−π−π′)1/2.

This means that the graph dimension p can only grow at a polynomial rate of the

sample size n. This is partly because we did not impose any sparsity structure, but

only required the threshold ρCPO approaches zero at the same rate as the minimum

signal strength. Next, we consider two explicit sparsity structures, one on the CPO

and the other on the CCO. We show that, with such additional sparsity assumptions

and some regularized estimation such as hard thresholding, we can further improve

the rate in Theorem 6, so that p can grow at an exponential rate of n.

The first sparsity structure we consider is explicitly placed on the CPO, by re-

stricting the number of nonzero elements on the off-diagonal elements of the CPO.

Assumption S1 For y ∈ ΩY , there exists sy ∈ N such that

card
(
{(i, j) : [Py]i,j 6= 0, i 6= j}

)
= sy.
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Although Assumption S1 imposes the sparsity explicitly on the CPO, it indirectly

restricts the number of nonzero elements of its inverse, i.e., the CCO, as shown by

the next proposition.

Proposition S4 If Assumptions 1, 3, 4, and S1 hold, then, for each y ∈ ΩY ,

card
(
{(i, j) : [CyXX]i,j 6= 0, i 6= j}

)
≤ sy(sy − 1).

Proof. For y ∈ ΩY , by Assumption S1 there are at most sy columns in Py having at

least one nonzero elements, which also implies the remaining columns all have zeros

on their off-diagonal elements. Let A = {i ∈ V : [Py]i,−i = 0} index those remaining

columns. Then by Definition 3 and the matrix inversion rule, for i ∈ A,

[CyXX]i,−i = −[Py]i,−i{[Py]−i,−i}−1 = 0.

Moreover, for distinct i, j ∈ V × V, [CyXX]i,j = 0 ⇔ Xi Xj. This implies there are

at least p − sy random functions, each independent with the rest of the functions.

Therefore, there are at most sy(sy − 1) nonzero off-diagonal elements in CyXX. 2

Proposition S4 suggests the number of nonzero off-diagonal elements in the CCO is

of the order s2
y. This means, when sy � p, the majority of the off-diagonal elements

in CyXX are zero. To take advantage of this sparsity structure, we consider a hard

thresholding regularization to estimate the CCO, then the CPO and the graph,

[ČyXX(d, εY , ε1, ζ)]i,j = [ĈyXX(d, εY , ε1)]i,j 1
(
‖[ĈyXX(d, εY , ε1)]i,j‖HS ≥ ζ

)
,

P̌y(d, εY , ε1, ε2, ζ) = {ČyXX(d, εY , ε1, ζ) + ε2I}−1, (S10)

ĚyCPO(d, εY , ε1, ε2, ζ, ρCPO) = {(i, j) ∈ V × V : ‖[P̌y(d, εY , ε1, ε2, ζ)]i,j‖HS > ρCPO, i 6= j}.

where ζ is the thresholding parameter. The next theorem establishes the consistency

of the estimators in (S10).

Theorem S1 If Assumptions 1 to 8, and S1 hold, εY , ε1 ≺ 1, d2ε−1
Y κ

−1
d (log p/n)1/2 +

d2εβY ≺ 1, δy ≺ ζ ≺ 1, and (ε−1
2 ζs

2
y + ε2) ≺ ρCPO, then, for any y ∈ ΩY ,

‖ČyXX(d, εY , ε1, ζ)− CyXX‖HS = Op(ζs
2

y);

max
i,j∈V,i 6=j

‖[P̌y(d, εY , ε1, ε2, ζ)]i,j − [Py]i,j‖HS = Op(ε
−1

2 ζs
2

y + ε2);

P [ĚyCPO(d, εY , ε1, ε2, ζ, ρCPO) = Ey]→ 1, as n→∞.
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Proof. For any ζ > 0, define Cy,ζXX : ΩX → ΩX as,

(Cy,ζXX)
i,j

= [CyXX]i,j 1(‖[CyXX]i,j‖HS ≥ ζ), (i, j) ∈ V × V.

Note that Cy,ζXX is an intermediate operator between ČyXX(d, εY , ε1, ζ) and CyXX. For

simplicity, write ĈyXX(d, εY , ε1) as ĈyXX, ĈyXiXj(d, εY , ε1) as ĈyXiXj , and ČyXX(d, εY , ε1, ζ)

as ČyXX. By the triangular inequality

‖ČyXX − CyXX‖HS ≤ ∆4 + ∆5,

where ∆4 = ‖ČyXX −Cy,ζXX‖HS, and ∆5 = ‖Cy,ζXX −CyXX‖HS. Next, we derive the orders of

magnitude of ∆4 and ∆5, respectively.

For ∆5, we have,

∆5 ≤
∑

i,j∈V0‖CyXiXj‖HS 1(‖CyXiXj‖HS < ζ) ≤ ζ
∑

i,j∈V01(‖CyXiXj‖HS 6= 0),

which by Proposition S4, is further bounded by ζ(sy)2.

For ∆4, we have

∆4 ≤
∑

i,j∈V0‖ĈyXiXj − CyXiXj‖HS 1(‖ĈyXiXj‖HS ≥ ζ, ‖CyXiXj‖HS ≥ ζ)

+
∑

i,j∈V0‖ĈyXiXj‖HS 1(‖ĈyXiXj‖HS ≥ ζ, ‖CyXiXj‖HS < ζ)

+
∑

i,j∈V0‖CyXiXj‖HS 1(‖ĈyXiXj‖HS < ζ, ‖CyXiXj‖HS ≥ ζ) = ∆41 + ∆42 + ∆43.

We next find the orders of ∆41 to ∆43.

For ∆41, we have,

∆41 ≤ max
i,j∈V0
‖ĈyXiXj − CyXiXj‖HS [

∑
i,j∈V01(‖ĈyXiXj‖HS ≥ ζ, ‖CyXiXj‖HS ≥ ζ)]

≤ max
i,j∈V0
‖ĈyXiXj − CyXiXj‖HS [

∑
i,j∈V01(‖CyXiXj‖HS 6= 0)],

whose order of magnitude is OP [δ(y)(sy)2], by Theorem 5 and Proposition S4.

For ∆43, we have,

∆43 ≤
∑

i,j∈V0‖ĈyXiXj − CyXiXj‖HS 1(‖ĈyXiXj‖HS < ζ, ‖CyXiXj‖HS ≥ ζ)

+
∑

i,j∈V0‖ĈyXiXj‖HS 1(‖ĈyXiXj‖HS < ζ, ‖CyXiXj‖HS ≥ ζ).

Following a similar argument for the order of ∆41, we can show that the orders of

two terms on the right above are OP [δn(y)(sy)2] and OP [ζ(sy)2]. Therefore, ∆13 =
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OP [ζ(sy)2].

For ∆42, we have,

∆42 ≤
∑

i,j∈V0‖ĈyXiXj − CyXiXj‖HS 1(‖ĈyXiXj‖HS ≥ ζ, ‖CyXiXj‖HS < ζ)

+
∑

i,j∈V0‖CyXiXj‖HS 1(‖ĈyXiXj‖HS ≥ ζ, ‖CyXiXj‖HS < ζ) ≡ ∆421 + ∆422.

Note that ∆422 ≤ ∆2 = OP [ζ(sy)2]. Moreover, given c ∈ (0, 1), ∆421 ≤ ∆4211 + ∆4212,

where

∆4211 =
∑

i,j∈V0‖ĈyXiXj − CyXiXj‖HS 1(‖ĈyXiXj‖HS ≥ ζ, cζ < ‖CyXiXj‖HS < ζ),

∆4212 =
∑

i,j∈V0‖ĈyXiXj − CyXiXj‖HS 1(‖ĈyXiXj‖HS ≥ ζ, ‖CyXiXj‖HS ≤ cζ).

For ∆4211, by Theorem 5 and the fact that,

∆4211 ≤ max
i,j∈V0
‖ĈyXiXj − CyXiXj‖HS [

∑
i,j∈V01(cζ < ‖CyXiXj‖HS < ζ)],

the order of magnitude of ∆4211 is OP [δn(y)(sy)2].

For ∆4212, we have,

∆4212 ≤ max
i,j∈V0
‖ĈyXiXj − CyXiXj‖HS {

∑
i,j∈V01[‖ĈyXiXj − CyXiXj‖HS ≥ (1− c)ζ]},

because ‖ĈyXiXj − CyXiXj‖HS ≥ ‖ĈyXiXj‖HS − ‖CyXiXj‖HS ≥ (1− c)ζ. In addition,

P
({∑

i,j∈V01[‖ĈyXiXj − CyXiXj‖HS ≥ (1− c)ζ]
}
> 0
)
≤

P

[
max
i,j∈V0
‖ĈyXiXj − CyXiXj‖HS ≥ (1− c)ζ

]
,

which tends to 0 by the condition δn(y) ≺ ζ. Therefore,
∑

i,j∈V01[‖ĈyXiXj −CyXiXj‖HS ≥
(1− c)ζ] = oP (1), which implies ∆1212 = oP [δn(y)].

Combining the orders of ∆41, ∆4211, ∆4212, ∆422, ∆43, and ∆5, we obtain the con-

vergence rate of ‖ČyXX(d, εY , ε1, ζ)− CyXX‖HS.

Following a similar argument as that of Theorem 6, we can show the convergence

of maxi,j∈V,i 6=j ‖[P̌y(d, εY , ε1, ε2, ζ)]i,j − [Py]i,j‖HS and P [ĚyCPO(d, εY , ε1, ε2, ζ, ρCPO) = Ey].

This completes the proof. 2

Theorem S1 suggests that the uniform convergence rate of P̌y(d, εY , ε1, ε2, ζ) depends

on s2
y(log p/n)(1−c)/2, which indicates that p can diverge at an exponential rate of n.
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The second sparsity structure we consider is explicitly placed on the CCO, by

directly restricting the number of nonzero elements on the off-diagonal elements of

the CCO this time, instead of the CPO as in Assumption S1.

Assumption S2 For y ∈ ΩY , there exists sy ∈ N such that

card
(
{(i, j) : [CyXX]i,j 6= 0, i 6= j}

)
= sy.

We consider the hard thresholding estimators in (S10), and show in the next

theorem that, when replacing Assumption S1 with Assumption S2, we can further

improve the order of magnitude from s2
yζ to syζ. The proof of the theorem is similar

to that of Theorem S1 and is omitted.

Theorem S2 If Assumptions 1 to 8, and S2 hold, εY , ε1 ≺ 1, d2ε−1
Y κ

−1
d (log p/n)1/2 +

d2εβY ≺ 1, δy ≺ ζ ≺ 1, and (ε−1
2 ζsy + ε2) ≺ ρCPO, then, for any y ∈ ΩY ,

‖ČyXX(d, εY , ε1, ζ)− CyXX‖HS = Op(ζsy);

max
i,j∈V,i 6=j

‖[P̌y(d, εY , ε1, ε2, ζ)]i,j − [Py]i,j‖HS = Op(ε
−1

2 ζsy + ε2);

P [ĚyCPO(d, εY , ε1, ε2, ζ, ρCPO) = Ey]→ 1, as n→∞.

Finally, we remark that, for both sparsity structures, we allow sy to grow at

the polynomial order of n. Besides, we have only considered the estimation by hard

thresholding. Other regularization approaches such as the `1 penalty (Rothman et al.,

2008; Cai et al., 2011) can also be used to encourage the sparsity.

S.6 Effect of tuning parameters and kernel functions

Our method involves a number of tuning parameters. We investigate the effect of those

parameters on the proposed graph estimator. Overall, we have found our method is

robust to the tuning parameters as long as they are within a reasonable range.

We first examine the effect of the parameters m, εT and γT that govern the con-

struction of the coordinates. Recall that m is the number of basis of ΩN , εT is the

ridge parameter in (12), and γT is the bandwidth in the radial basis function kernel.

They all control the level of smoothness on the estimation of Xk
i . Figure S1 in the

Appendix reports the area under the ROC curve with varying values of m, εT and γT .

We see that the estimated graph is robust to the choice of these parameters.
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Figure S1: Area under the ROC curve for the reconstructed graph, with varying
parameters εT (upper axis), m (right axis), and γT (colored boxes).

We next investigate the effect of d, the number of leading K-L coefficients used

to approximate Xk
i . Figure S2 reports the area under the ROC curve with varying

values of d from 2 to 10. We see that the performance remains about the same after

d reaches 5.

We then study the effect of the ridge parameter εY , which controls the smoothness

of the estimated regression operator M̂Xij |Y (εY ), and the two ridge parameters ε1 and

ε2, which control the smoothness of the estimators of the conditional correlation
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Figure S2: Area under the ROC curve for the reconstructed graph, with the varying
parameter d.

operator ĈyXX(d, εY , ε1) and the conditional precision operator P̂y(d, εY , ε1, ε2). Figure

S3 reports the H-S norm of the CPO estimator under varying values of εY . We see

that, within a reasonable range of εY , the CPO estimate is relatively robust. Figure

S4 reports the H-S norm of the CPO estimator under varying values of ε1 and ε2 for

the random graph. We observe that, a different value of ε1 or ε2 leads to a change of
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Figure S3: The Hilbert-Schmidt norm of the CPO estimator, with the varying pa-
rameter εY

the scale of the H-S norm of the CPO, but the overall pattern does not change. This

suggests that our CPO estimator is relatively robust with respect to ε1 and ε2 too.

Finally, we study the performance of the CPO with different choices of the kernel

function. Specifically, we generate the error function ε(t) using a Brownian or Gaus-

sian kernel as the basis function. We then choose a Brownian or Gaussian kernel for

κT , and a Laplacian, Student t or Gaussian kernel for κY . This leads to 12 combina-

tions of (ε(t), κT , κY ). Figure S5 reports the area under the ROC curve for the graph

estimated by our CPO method for those different combinations. It is seen that the

performance of our method is consistent across all combinations.
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Figure S4: Norm of the CPO estimator, with the varying parameters ε1 (upper axis)
and ε2 (right axis).
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Figure S5: Area under the ROC curve of the estimated graph by the CPO, with
respect to the external variable Y , under three kernel functions for κY : Gaussian
(red), Laplacian (green) and Student t (blue), two kernel functions for κT : Gaussian
(top) and Brownian (bottom), and two kernel functions for ε(t): Gaussian (left) and
Brownian (right).

S.7 Brain connectivity validation analysis

We report the analysis result of an independent validation dataset of 828 subjects

from HCP. Figure S6 reports the changes of the identified significant edges, with

respect to the intelligence score at 7, 11, 15, 19, 23, for the medial frontal module from

the new dataset. The finding is similar to that reported in the paper.
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Figure S6: Medial frontal network changes, with respect to the intelligence score at
7, 11, 15, 19, 23, based on an independent validation dataset. Blue color represents
the small H-S norm value of CPO, green the medium norm value, and red the high
H-S norm value. 27
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