
Online Appendix

Online Appendix for:
The TwoMargin Problem in Insurance Markets

A Analysis in a General Model (Relaxing Vertical Assumptions)
In this appendix, we present a formal mathematical analysis of the equilibrium impacts of tuning the
parameters governing the two main policies discussed in Section 3: the mandate penalty and risk adjust-
ment. We implement this analysis in a general model that does not invoke the vertical assumptions used
for our graphical approach. This lets us showhow the vertical assumptions interact with themodel’smain
predictions.

Horizontal differentiation allows for an additional margin of substitution, betweenH and U , that
the vertical model shuts down. As we show below, this adds additional terms to the comparative statics
defining the policy effects onprices andmarket shares. But as long as theseH-U substitution terms are not
too large—e.g., as long as whenM increases, most of the newly insured buy the cheaperL plan, notH—
then they do not reverse the sign of the vertical model predictions. Thus, our results are not a knife-edge
case driven by the assumption of pure vertical differentiation. Rather, as long as vertical differentiation
is the "main" way thatH and L compete, the model provides a useful approximation. This is consistent
with the findings of our empirical robustness check that allows for horizontal differentiation inAppendix
D.4.1.

A.1 Model Setup
The setup is identical to that of Section 2, with two plansH andL andP = {PH , PL} denoting insurer
prices. LetG = {SH , SL,M} denote plan-specific government subsidies (Sj) and the mandate penalty
(M ). Throughout this section (as in Section 2), we assumeSH = SL = S, though the framework would
generalize if this were not true. Nominal consumer prices equal P cons

j = Pj − S for j = {L,H} and
P cons
U = M .
Unlike in the verticalmodel, wewill not assume thatWH andWL are perfectly correlated. Instead, we

allow consumers to vary along both willingness to pay dimensions. Each consumer type is characterized
by an ordered pair s = (sH , sL), where sH indexes WTP for H and sL indexes WTP for L. We once
again normalize WU ≡ 0. Note that a single s-index is no longer sufficient to characterize consumer
willingness-to-pay. Without loss of generality, the s index takes a bivariate uniform distribution, so it
represents an index of the percentile of the WTP distribution forH and L.

The set of consumers who choose a given option j ∈ {H,L, U} is defined as Aj(P,G) = {s :
Wj(s) − P cons

j ≥ Wk(s) − P cons
k ∀k}. Demand is defined as the size of this group: Dj(P,G) =∫

Aj(P,G)
ds.

For each “WTP-type," we once again have a plan-specific expected costCj(s). We againmake the ad-
verse selection assumption that costs in a givenplan are increasing inWTPfor that plan. Hence∂Cj(sH , sL)/∂sj <
0 for plan j. Average costs for plan j ∈ {L,H} equal the average ofCj(s) over the enrolling set of con-
sumers:

ACj(P ;G) =
1

Dj(P ;G)

∫
Aj(P,G)

Cj(s)ds (6)
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Similarly, we can define the average risk score functions:

Rj(P ;G) =
1

Dj(P ;G)

∫
Aj(P,G)

R(s)ds (7)

whereR(s) is the average risk score among type-s consumers. The baseline per-enrollee risk adjustment
transfer from L toH is a function of these average risk scores, the (share-weighted) average risk score in
the market (≡ R(P ;G)) and the (share-weighted) average price in the market (≡ P (P ;G)):

T (P ;G) =

(
RH(P ;G)

R(P ;G)
− 1

)
P (P ;G). (8)

Finally we introduce a parameterα ∈ (0, 1) that multiplies the transfer,α ·T (P ;G), allowing us to vary
the strength of risk adjustment by scaling the transfers up or down such that α = 0 represents no risk
adjustment, α ∈ (0, 1) is partial risk adjustment, α = 1 is full-strength risk adjustment, and α > 1 is
over-adjustment.

We define equilibrium as prices equal average costs net of risk adjustment transfers:

PH = ACH (P ;G)− αT (P ;G) ≡ ACRA
H (P ;G,α)

PL = ACL (P ;G) + αT (P ;G) ≡ ACRA
L (P ;G,α) (9)

whereACRA
j (P ;G,α) are risk-adjusted costs for plan j = {L,H}.

A.2 Approach and Assumptions on Signs of Demand/Cost Curve Slopes
Wenow consider the equilibrium response to an increase in the uninsurance penaltyM and an increase in
α, i.e. the strengthof the risk adjustment transfers. Our goal is tounderstand the cross-margin interactions—
the effect ofM on demand forH and the effect of risk adjustment on the share uninsured. To do so, we
use the equilibrium conditions to derive the relevant comparative statics, dDH

dM
and dDU

dα
. The compar-

ative statics take account of both direct effects—denoted with partial derivatives below (e.g., ∂ACH

∂PH
)—

and equilibrium effects on market prices—denoted with total derivatives (e.g., dPH

dM
). These comparative

statics allow us to show the features of demand and cost that determine the sign and magnitude of the
cross-margin effects.

In analyzing these comparative statics, we will assume a stable equilibrium that is characterized by
adverse selection. These assumptions let us sign the slopes of several demand/cost curves that enter the
equations. In particular, we assume:

• Equilibrium stability, which requires that 1− ∂ACj

∂Pj
> 0 for j = {H,L} locally to the equilibrium

point.

• Adverse selection, which requires that (on average) the highest-cost types buyH , middle-cost types
buy L, and the lowest-cost choose U . More specifically, we assume:

1. The marginalH consumer is lower-cost than the averageH consumer and higher-cost than
the average L consumer—which implies that ∂ACH

∂PH
> 0 and ∂ACL

∂PH
> 0.
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2. The consumer on the margin of H and L is lower-cost than the average H consumer—so
∂ACH

∂PL
< 0

3. The marginal uninsured consumers are lower-cost than the average consumer ofH or L, so
∂ACH

∂M
≤ 0 and ∂ACL

∂M
≤ 0.

For the analysis of risk adjustment, we also assume that the analogous stability and adverse selection
conditions hold for risk-adjusted average costs ACRA

H and ACRA
L . This is true in our empirical simula-

tions, where we find that risk adjustment is imperfect, so risk-adjusted cost curves are characterized by
adverse selection.

Further, while we do not impose the vertical model, it is useful to note its implications for several
relevant partial derivatives:

• Vertical model assumes that no consumers are on the H-U margin, which implies that ∂DH

∂M
=

∂ACH

∂M
= ∂DU

∂PH
= 0.

In the analysis below, we color in red the terms that are zero under the verticalmodel. This lets readers
see where relaxing the vertical assumptions adds additional terms to the comparative statics.

A.3 Increase in Uninsurance Penalty (M )
We derive comparative statics for enrollment inH in response to a change in the uninsurance penaltyM .
Throughout this section, we assume that there is no risk adjustment in place, which simplifies the math.

We start by analyzing dDH

dM
, the cross-margin effect of a mandate penalty on enrollment inH . This

comparative static is comprised of two parts. First, in red is the direct enrollment change inH for a change
inM , holding fixed PH and PL. In the vertical model, this ∂DH

∂M
term would be zero. The second term is

the indirect effect onDH through the change in relative prices ofH and L. Formally:

dDH

dM
=

∂DH

∂M︸ ︷︷ ︸
HUmargin

+
∂DH

∂∆PHL︸ ︷︷ ︸
(−)

·
(
dPH
dM

− dPL
dM

)
.

︸ ︷︷ ︸
HLmargin

(10)

In the vertical model, ∂DH

∂M
= 0, so under the vertical assumption the sign of ∂DH

∂M
would be fully de-

termined by the change in the incremental price of H vs. L caused by an increase inM . If an increase
inM leads to an increase in ∆PHL = PH − PL, then an increase inM will lead to lower demand for
H . This positive relationship betweenM and∆PHL would occur under our assumptions about adverse
selection because an increase inM would induce a fall in PL as the consumers on the margin between L
andU who are induced to purchaseL are relatively healthy. If the verticalmodel does not hold, ∂DH

∂M
> 0,

which would partly offset the decrease inDH but not fully do so as long as it is small in magnitude.
Thus, to sign the cross-margin effect, weneed to show that dPH

dM
− dPL

dM
> 0. Wenow fully differentiate

PH and PL with respect toM to characterize this relationship more explicitly.

dPH
dM

=
∂ACH
∂M

+
∂ACH
∂PH

dPH
dM

+
∂ACH
∂PL

dPL
dM

dPL
dM

=
∂ACL
∂M

+
∂ACL
∂PH

dPH
dM

+
∂ACL
∂PL

dPL
dM

(11)
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Notice, that unlike under the purely vertical model, a change inM impacts direct costs for bothH and
L. Solving this system of equations again for dPH

dM
, we get the expression below.

dPH
dM

=

[
∂ACH
∂M

+
∂ACL
∂M

∂ACH
∂PL

(1− ∂ACL
∂PL

)−1
]
× Φ−1H (12)

where ΦH = {1− ∂ACH

dPH
− ∂ACH

∂PL

∂ACL

∂PH
(1− ∂ACL

∂PL
)−1}.

We now can sign dPH

dM
as follows:

dPH
dM

=


∂ACH
∂M︸ ︷︷ ︸

Ext. Margin Selection(≤0)

+
∂ACL
∂M︸ ︷︷ ︸
(−)

· ∂ACH
∂PL︸ ︷︷ ︸
(−)

(
1− ∂ACL

∂PL

)−1
︸ ︷︷ ︸

(+)︸ ︷︷ ︸
Substitution toL (+)


× Φ−1H︸︷︷︸

(+)

(13)

and ΦH = (1− ∂ACH
dPH

)︸ ︷︷ ︸
(+)

− ∂ACH
∂PL

∂ACL
∂PH︸ ︷︷ ︸

(−)

(1− ∂ACL
∂PL

)−1︸ ︷︷ ︸
(+)

> 0 , where all signs are determined by the

adverse selection and stability assumptions laid out above.
Therefore, we can sign dPH

dM
> 0 under the vertical model. The intuition is as we have already de-

scribed: themandate penalty lowersPL, leading relatively healthyH consumers to leaveH and substitute
to L, which raisesACH and therefore PH . When the vertical model does not hold, extensive margin se-
lection of consumers on theHU margin intoH (∂ACH

∂M
< 0) pushes in the other direction. But as long

as extensive margin substitution is not too large, the main effect of substitution to Lwill dominate.
We derive the expression for dPL

dM
in a similar way:

dPL
dM

=


∂ACL
∂M︸ ︷︷ ︸

Ext. Margin Selection(−)

+
∂ACH
∂M︸ ︷︷ ︸
(≤0)

· ∂ACL
∂PH︸ ︷︷ ︸
(+)

(
1− ∂ACH

∂PH

)−1
︸ ︷︷ ︸

(+)︸ ︷︷ ︸
Substitution toH(≤0)


× Φ−1L︸︷︷︸

(+)

(14)

where ΦL = {1− ∂ACL

dPL
− ∂ACL

∂PH

∂ACH

∂PL
(1− ∂ACH

∂PH
)−1} > 0 as with ΦH above.

Thus, under the vertical model where ∂ACH

∂M
= 0, we can unambiguously say that PL falls with a

higher mandate penalty (dPL

dM
< 0). This conclusion also holds when we relax the vertical model (as

shown by the negative substitution term), as any extensive margin substitution intoH acts to lower the
price of H , drawing the sickest consumers away from L and pushing L’s costs and price even further
down.

Returning now to dDH

dM
, we observe under the vertical model that

(
dPH

dM
− dPL

dM

)
< 0, which implies

that dDH

dM
> 0. In other words, the “unintended consequence" of decreasing enrollment in H should
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always occur under the vertical model. When we relax the vertical model, this result will also hold as long
substitution on theHU margin is not too large.

A.4 Increasing the Strength of Risk Adjustment (α)
We now consider in our more general model the effect of a small increase in the α parameter on the share
of the population that is uninsured. As in the previous section, we color in red the terms that are zero
under the vertical model. This lets readers see where relaxing the vertical assumptions adds additional
terms to the comparative statics.

The change in the share of the uninsured population given a change in α is comprised of two parts:
changes in enrollment from theHU margin (in red) andLU margin (in black). Under the vertical model
assumptions, theHU margin is not present.

dDU

dα
=

∂DU

∂∆PHU︸ ︷︷ ︸
≥0

d∆PHU
dα

︸ ︷︷ ︸
HUmargin

+
∂DU

∂∆PLU︸ ︷︷ ︸
(+)

d∆PLU
dα

︸ ︷︷ ︸
LUmargin

(15)

where ∆PHU = PH − S −M and ∆PLU = PL − S −M are the net prices ofH and L relative to
uninsurance.

By the law of demand, ∂DU

∂PH
≥ 0, ∂DU

∂PL
> 0. Under the vertical model, ∂DU

∂PH
= 0, so the cross-margin

effect of risk adjustment on uninsurance is entirely determined by the sign of the LU margin. We now
consider the impact of a change in α on ∆PHU and ∆PLU . The change in prices depends on the nature
of subsidies. With subsidies linked to the price of L, ∆PLU (= PL − S −M) is fixed by construction.
Therefore, the LUmargin of substitution is shut down. In the vertical model, we will have dDU

dα
= 0.

Let us now consider the case where there is a fixed subsidy and therefore prices can be affected by the
level of transfers. We fully differentiate (9) and rearrange to get a system of equations. These are identical
under both the horizontal and vertical model.

dPH
dα

= T (.)︸︷︷︸
(+)

×

 −1︸︷︷︸
Direct(−)

+
∂ACRA

H

∂PL

(
1− ∂ACRA

L

∂PL

)−1
︸ ︷︷ ︸

Substitution from L (−)

× (ΦRA
H )−1 < 0

where ΦRA
H ≡ 1− ∂ACRA

H

∂PH
− ∂ACRA

L

∂PH

∂ACRA
H

∂PL
(1− ∂ACRA

L

∂PL
)−1. As in the mandate section above, this ΦRA

H

termmust be positive under the assumptions on stability and adverse selection we have made.
The term in brackets is composed of two effects. First, there is a direct effect of stronger risk adjust-

ment transferring money toH , which tends to lower PH . Second, there is an indirect substitution effect,
arising from substitution of relatively healthy consumers on the margin betweenH and L opting forH
and lowering H ’s average cost and thus its price. Thus, dPH

dα
< 0 because both the direct and indirect

effects push PH down.
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Doing the same for dPL

dα
gives

dPL
dα

= T (.)︸︷︷︸
(+)

×

 1︸︷︷︸
Direct(+)

+

(
−∂AC

RA
L

∂PH

)(
1− ∂ACRA

H

∂PH

)−1
︸ ︷︷ ︸

Substitution to H (−)

× (ΦRA
L )−1︸ ︷︷ ︸
(+)

where ΦRA
L ≡ 1 − ∂ACRA

L

∂PL
− ∂ACRA

H

∂PL

∂ACRA
L

∂PH
(1 − ∂ACRA

H

∂PH
)−1, which must be positive under the stability

and adverse selection assumptions.
Here, the direct effect is positive because larger transfers takemoney fromL, driving up the price ofL.

However, the indirect substitution effect is negative—since ∂AC
RA
L

∂PH
> 0 by adverse selection. Intuitively,

stronger risk adjustment transfers increase the price of L, causing consumers on theH-Lmargin to opt
for H instead of L. These consumers are the highest-cost L enrollees, implying that their exit from L
will lower L’s average cost and thus its price. Therefore, the indirect substitution effects will mute (or
even fully offset) the direct effect of risk adjustment on PL. Because of this direct and indirect effect, it
is ambiguous whether PL will increase or decrease, and in general, any change in PL will be smaller than
one would expect from the direct effect alone.

Further, the question of whether the direct or indirect effect dominates depends onwhether the sub-
stitution term is greater than or less than 1 in absolute value. If it is greater than 1, then the substitution
term will dominate. This will occur if ∂AC

RA
L

∂PH
> 1 − ∂ACRA

H

∂PH
. This will tend to occur when intensive

margin adverse selection is very strong (even after risk adjustment) so that both ∂ACRA
L

∂PH
and ∂ACRA

H

∂PH
are

large. Conversely, if adverse selection is weak, the direct effect will dominate.
This expression also tells us how the size of any cost advantage forLmay affect the effects of increasing

α. WhenL has no cost advantage overH (the cream-skimmer case), the only reasonL gets any demand is
intensive margin adverse selection. When adverse selection is strong in the cream-skimmer case, L exists
but the substitution effect is also large, muting the direct effect of risk adjustment. When adverse selection
is weak in the cream-skimmer case,L fails to exist. Thus, it is more likely that increasing α will have little
or no (or possibly negative) effect onPL in the case whereL has no cost advantage than in the case where
L has a cost advantage.

To summarize the case with fixed subsidies, dDU

dα
is ambiguous even under the vertical model because

we cannot theoretically sign the change in PL when when α increases. If the direct effect dominates,
then PL will increase with α and uninsurance will rise under the vertical model. If the substitution toH
dominates, then PL will fall and uninsurance will also fall.

When we relax the vertical assumptions, the potential for stronger risk adjustment to increase unin-
surance is further mitigated by the presence of theHU extensive margin. The term ∂DU

∂PH

dPH

dα
in equation

(15) will be positive. Because dPH

dα
< 0, consumers on theHU margin will tend to become insured (inH)

when risk adjustment is strengthened. This may offset any rise in uninsurance along theLU margin ifPL
rises, as more consumers leave uninsurance to buyH .
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B Appendix: Extensions to the Graphical Model

B.1 Graphical Analysis of Perfect Risk Adjustment
In this section, we illustrate how our graphical model can be used to show the effects of perfect risk adjust-
ment on equilibrium prices and market shares. Under perfect risk adjustment, transfers perfectly capture
all variation in CL across consumer types. The graphical representation of the role of risk adjustment in
the two margin problem is complicated by the fact that risk adjustment transfers causeRACH (the risk-
adjusted cost curve) to become an equilibrium object rather than a stable market primitive (likeACH), as
any effects of selection into the market are at least partially shared betweenL andH due to the risk-based
transfers.

To simplify exposition, we assume that the causal cost difference betweenH andL equals a constant
value of δ for all consumer types s. We define perfect risk adjustment as transfers such that the aver-
age cost in H net of risk adjustment always equals the average cost in L net of risk adjustment plus δ:
RACH(P ) = RACL(P ) + δ. Under perfect risk adjustment, the average risk-adjusted cost inH andL
does not depend on consumer sorting betweenH andL. Instead, the average cost of both plans depends
only on consumer sorting between insurance and uninsurance. If new healthy consumers join themarket
(buying theLplan), the risk transfers share the improved risk pool equally betweenH andL, maintaining
the δ difference between their average costs. The important simplifying feature of perfect risk adjustment
is that when it comes to average costs, there is only one relevant margin of adjustment: the extensive mar-
gin. With imperfect risk adjustment, residual intensive margin selection that is not compensated by risk
adjustment remains relevant, complicating the graphical analysis.

We depict the perfect risk adjustment case in Figure A1. Note that here we do not assume that L is a
pure cream-skimmer but instead thatL has a cost advantage equal to δ. Risk adjustment affects the curves
in a number of ways. First, as depicted in panel (b), risk adjustment causes the average cost curve for L
to shift upward and rotate slightly to make it parallel with the original, unadjusted average cost curve for
H . This shift reflects the risk transfer away fromL (and toH) that raisesL’s effective costs. RACL(sLU)
still slopes down because of extensive margin adverse selection, but it is now a fixed curve that does not
depend on the price ofH or sorting betweenH andL.45 The new, higher average cost curve forL,RACL
implies a new, higher equilibrium price forL, P̂ e

L. This higher price ofL implies a new demand curve for
H , shifted upward from the previous demand curve and depicted in panel (c) of Figure A1. This higher
demand curve forH reflects the fact that the higher price of Lmakes L less attractive relative toH .

Panel (d) of Figure A1 illustrates the second direct effect of risk adjustment. For the H plan, risk
adjustment causes the average cost curve,RACH(sHL), to be rotated downward relative to the unadjusted
curve,ACH(sHL). RACH is now a flat line, since sorting between plans (i.e., the value of sHL) does not
affect average costs. The level ofRACH equalsACH(sLU)—the average cost if the entire population up
to the extensive margin type sLU were to enroll inH .

FigureA2 shows how this shift inH ’s average cost curve combineswith the shift inH ’s demand curve
to produce a new lower equilibrium price ofH , P̂ e

H and a higher quantity of consumers enrolling inH .
45One can show thatRACL is parallel to the oldACH since it is capturing the overall average costs of everyone from s = 0

up to a given sLU cutoff.
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Figure A1: Equilibrium under Perfect Risk Adjustment
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Notes: Starting from equilibrium in panel (a) and introducing perfect risk adjustment in panel (c), perfect risk adjustment
shifts up the average cost ofL fromACL(sLU ) toRACL(sLU ), reflecting the transfer away fromL toH . UnlikeACL, the
risk adjustedRACL only depends on the extensive margin SLU , not on the allocation across plans (sHL). The risk adjusted
curveRACL(sLU ) intersectsDL at a lower point, shifting out the extensive margin from seLU to ŝeLU . Next, in panel (c) we
see that this lower extensive margin-type ŝeLU shifts upDH . Finally, in panel (d) we see that risk adjustment flattens the risk
adjusted average cost ofH ,RACH , which likeRACL no longer varies depending on sorting between the two plans, sHL.
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Figure A2: Equilibrium under Perfect Risk Adjustment
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Notes: Under perfect risk adjustment, the risk-adjusted average cost curve forH is completely flat for a given sLU . Equilibrium
occurs at sHL and sLU values such thatRACH intersectsDH andRACL intersectsDL.

In summary, perfect risk adjustment has two effects. First, it causes the average cost curve forH to
rotate downward until it is flat. This rotation of the cost curve causes sHL to shift right, indicating a shift
of consumers from L toH . This is the intended effect of risk adjustment, and it is caused by a transfer
from L to H to compensate H for the externality imposed on it by intensive margin selection from L.
Second, it causes the average cost curve forL to both rotate and shift up.46 This change inACL causes sLU
to shift left, indicating a shift of consumers fromL toU , increasing uninsurance. This is the unintended
effect of risk adjustment. It occurs because the transfer to H comes from L, resulting in an increase in
L’s costs and price, forcing some consumers out of the market. In Section 3 we also provide a graphical
description of the welfare consequences of risk adjustment, both perfect and imperfect.

In Appendix A and Appendix D.4.1 we also explore (both theoretically and empirically) how the
effects of risk adjustment are affected by the relaxation of our vertical model assumption, finding that
the presence of consumers with non-vertical preferences can act to weaken the unintended effects of risk
adjustment on the extensive margin.

Finally we note that if risk adjustment is perfect—as assumed in this subsection—it will often lead to
countervailing effects with some consumers opting forH instead ofL and other consumers opting forU
instead ofL. With imperfect risk adjustment, in contrast, the unintended extensive margin effect may or
may not occur, depending on the relative sizes of the direct and indirect effects.

46The curve remains downward-sloping because perfect risk adjustment only addresses intensive margin selection, leaving
selection on the extensive margin in place.
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B.2 Extension: Medicare Advantage + Traditional Medicare
Our graphical model can be extended to other cases beyond the baselineH/L/U setup modeled on the
ACAMarketplaces. One setting of particular policy interest is the Medicare Advantage (MA) market, in
which plans of varying quality compete with an outside option of TraditionalMedicare (TM). A key dif-
ference for the MA-TM setting is that the inside-option plans are advantageously selected relative to the
outside option. Unlike the ACA case where the outside option of uninsurance attracts the lowest-cost
consumers,TM has historically attracted the sickest and highest-cost enrollees.47 We show in this section
how our graphical model can capture theMA-TM case under the maintained assumption of vertical dif-
ferentiation. (For non-vertical differentiation, a 2-D graphical approach is not feasible, but see the math
in Appendix A that captures the general case.)

TheMA-TM extension works as follows. We start by setting up a model with three vertically ranked
plans: (1) TM, the most preferred option; (2) H, a high-quality MA plan (middle option); and (3) L, a
lower-quality MA plan (least preferred). We think of TM as representing Traditional Medicare bundled
with a generous Medigap plan so that it is the most generous option for both cost sharing and provider
network. H could be a broad-network MA plan (e.g., a PPO), while L could be a narrow-network MA
plan (e.g., anHMO). Importantly, we assume thatTM is the outside optionwhose price is set exogenously
by policymakers (e.g., via the Part B premium and rules for MA subsidies/benchmarks), while the prices
of H and L are determined in equilibrium. We note, of course, that the real-world MA-TM market is
muchmore complicated than this setup and that vertical differentiation is an approximation. Ourmodel
should be seen as an approximation, and the caveats discussed for our baseline model also apply here.

To capture advantageous selection with respect to TM, we reorder the plan sorting along our main-
tained "s type" x-axis. Rather than have the lowest-WTP types choose the outside option (of uninsurance)
as in our baseline model, the highest-WTP types now choose the outside option of TM. Middle-WTP
types choose the H MA plan, and the lowest-WTP types choose the L MA plan. We will continue to
assume thatWTP correlates with sickness (cost), so the sickest types chooseTM, middle types chooseH,
and the healthiest types chooseL. This reordering lets us define demand and costs curves and competitive
equilibrium in a similarmanner as in our baselineH/L/Umodel. We note that this reordering is different
from the EFC-graph approach to advantageous selection, which instead uses upward sloping curves corre-
sponding to amarketwhere consumer preference formore generous coverage itself is negatively correlated
with costs.

Formally, we maintain the vertical model assumptions of Section 2 with labeling changes. We nor-
malizeWi,L ≡ 0 and make the following two assumptions:

Assumption 3. Vertical ranking: Wi,TM > Wi,H > Wi,L ≡ 0 for all i

Assumption 4. Single dimension of WTP heterogeneity: There is a single index s ∼ U [0, 1] that orders
consumers based on declining WTP, such thatW ′

H(s) < 0 andW ′
TM(s)−W ′

H(s) < 0 for all s.

We assume that the consumer price of TM, PTM , is set exogenously. The prices of theH and LMA
plans are set competitively to equal their average costs:

PH = ACH (P ) and PL = ACL (P ) (16)

47There is evidence that in recent years, improved risk adjustment has offset some of these differences. The model in this
section should be seen as illustrative of the traditional case where MAwas still advantageously selected.

55



Online Appendix

As in the baseline model, there could be non-uniqueness, and we limit attention to equilibria that meet
the requirements of the Riley Equilibrium (RE) notion (see Appendix C.3). For the graphical presenta-
tion, we focus on the case of monotonic adverse selection in which higher-WTP correlates with higher
costs. For graphical simplicity, we also focus on the pure cream-skimming case whereCH(s) = CL(s) for
all s. The more general case would be similar but would involve plotting two separate type-specific cost
curves. Finally, we depict the case with positive demand for all contracts, though in principle the model
allows one more contracts to unravel.

Figure A3 shows equilibrium in the MA-TM case under these assumptions. The graph is similar to
equilibrium in the baselineH/L/U case (see Figure 4) but with a few differences. First, the price ofTM is
exogenous and there is therefore no need to show the average cost ofTM. Second, all demand and average
cost curves are now equilibrium objects that depend onPH orPL; it is no longer possible to defineACH
andDL based on primitives alone. This makes the setup slightly more complex to describe, but the basic
concepts and cross-margin policy effects are similar.

Walking through Figure A3, suppose we start with an exogenous PTM (set by policymakers) and an
initial guess forPH andPL. Thedemand curve that determines sortingbetweenTM andH isDTM(s) =
WTM(s)−WH(s)+PH . The type indifferentbetween these twooptions iss∗TM,H , definedbyDTM(s∗TM,H) =
PTM . Types to the left of this point (DTM(s) > PTM ) choose TM , while types to the right of this point
choose H or L. Sorting between H vs. L is determined by the yellow curve DH(s) ≡ WH(s) + PL,
with indifferent type s∗H,L defined byWH(s∗H,L) + PL = PH . Types to the left of s∗H,L chooseH (since
DH(s) > PH), while types to the right choose L (since DH(s) < PH). Notice that both the dashed
black and yellow curves equal WTP (for TM andH) shifted upward by PL. This is similar to the way
that themandate penalty (price of the lowest-quality option) shifted upwardWTP for insurance plans in
our baseline H/L/Umodel, but in this case the price of L is endogenous.

Turning to costs, the pink curve is the type-specific cost curve,CH(s) = CL(s), for this pure cream-
skimming case (though this would be easy to generalize). The average cost curve forH starts at s∗TM,H and
slopes downward to the right (lying above theCH(s) curve), capturing the average costs of all individuals
choosing H (i.e., s ∈ [s∗TM,H , sHL]). In equilibrium, ACH(s) intersects DH(s) at s = s∗H,L so that
ACH(s∗H,L) = PH . For the L plan, the average cost curve starts at this s∗H,L type and slopes downward
to the right (lying above the CL(s) curve). Since all s ∈ [s∗H,L, 1] choose L, the final average costs of L
equals the value ofACL(s) at s = 1. In equilibrium,ACL(1) = PL.

This model can also be used to think about cross-margin policy effects. For instance, suppose the
government decreases the price of TM, intending to get more consumers to choose the higher-quality
TM option. Some consumers then shift fromH intoTM at the s∗TM,H margin, captured by amovement
along the DTM curve. These people leaving H are its highest-cost consumers, so the ACH curve shifts
downward, resulting in a lowerPH and a shift fromL toH on the intensive margin. Therefore, a change
in the extensivemargin price (PTM ) results in a demand shift on the intensivemargin from theL to theH
plan. Notice, however, that unlike the H/L/U case, the cross-margin effects reinforce the original policy’s
goal of getting consumers into higher-quality plans. In addition to the intended shift from H to TM
(higher quality), there is a cross-margin shift from L toH (also higher quality). In words, lowering the
price of TM results in more MA enrollees choosing higher-quality MA options.48

48Similar analysis could also be applied to study the cross-margin impact of a risk adjustment transfer from L toH , which
might lower the price ofH and draw consumers intoH from TM . In reality in theMA-TMmarket, risk adjustment applies
across all three options, making the analysis somewhat different.
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Figure A3: Equilibrium inMedicare Advantage + Traditional Medicare Case
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Notes: The graph shows equilibrium in the Medicare Advantage (MA) + Traditional Medicare (TM) case, as described in
the appendix text. Assumptions, curve setups, and equilibrium are similar to our baseline H/L/U model, but with sorting
reordered so that thehighest-WTP (furthest left) types choose theoutside optionofTM,middle-WTP types choose thehigher-
quality MA plan (H ), and the lowest-WTP types choose the lower-quality MA plan (L).

B.3 Formal Social Welfare Function
In this appendix, we derive a formal expression for welfare, building on the graphical presentation in the
body text. We allow for cases where CU is non-zero—e.g., if the outside option involves social costs like
uncompensated care.

We define social welfare as:

ŜW (P ) =

sHL(P )∫
0

(WH (s)− CH (s)) ds+

sLU (P )∫
sHL(P )

(WL (s)− CL (s)) ds−
1∫

sLU (P )

CU (s) ds (17)

Recall that the level of utility was normalized above by settingWU = 0. As in the figures, we can express
welfare in terms of three curves and two areas (integrals) if we make the following transformations. First,
add a constant equal to total potential cost of U , defining SW = ŜW +

∫ 1

0
CU (s) ds. Second, define

“net costs” ofL (in excess ofCU ) asCNet
L (s) ≡ CL(s)−CU(s). Rearranging and simplifying, this yields

57



Online Appendix

the following expression for social welfare:

SW =

sHL(P )∫
0

(
WNet
H (s)−WL(s)

)
ds

︸ ︷︷ ︸
Intensive Margin Surplus fromH vs. L

+

sLUP )∫
0

(
WL (s)− CNet

L (s)
)
ds

︸ ︷︷ ︸
Extensive Margin Surplus fromL vs. U

(18)

The first term is the intensive margin surplus (H vs. L) for consumers who buyH , s ∈ [0, sHL]. Notice
thatWNet

H (s) −WL(s) = ∆WHL − ∆CHL, so this is indeed capturing the intensive margin surplus.
The second term is the extensive margin surplus from insurance (in L) relative to uninsurance, which
applies to everyone who buys insurance, s ∈ [0, sLU ]. Equation (18) shows that it is straightforward to
calculate welfare even whenCU 6= 0, as long as the researcher has information aboutCU .

C Appendix: SimulationMethod Details

C.1 Constructing Demand and Cost Curves
As discussed in section 4, we draw on separate demand and cost estimates for both low-income subsidized
consumers from Finkelstein, Hendren and Shepard (2019) (abbreviated "FHS") and high-income unsub-
sidized consumers fromHackmann, Kolstad andKowalski (2015) (abbreviated "HKK"). We describe how
each respective paper produced its primitives as well as our modifications below.

C.1.1 Low-Income Demand and Costs: FHS (2019)

FHS Primitives

• Population: FHS estimate insurance demand in Massachusetts’ pre-ACA subsidized health insur-
ance exchange, known as “CommCare.” CommCare was an insurance exchange created under the
state’s 2006 “Romneycare” reform to offer subsidized coverage to low-income non-elderly adults
(below 300% of poverty) without access to other health insurance (from an employer, Medicare,
Medicaid, or another public program). This population was similar, though somewhat poorer,
than the subsidy-eligible population under the ACA.

• Market structure: CommCare participation was voluntary: consumers could choose to remain
uninsured and pay a (small) penalty. As FHS show, a large portion of consumers (about 37% over-
all) choose the outside option of uninsurance, despite the penalty and large subsidies. The Comm-
Care market featured competing insurers, which offered plans with standardized (state-specified)
cost sharing rules but which differed on their provider networks. In 2011, the main year that FHS
estimate demand, the market featured a convenient vertical structure among the competing plans.
Four insurers had relatively broad provider networks and charged nearly identical prices just below
abindingprice ceiling imposedby the exchange. One insurer (CeltiCare) had a smaller provider net-
work and charged a lower price. FHSpool the four high-price, broadnetwork plans into a single "H
option"—technically defined as each consumer’s preferred choice among the four plans—and treat
CeltiCare as a vertically lower-ranked "L option." FHS present evidence that this vertical ranking is
a reasonable characterization of the CommCare market in 2011.
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• FHS Estimation: To estimate demand and costs, FHS use a regression discontinuity design leverag-
ing discontinuous cutoffs in subsidy amounts based on household income. Because subsidies vary
across income thresholds, there is exogenous net price variation that can transparently identify de-
mand and cost curves withminimal parametric assumptions. FHS leverage discontinuous changes
in net-of-subsidy premiums at 150%FPL, 200%FPL, and 250%FPL arising fromCommCare’s sub-
sidy rules. They estimate consumerwillingness-to-pay for the lowest-cost plan (L) and incremental
consumer willingness-to-pay for the other plans (H) relative to that plan.49 This method provides
estimates of the demand curve for particular ranges of s. The same variation is used to estimate
ACH(s) and CH(s), the average and marginal cost curves forH . Our goal is not to innovate on
these estimates but rather to apply them as primitives in our policy simulations to understand the
empirical relevance of our conceptual framework.

OurModifications to FHS Primitives

• Extrapolating to extremes of s distribution: The FHS strategy provides four points of theWL(s)
curve and four points of theWHL(s) = WH(s) − WL(s) curve. As shown in Figure 10 from
FHS, for theWL curve these points span from s = 0.36 to s = 0.94 and for theWHL curve
these points span from s = 0.31 to s = 0.80. Because our model allows for the possibility of zero
enrollment in eitherL orH or both, we need to modify the curves, extrapolating to the full range
of consumers, s ∈ [0, 1]. We start by extrapolating linearly, and then we “enhance” demand forH
among the highest WTP consumers, as we view this as more realistic than a linear extrapolation.
(We explore the sensitivity of our empirical results to alternative assumptions about this WTP en-
hancement inAppendixD.4.2)We then smooth the enhanced demand curves to eliminate artificial
kinks produced by the estimation and extrapolation.
(1) Linear demand: For the linear demand curves, we extrapolate the curves linearly to s = 0 and
s = 1.0. Call these curves W lin

L (s) and W lin
H (s), with incremental WTP defined as W lin

HL =
W lin
H −W lin

L (s).
(2) Enhanced demand: For the enhanced demand curves

(
W enh
L (s) andW enh

H (s)
)
, we inflate con-

sumers’ relative demand forH vs. L in the extrapolated region, relative to a linear extrapolation.
We implement enhanced demand in an ad hoc but transparent way: We first generateW enh

L (s) =
W lin
L (s) for all s. For all s >= 0.31 (the boundary of the "in-sample" region ofWHL(s)), we

likewise setW enh
HL (s) = W lin

HL(s). For s = 0, we setW enh
HL (s = 0) = 3W lin

HL(s = 0), so that
the maximum enhanced incremental willingness-to-pay is three times the value suggested by the
primitives. We then linearly connect the incremental willingness to pay between s=0 and s=0.31,
settingW enh

HL (s < 0.31) = W lin
HL (s) + 3 × (0.31−s)

0.31
×W lin

HL (0) so that the enhanced curve is
equal to the linear curve for s >= 0.31, equal to three times the linear curve at s = 0, and linear
between s = 0.31 and s = 0. This approach assumes that there exists a group of (relatively sick)
consumers who exhibit very strong demand for H relative to L, which seems likely to be true in
the real world. Thus,

W enh
HL (s) =

{
W lin
HL (s) for s ∈ [0.31, 1]

W lin
HL (s) + 3× (0.31−s)

0.31
×W lin

HL (0) for s ∈ [0, 0.31)
(19)

49Because the base subsidy for L and the incremental subsidy forH change discontinuously at the income cutoffs, there is
exogenous variation in both the price ofL and the incremental price ofH .
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and

W enh
H (s) = W lin

L (s) +W enh
HL (s). (20)

Both the linear and the enhancedWTP curves are shown in the top panel of Figure A4.

• Cost of L plan: We need to produce estimates of CL(s) to complete the model. FHS provide
suggestive evidence that CL(s) is quite similar to CH(s)—i.e., that for a given enrollee, L does
not save money relative to H . We conducted further analyses to provide additional evidence on
this question (leveraging entry of the L plan in some areas but not others, leveraging additional
price variation forL vs.H , etc.), consistently finding a lack of evidence of any cost advantage forL
among the enrollees marginal to these sources of variation. While Lmay indeed be a pure cream-
skimmer in this setting, the assumption that CH(s) = CL(s) for all s seems unlikely to hold in
many other settings. Thus, we consider both the setting where L has a 15% cost advantage so that
CL(s) = 0.85CH(s) and the setting where, consistent with the empirical evidence, L is a pure
cream-skimmer, i.e. CL(s) = CH(s).

• Smoothing primitives: Because they were estimated using a regression discontinuity design, the
primitives above all have discrete “kink points" at which the slope of the curve with respect to the
share of the population enrolled changes discretely. In these regions, equilibrium allocations are
extremely sensitive to small changes in policy parameters. To avoid this unrealistic sensitivity, we
smooth the cost curves as well as the enhanced demand curves using a fourth degree polynomial.
Specifically, for primitive Y (s), we run the following regression.

Y = β̂0 + β̂1s+ β̂2s
2 + β̂3s

3 + β̂4s
4 + ε

Using the fitted coefficients, we then use the predicted value Ŷ ,

Ŷ = β̂0 + β̂1s+ β̂2s
2 + β̂3s

3 + β̂4s
4

This “smoothing” process was done on both theWTP curves as well as the cost curve primitives.

C.1.2 High-Income Demand and Costs: HKK (2015)

For our simulations, we also consider demand of higher-income groups, which allows us to simulate poli-
cies closer to the ACA. Under the ACA, low-income households receive subsidies to purchase insurance
while high-income households do not. We constructWTP curves for high-income households using esti-
mates of the demand curve for individual-market health insurance coverage inMassachusetts fromHack-
mann, Kolstad and Kowalski (2015) ("HKK").

HKK Primitives

• Population: HKKestimate demand in the unsubsidized pre-ACA individual health insurancemar-
ket in Massachusetts, which is for individuals with incomes above 300% of poverty (too high to
qualify for CommCare).

• Estimation: HKK use the introduction of the state’s individual mandate in 2007-08 as a source of
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exogenous variation to identify the insurance demand and cost curves. HKKonly estimate demand
for a single L plan.

OurModifications to HKK Primitives

• Constructing WHI
L (s) : We start by constructing WHI

L (s), based on the estimates from Hack-
mann, Kolstad andKowalski (2015). The superscriptHI refers to high income. TheHKKdemand
curve takes the following form:

WHKK(s) = −$9, 276.81 ∗ s+ $12, 498.68 (21)

This demand curve is "in-sample" in the range of 0.70 < s < 0.97. As with the low-income,
subsidized consumers, we linearly extrapolateWHKK(s) out-of-sample to constructWHI,lin

L (s).
Specifically, we letWHI,lin

L (s) = WHKK(s) for all s.

• ConstructingWHI,lin
H (s) andWHI,enh

H (s): HKK only estimate demand for a single L plan. Sim-
ilar to FHS, we start by estimating a linearly extrapolated WTP forH ,WHI,lin

H (s), and then “en-
hance” demand forH among the highest WTP types,WHI,enh

H (s), using theW lin
HL andW enh

HL as
constructed for the low-income population above (i.e. we assume that extensive margin WTP for
insurance is different between the high-income and low-income groups, but intensivemarginWTP
forH vs. L is the same):

WHI,lin
H (s) = WHI

L +W lin
HL(s)

WHI,enh
H (s) = WHI

L +W enh
HL (s)

• ConstructingCHI
L (s), CHI

H (s): We assume that the cost curves for this group are equivalent to the
cost curves of the subsidized population, Thus,

CHI
H (s) = CH(s)

CHI
L (s) = CL(s)

where CH(s) is drawn from FHS and CL(s) is the curve as constructed in the previous section.
We note that these assumptions imply that the high-income consumers have a level shift in WTP
with no difference in the extent of intensive or extensive margin selection from the low-income
consumers.

• Smoothing primitives: Similar to above, we also smooth primitives.

We thus have two demand systems: one for low-income consumers and one for high-income con-
sumers. Both exhibit WTP forH that is “enhanced” for the highest WTP types beyond what a simple
linear extrapolation would imply. We combine these systems to form one set of demand and cost curves,
by assuming that 60%of themarket is low-income and 40%of themarket is high-income, consistent with
the population in the ACAHealth Insurance Marketplaces.
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Figure A4: WTP Curves forH and L

(a) Low-Income

(b) High-Income

Notes: Figure shows WTP Curves for H and L, WH(s) andWL(s). The top panel shows curves for low-income group
which come from (Finkelstein, Hendren and Shepard, 2019). The bottom panel shows curves for high-income group which
come from (Hackmann, Kolstad and Kowalski, 2015). Linear curves extrapolate linearly over the out-of-sample range [0,0.31].
Modified (i.e. "enhanced") curves assume that the lowest s-types have very high incremental WTP forH .
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C.2 Estimation of Risk Score Curve
LikeWTP and costs, we use FHS’s regression discontinuity approach to estimate a risk adjustment func-
tion for each s-type, R(s). This function characterizes the expected cost of each s-type, as predicted by
the actual risk scores of each enrollee, RAHCCi . To calculate this, we first compute these scores for each
individual in our data, based on diagnosis codes present in the individual-level claims. All risk scores are
computed using theHierarchical ConditionCategories (HCC), a risk adjustmentmodel used by the Cen-
ters for Medicare andMedicaid Services for the ACAMarketplaces.50

Once we have a risk score for each individual in the dataAHCCi , the risk score curveR(s) was iden-
tified off of the same premium discontinuities as used to identify the demand curve in FHS. We then
connect and smooth segments in a similar fashion to our construction of the cost and WTP curves to
generate theR(s) we use in our analysis. Similar to our assumption that the cost curveCH(s) estimated
on the subsidized population applies to the un-subsidized population, we assume that this R(s) curve
estimated on the un-subsidized population also applies to the subsidized population.

Figure A5 shows a measure of risk-adjusted costs for theH plan in comparison to raw costs CH(s).
It plots CH(s) and CH(s)/R(s); the latter would be constant in s under perfect risk adjustment. Con-
sistent with risk adjustment being meaningful but imperfect, the risk-adjusted cost curve is much flatter
than raw costs but still downward sloping. Over the s ∈ [0, 1] interval, the risk-adjusted cost curve falls
by about $130, compared to a fall of $367 in raw costs. Thus, by this measure, risk scores net out about
35% of the cost variation along the marginal cost curve forH . Since this simulation exclusively uses cost
and risk score primitives from the subsidized population of pre-ACAMassachusetts, this finding should
not necessarily be seen as generalizable to the entire ACA exchange population.

C.3 Riley Equilibrium Concept
We consider equilibria that meet the requirements of the Riley Equilibrium (RE) notion. In words, a
price vector of P = (PH , PL) is a Riley Equilibrium if there is no profitable deviation for which there
is no "safe" (i.e. weakly profitable) reaction that would make the deviating firm incur losses. We slightly
modify the definition presented in Handel, Hendel andWhinston (2015) below

DEFINITION 1: A Riley Equilibrium is a set of break-even price offers P ∈ PBE for which there exists
noRileyDeviationP ′. ARileyDeviation (P ′) is a set of offers such thatP ′∪P is closed andP ′∩P = ∅.
This P ′ is a Riley deviation if the following criteria are satisfied.

1. The Riley Deviation plan P ′ is weakly profitable and garners non-zero enrollment when the orig-
inal prices are also offered: P ′j ≥ ACj(P

′
j) when P ∪ P ′ is offered and P ′j 6= Pj (Note that this

deviates from Handel, Hendel and Whinston (2015), which requires that the Riley Deviation is
strictly profitable)

2. No "Safe Response" (P ′′) exists

We define a safe response as a set of price offersP ′′ such thatP ∪P ′∪P ′′ is closed andP ′′ is disjoint from
P ∪ P ′ ∪ P ′′ such that

50In practice, the methodology involves grouping diagnoses into different conditions, such as diabetes, etc. Individuals are
then assigned risk scores based on the weighted value of all of their conditions. CMS publishes its weights annually on its
website (https://www.cms.gov/medicare/health-plans/medicareadvtgspecratestats/risk-adjustors.html)
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Figure A5: Raw Costs (CH) versus Risk-Adjusted Costs

Notes: Figure shows raw CH (black, continuous line) and risk-score normalized CH (blue, dashed). While the risk score is
able to flatten out the cost curve somewhat, not all risk is captured by the score, leaving some slope.

1. P ′ incurs losses when P ∪ P ′ ∪ P ′′ is offered

2. P ′′ does not incur losses when any market offering P̂ containing P ∪ P ′ ∪ P ′′ is offered

It is straightforward to show that in our setting no price vector that earns positive profits for either L or
H is a RE (see Handel, Hendel and Whinston, 2015 for a proof). This limits potential REs to the price
vectors that causeL andH to earn zero profits. We refer to these price vectors as "breakeven" vectors. This
set consists of the following potential vectors:

1. No Plan Enrollment: Prices are so high that no consumer enrolls inH or L

2. L-only: PH is high enough that no consumer enrolls inH while PL is set such that PL equals the
average cost of the consumers who choose L.

3. H-only: PL is high enough that no consumer enrolls in Lwhile PH is set such that PH equals the
average cost of the consumers who chooseH .

4. H andL:PL andPH are set such that bothL andH have positive enrollment andPL is equal to the
average cost of the consumers who choose L and PH is equal to the average cost of the consumers
who chooseH .

To simplify exposition, in Section 2 we assume that there is a unique RE such that there is positive en-
rollment in bothH andL. However, we note that under certain conditions the competitive equilibrium
will instead consist of positive enrollment in only one of the two plan options. We allow for these possi-
bilities in the empirical portion of the paper and are able to find an unique REwhere at least one plan has
non-zero enrollment for every setting tested. See Appendix C.4 for details on the algorithm.
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C.4 Reaction Function Approach to Finding Equilibrium
Evaluating demand, profits: For each uninsurance penalty, risk adjustment strength, L-plan cost advan-
tage, and subsidy type setting, we find the equilibrium price configuration (PH , PL) using the following
grid-search method. We construct a grid of PH , PL price combinations, withH on the vertical axis and
L on the horizontal axis. For most simulations, we use a coarse grid with $1 units. For each pair, we eval-
uate H and L profits using the demand, cost, and risk-adjustment equations as detailed in the body of
the paper. For insurance typesH ,L and uninsuranceU we evaluate demand by finding the "indifference
points"–the first and the last points in the s distribution such that each type of insurance’s enrollment
conditions are satisfied. Because of the vertical model, we can attribute all intermediate points of the s
distribution between these indifference points to a given plan. If no points on the s vector satisfy the
plan’s enrollment conditions, the plan has zero enrollment. We have indifference points sHL, sLU if both
H and L have non-zero enrollment and sHU , sLU if L orH has zero enrollment, respectively. If there is
non-zero demand for bothH andL, we calculate the average risk of those enrolled in each plan and con-
struct transfers from the less risky plan to the more risky plan, per the ACA risk adjustment formula (see
equation 4). In some counterfactual policy simulations, the transfer is multiplied by α. Finally, average
costs are calculated for each plan with non-zero enrollment. The function returns theH,L profit grids
ΠH , ΠL with which we can then evaluate equilibrium.

Finding equilibrium: For a given grid coarseness, we set a tolerance value T equal to the increment be-
tween grid points. A plan is considered to have zero profits if its profits are between−T and T . Potential
equilibria are all price pairs where (1) onlyH has non-zero enrollment and is making zero profits (2) only
L has non-zero enrollment and ismaking zero profits (3) bothH andL have non-zero enrollment and are
both making zero profits. Given the coarseness of the grid, there are usually multiple potential equilibria
of each type. We use the following process to refine this set down to the final equilibrium point according
to our concept of the Riley Equilibrium.

• Single plan equilibria: First, we refine our L−only andH−only equilibria. For the remainder of
this paragraph, we will refer to the potential L−only equilibria, but an analagous methodology
also applies to refining potentialH−only equilibria. LetPL−only be the set of potentialL− only
equilibria. Price vector (PH , PL) ∈ PL−only iff. at (PH , PL)

1. ΠL(PH , PL) ∈ [−T, T ]

2. L has nonzero enrollment
3. H has zero enrollment.

Given the curved nature of the primitives, for some settings, especially those where L has a large
cost advantage, there are multiple unique PL that are potential L-only equilibrium vectors.

Further, for each potential L-only PL, ∃ Pmin
H s.t. ∀ PH > Pmin

H (PH , PL) ∈ PL−only51 For
each potentialL-only equilibrium pricePL, we evaluate whether the conditions of a Riley Equilib-
rium are satisfied at (Pmin

H , PL). We need only evaluate Pmin
H since any potential deviations from

51 If at (PH , PL),L has non-zero enrollment and earns zero profits andH gets zero enrollment, then ifH increases its price
to P ′H > PH , enrollment allocations will remain exactly the same andLwill continue to make zero-profits.
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(Pmin
H , PL) would also be deviations from (PH , PL), PH > Pmin

H .

To test anL-only equilibrium for anH-deviation, the process is as follows: Startingwith the lowest
PL ∈ PL−only, the Riley Equilibrium refinement algorithm evaluates whether a Riley Deviation
exists for a given potential L-only PL using three nested loops. For L-only equilibria (PL, P

min
H ),

we considerH-only Riley Deviations (P ′H , PL) where P ′H < Pmin
H .

1. Find Potential Riley Deviations: The outer loop evaluates each P ′H < Pmin
H to identify

whetherΠH(P ′H , PL) > T (i.e.H makes positive profits). If no such potentialH-deviations
are found, (Pmin

H , PL) is considered a RE. If a potential H-deviation is found, the second
loop is called.

2. Find Potential Retaliations: This loop evaluates each grid point (P ′H , P
′
L), P ′L < PL to iden-

tify potential L-retaliations where ΠL(P ′H , P
′
L) > −T,ΠH(P ′H , P

′
L) < −T (i.e. Lmakes

weakly positive profits and H makes negative profits. If no such potential retaliations are
found for a given potentialH-deviation, then (Pmin

H , PL) is not a Riley Equilibrium (since
there exists a Riley Deviation with no retaliation).

3. Determine if Retaliation is "Safe": If a potential retaliation is found, a third loop is activated
to evaluate if there is any point (P ′′H , P

′
L), P ′′H < P ′H that makes a given retaliation "unsafe"

where unsafe is defined asΠL < −T (i.e. Lmakes negative profits). If no such "unsafe" point
exists, then the retaliation point is safe and the potential deviation would not succeed.

If no retaliation-proof deviation exists for a given (PL, P
min
H ), then the point is a RE. If a deviation

does exist, the next larger (P ′L, PHmin
′) ∈ PL−only is tested.

• H-L equilibria: Because of the coarseness of the grid, there are usually multiple connected points
where bothH andL have enrollees and are making zero profits. We pick the point with the lowest
PL to evaluate. For each potentialHL equilibrium, we test if any single-plan deviations exist. This
consists of checking whether any Riley Deviations that change PH holding fixed PL or change PL
holding fixedPH exist, using the same set ofRE loops described in the previous paragraph. If either
type of deviation is found, theHL equilibrium is not an RE.

We apply this algorithm to every cost, risk adjustment, mandate penalty, and subsiyd type setting and in
every case are able to find an unique equilibrium that satisfies our Riley Equilibrium conditions.

D Appendix: Additional Simulation Results

D.1 Simulation Results for Mandate/Uninsurance Penalty
Tables A1 andA2 Show additional outcomes for themandate/uninsurance penalty simulations discussed
in Section 5 and shown in Figure 9. In all cases, the welfare measure represents the social surplus under
the particular policy setting as a percent of the difference between minimum possible social surplus and
maximum possible social surplus achieved.
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Table A1: Varying Mandate Penalty

(a) ACA-like subsidy, L cream-skimmer

mandate 0 15 30 45 60
price H 382 374 371 360 349
price L 352 344 337 325 313
share H .42 .42 .3 .26 .23
share L .31 .37 .55 .67 .77
share U .27 .21 .15 .069 0
subsidy 297 289 282 270 258
welfare .91 .76 .49 .24 0

(b) Fixed $275, L cream-skimmer

mandate 0 15 30 45 60
price H 387 381 373 349 349
price L 357 351 341 313 313
share H .42 .42 .37 .23 .23
share L .24 .3 .44 .77 .77
share U .35 .28 .19 0 0
subsidy 275 275 275 275 275
welfare .93 .79 .56 0 0

(c) ACA-like subsidy, L cost advantage

mandate 0 15 30 45 60
price H 414 409 404 399 .
price L 307 300 292 283 273
share H .021 .017 .013 .0065 0
share L .73 .79 .86 .93 1
share U .25 .19 .13 .067 0
subsidy 252 245 237 228 218
welfare .95 .75 .52 .27 0

(d) Fixed $250 , L cost advantage

mandate 0 15 30 45 60
price H 415 404 . . .
price L 307 294 273 273 273
share H .019 .016 0 0 0
share L .73 .84 1 1 1
share U .26 .15 0 0 0
subsidy 250 250 250 250 250
welfare .27 .16 0 0 0

Notes: Table A1 contains equilibrium prices, market shares, subsidy levels and relative welfare under varying levels of mandate
penalties. Panels (a) and (b) are results for when L is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for when L
has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the market
has a fixed subsidy. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) where max and min are taken over integer
mandate penalty values 0 to 60 under the panel’s sameL cost advantage, subsidy scheme.

D.2 Simulations of Benefit Regulation
Tables A3 and A4 characterize equilibrium results with and without an L-plan offered when the L-plan
is a pure cream-skimmer and when L has a 15% cost advantage. For a given setting, the welfare loss is
reported in dollars and represents loss relative to welfare under the optimal allocation.

The results indicate that for the ACA-like price-linked subsidies, removing L from the choice set
always (weakly) improves welfare. This is because removingL results in a higher subsidy andmore people
entering the market. In the fixed subsidy cases, we find that removing L often causes both an increase in
H ’s market share and an increase in the uninsurance rate (especially when L has a 15% cost advantage).
However, we find that in all cases, benefit regulation improves welfare, implying that the welfare losses
from more people being uninsured are more than offset by welfare gains from more people enrolling in
H .
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Table A2: Varying Risk Adjustment (α)

(a) ACA-like subsidy, L cream-skimmer

α 0 .5 1 1.5 2
price H . 437 382 362 362
price L 372 362 352 . .
share H 0 .082 .42 .78 .78
share L .72 .64 .31 0 0
share U .28 .28 .27 .22 .22
subsidy 317 307 297 307 307
welfare .46 .59 .91 .91 .91

(b) Fixed $275, L cream-skimmer

α 0 .5 1 1.5 2
price H 495 438 387 377 377
price L 381 369 357 . .
share H .0095 .097 .42 .66 .66
share L .57 .52 .24 0 0
share U .42 .38 .35 .34 .34
subsidy 275 275 275 275 275
welfare .68 .73 .93 1 1

(c) ACA-like subsidy, L cost advantage

α 0 .5 1 1.5 2
price H . . 414 361 362
price L 308 308 307 313 .
share H 0 0 .021 .16 .78
share L .75 .75 .73 .59 0
share U .25 .25 .25 .25 .22
subsidy 253 253 252 258 307
welfare .93 .93 .95 .99 .58

(d) Fixed $250, L cost advantage

α 0 .5 1 1.5 2
price H . . 415 365 381
price L 309 309 307 316 .
share H 0 0 .019 .16 .6
share L .74 .74 .73 .56 0
share U .26 .26 .26 .29 .4
subsidy 250 250 250 250 250
welfare .24 .24 .27 .48 1

Notes: Table A2 contains equilibrium prices, market shares, subsidy levels and relative welfare under varying strengths of risk
adjustment α. Panels (a) and (b) are results for whenL is a cream-skimmer (∆C = 0) while panels (c) and (d) are for whenL
has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the market has
a fixed subsidy. relative welfare is reported as welfare−min(welfare)

max(welfare)−min(welfare) where max andmin are taken over integer mandate
penalty values 0 to 60 under the panel’s sameL cost advantage, subsidy scheme.

D.3 Additional Welfare Results from Simulations
D.3.1 Graphical Illustration of Welfare Consequences of an Uninsurance Penalty

In this appendix we show how to estimate the welfare consequences of an uninsurance penalty with our
graphical model. This exercise corresponds to the similar exercise analyzing the welfare consequences
of risk adjustment in the main text. Panel (a) of Figure A6 plots the empirical analogs to our welfare
figure from Section 2 for the case where L is a pure cream-skimmer. Instead of plotting CL, we plot
CNet
L = CL−CU , as in Eq. (18) to account for the fact thatCU 6= 0. We indicate the equilibrium s cutoffs

for the baseline ACA setting, where subsidies are linked to the price of the lowest-priced plan,α = 1, and
there is no uninsurance penalty. The intensivemargin equilibrium cutoff is seHL and the extensivemargin
cutoff is seLU . Thus, consumers with s < seHL enroll inH , consumers with seHL < s < seLU enroll in L,
and consumers with s > seLU remain uninsured.

It is apparent that, from a social surplus perspective, no consumer should be in L becauseWH −
(CH −CL) is everywhere aboveWL. This is becauseL is a pure cream-skimmer: All consumers valueH
more thanL andL has no cost advantage overH . In addition, in this setting some consumers (those with
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Table A3: Benefit Regulation : L-plan Cream Skimmer

ACA-like all sub Fixed = Avg. Cost Fixed = 300 Fixed = 275 Fixed =2 50

L offered No L L offered No L L offered No L L offered No L L offered No L
price H 382 362 353 390 429 429 448 448 461 461
price L 352 . 308 . . . . . . .
share H .42 .78 .29 .65 .43 .43 .31 .31 .22 .22
share L .31 0 .71 0 0 0 0 0 0 0
share U .27 .22 0 .35 .57 .57 .69 .69 .78 .78
subsidy 297 307 322 322 300 300 275 275 250 250
welfare -229 -225 -266 -213 -211 -211 -219 -219 -228 -228

Notes: Table A3 contains equilibrium prices, market shares, subsidy levels and welfare for various subsidy settings with and
without the L plan offered. All results are for a setting where L is a cream-skimmer (∆CHL = 0). The first two columns
contain results for ACA-like price-linked subsidies. The following columns are for various fixed subsidies. Welfare is calculated
under the baseline assumption,CU (s) = 0.64CH(s)− 97.

Table A4: Benefit Regulation : L-plan 15% cost advantage

ACA-like all sub Fixed = Avg. Cost Fixed = 300 Fixed = 275 Fixed =2 50

L offered No L L offered No L L offered No L L offered No L L offered No L
price H 414 362 . 390 . 429 441 448 462 461
price L 307 . 273 . 273 . 345 . 373 .
share H .021 .78 0 .65 0 .43 .066 .31 .088 .22
share L .73 0 1 0 1 0 .47 0 .25 0
share U .25 .22 0 .35 0 .57 .46 .69 .67 .78
subsidy 252 307 322 322 300 300 275 275 250 250
welfare -406 -236 -469 -224 -469 -222 -345 -230 -298 -239

Notes: Table A4 contains equilibrium prices, market shares, subsidy levels and welfare for various subsidy settings with and
without theL plan offered. All results are for a setting whereL has a 15% cost advantage. The first two columns contain results
for ACA-like price-linked subsidies. The following columns are for various fixed subsidies. Welfare is calculated under the
baseline assumption,CU (s) = 0.64CH(s)− 97.

69



Online Appendix

Figure A6: Empirical Estimates of Foregone Surplus

(a) Baseline Foregone Surplus (b) Impose $60 Penalty

Notes: Panels (a) and (b) showwelfare losses under ACA-like subsidies relative to efficient sorting, whenL is a cream-skimmer
and whenL has a 15% cost advantage overH , respectively. In both settings, 60% of the population is low-income and 40% of
the population is high-income, so WTP curves are weighted sums of both types. Efficient cutoffs are indicated with a * while
equilibrium outcomes are denoted with an e superscript. For both panel (a) and (b), we assumeCU (s) = 0.64CH(s)− 97.

s > s∗HU ) should not be insured at all. These consumers do not value eitherH or Lmore than the (net)
cost of enrolling them, making it inefficient for them to be insured. In the figure, we depict the foregone
surplus in the baseline ACA setting with shaded areas. The foregone intensivemargin surplus in panel (a)
(lost surplus due to consumers choosingL instead ofH) is described by the area betweenWNet

H andWL

for the consumers not enrolled inH ,ACDB. This area represents a welfare loss of $41.92. The foregone
extensive margin surplus (lost surplus due to consumers choosing U instead of L) is given by the area
betweenWL andCNet

L for the consumers who are not enrolled in insurance but should be,EDF . This
area represents a welfare loss of $16.58. The total foregone surplus in the baseline ACA setting in panel (a)
of Figure A6 is $58.50.

Panel (b) of Figure A6 shows how we estimate the welfare consequences of adding an uninsurance
penalty of $60permonth to thebaseline case fromPanel (a). Recall from the top-left panel of Figure 9 that
the imposition of a $60 mandate (1) induces all previously uninsured consumers to purchase insurance
and (2) causes a shift of 19% of the market from H to L. Effect (1) is the intended consequence of the
penalty, and it implies both welfare gains and losses. Welfare gains occur among those consumers who
valueLmore thanCNet

L = CL − CU and who newly enroll inL (green welfare triangleEFG). Welfare
losses occur among those consumers who valueL less thanCNet

L and who newly enroll inL (red welfare
triangleGHI). Together, the intended consequence of the penalty, inducing all consumers to purchase
insurance, implies a net welfare gain of $16.59. Effect (2) is the unintended consequence of the penalty,
shifting consumers fromH to L. Here, it implies a welfare loss of $57.83, which arises becauseH and L
have similar costs but all consumers valueH more than L. Overall a $60 uninsurance penalty leads to a
welfare loss of $41.25 in this setting.
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We report welfare impacts of a mandate in other market settings in Appendix D.3.2. Those results,
which correspond to the cases in Figures 9, show that it is common for an uninsurance penalty to nega-
tively affect welfare. Given the demand and cost primitives we consider, the unintended consequence of
shifting consumers from H to L often more than offsets welfare gains from inducing some consumers
who value insurance more than its cost to become insured. This is true both whenL is a cream-skimmer
andwhenLhas a cost advantage. However, it is not clear that this result would generalize to other settings
with different consumer willingness-to-pay forH vs. L.

D.3.2 Additional Welfare Estimates Corresponding toMarket Share Simulations

Figures A7 and A8 present welfare results corresponding to the market shares in Figures 9 and 10. For a
given parameter settingk, we report herewelfare normalized as follows:Wk = welfare−min(welfare)

max(welfare)−min(welfare) .
We characterize welfare under three different assumptions of the cost of uninsured individuals. The first
baseline assumption is the same as in the body of the text:

CU(s) =
(1− d)CH(s)

1 + φ
+ ω,

where the share of total uninsured health care costs that the uninsured pay out of pocket is d = 0.2, the
assumed moral hazard from insurance is φ = 0.25, and the fixed cost of uninsurance is ω = −97. In
addition to this baseline specification,we also showwelfare resultswherewe assumeuninsured individuals
to have the same cost as they would in H (CU = CH) and where uninsured individuals have no cost
CU = 0.

When the cost of the uninsured is high (CU = CH), a stronger mandate is generally optimal in all
settings. When the uninsured are less costly, however, lower mandates and higher risk adjustment are
generally optimal.

D.3.3 Optimality under Interacting Policies, Further Results

In Figure A9, we present welfare results under interacting extensive margin (mandate) and intensive mar-
gin (risk adjustment α parameter) policies for all settings studied in Figures 9 and 10 in the main text.
These results are similar to the results we report in Section 6 but correspond to different market and pol-
icy settings. We see that the optimal mandate and risk adjustment combination depends on both the
subsidy as well as the cost structure. When theL plan is a cream-skimmer, moderate to strong risk adjust-
ment is preferable in order to induce more consumers to enroll inH vs. L. WhenL has a cost advantage,
however, weaker risk adjustment is preferable. Further, when L is a cream-skimmer, the optimal man-
date for a given level of risk adjustment also varies, with ACA-like subsidies warranting a lower mandate
compared to the fixed subsidy case.

D.4 Empirical Robustness: Varying SimulationModel Assumptions
D.4.1 Empirical Robustness: Relaxing the Vertical Model

The demand primitives from Finkelstein, Hendren and Shepard (2019) were estimated in a setting where
insurance options could be clearly ranked frommost to least desirable for all consumers and whereWTP
was assumed to vary along a single dimension of heterogeneity. As a result, these primitives are consistent
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Figure A7: Welfare with VaryingMandate Penalty (M )

(a) ACA-like subsidy, L cream-skimmer (b) Fixed $275 subsidy, L cream-skimmer

(c) ACA-like subsidy, L cost advantage (d) Fixed $250 subsidy, L cost advantage

Notes: Figure A7 depicts equilibrium relative welfare under varying levels of the mandate penalty. The simulations are the
same as in figure 9. Panels (a) and (b) are results for whenL is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for
when L has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the
market has a fixed subsidy. For each set of simulations, we present relative welfare under three different assumptions about the
social cost of uninsurance. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) wheremax andmin are taken over the
possible mandate penalties within a set of simulations andCU assumptions.

with a vertical demand structure. In effect, this means that throughout ourmain simulations, individuals
are only on the margin between H and L or L and U , never on the margin between H and U (except
in cases where the market “upravels” and nobody chooses L). As the theoretical analysis in Appendix A
shows, allowing for an HU substitution margin that would be present with horizontal differentiation
adds additional terms to the comparative statics defining cross-margin policy effects.

We can investigate how robust our empirical results are to the vertical model by assuming some por-
tion of the population does not value L at all and is thus solely on the margin betweenH and U . To do
this, we perform the following exercise:

Simulation modifications

• From our standard population comprising 60% subsidized low income types and 40% unsubsi-
dized high income types, we assume γ percent of each type do not value L so that they may only
choose betweenH and U
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Figure A8: Welfare with Varying Strength of Risk Adjustment (α)

(a) ACA-like subsidy, L cream-skimmer (b) Fixed $ 275 subsidy, L cream-skimmer

(c) ACA-like subsidy, L cost advantage (d) Fixed $ 250 subsidy, L cost advantage

Notes: Figure A7 depicts equilibrium relative welfare under varying strengths of risk adjustment α. The simulations are the
same as in figure 10. Panels (a) and (b) are results for whenL is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for
when L has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the
market has a fixed subsidy. For each set of simulations, we present relative welfare under three different assumptions about the
social cost of uninsurance. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) wheremax andmin are taken over the
possible α values within a set of simulations andCU assumptions.

• We assume that thisγ portion has the standardWH(s) andWHI
H (s) curves and same sdistribution

as in our baseline simulations

• The remaining1−γ portionof thepopulationhas the standarddemandprimitives andmay choose
betweenH , L, and U as normal

• For a given price bid, PH and PL, and subsidy, we allow both types to choose plans, estimating
profits and equilibrium in the typical way

Impact ofHU margin types on mandate results
In panel (a) of Figure A10 we estimate demand shares with ACA-like subsidies where the L plan is a

pure cream-skimmer and with increasingly larger values of γ (i.e., increasing proportions ofHU margin
types) from 0% up to 20%. For every mandate penalty level, the market allocation to H is everywhere
higher with larger shares of HU margin types. As the uninsurance penalty increases, consumers move
from U to L and from U to H . There is still an unintended shifting of consumers from H to L as
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Figure A9: Welfare under Interacting Extensive and Intensive Margin Policies

(a) ACA-like subsidy, L cream-skimmer (b) Fixed 275 subsidy, L cream-skimmer

(c) ACA-like subsidy, 15% L cost advantage (d) Fixed 250 subsidy, 15% L cost advantage

Notes: Figure A9 depicts equilibrium relative welfare under varying levels of the mandate penalty and strength of risk adjust-
mentα. Panels (a) and (b) are results for whenL is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for whenL has
a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the market has a
fixed subsidy. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) where max and min are taken over all the possible
mandate penalties and risk adjustment strengths within a subsidy and cost setting. For all simulations, we use our baseline
assumption of the social cost of uninsurance,CU = 0.64CH − 97.
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highlighted in Section 5 of the paper, but there are countervailing forces, composed of (1) the shifting of
consumers from U to H , and (2) the fact that the presence of some lower-cost HU margin types in H
lowers the price ofH and the price differential betweenH and L.

On net,DH still declines with a strongermandate with a γ of 10% or 20%. This shows that the empir-
ical “unintended” effect of themandate onDH is robust to some horizontal differentiation. However, the
net decline is increasingly muted as γ increases, and a level of γ much larger than 20% would eventually
result inDH being flat or increasing with the mandate penalty.

Impact ofHU margin types on risk adjustment results
Next, in panel (b) of Figure A10 we estimate demand shares as we vary risk adjustment strength for

the case of fixed subsidies whenL has a 15% cost advantage. Recall that this is the risk adjustment simula-
tion where we saw a trade-off between extensive and intensive margin selection: Stronger risk adjustment
induced consumers to move fromL toH but it also induced some consumers to exit the market and opt
for U .

Similar to our mandate simulations allowing for some consumers to be on theHU margin, we see
that the initial allocations toH absent risk adjustment are higher when we have moreHU margin types
compared to our baseline setting. Because lower cost HU margin types will enroll in H compared to
our baseline types, the cost differential between the two plans is lower with larger shares ofHU margin
types. Consequently, the size of risk adjustment transfers for a given α are lower. However, the level of α
that causes the market to “upravel” toH is the same for all levels of γ. Further, the uninsurance rate also
depends very little on γ, with the U market share at any given level of α being similar across levels of γ.
This indicates that our result that under certain conditions risk adjustment can unintentionally increase
the uninsurance ratewhile simultaneously shifting consumers fromL toH is largely robust to our vertical
model assumption for the market primitives we examine.

D.4.2 Empirical Robustness: Varying ∆WHL

Demand for H critically depends on the incremental willingness to pay for H relative to L, ∆WHL =
WH(s)−WL(s). Below, we see how sensitive our results are to variations in this incremental willingness
to pay. Specifically, we estimate equilibrium under simulations where we hold fixedWL(s) at baseline
but scale ∆WHL(s) by a multiplier ρ ∈ [0.25, 4]:

∆W adj
HL(s) = ∆WHL(s)raw ∗ ρ

W adj
H (s) = WL(s) + ∆W adj

HL(s)

This scaling changes both the level and slope ofWH(s), as seen in Figure A11.
Using our typical counterfactual process, we estimate equilibrium market shares under these modi-

fied primitives for varying levels of the mandate penalty and risk adjustment strength. Simulation results
are presented in Figure A12. We find that under both increased and decreased incremental willingness to
pay (i.e. higher and lower ρ), the general patterns of our counterfactual exercises do not change.

Panel (a) shows that demand for H declines with a larger mandate penalty, except at the very high
scalar ρ = 4. When ρ = 4, the marginal willingness to pay forH relative to L is sufficiently high that an
incrementally highermandate penalty induces individuals to enter themarket and then chooseH overL.
As a result, demand forH is weakly increasing in the mandate penalty throughout the range of penalties
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Figure A10: Relaxing vertical model

(a) Mandate penalty

ACA-like subsidy, Cream-skimming L plan

(b) Risk adjustment

Fixed subsidy = $250, 15% cost advantage L plan

Notes: Panels (a) and (b) of Figure A10 depicts equilibrium market shares ofH ,L, and uninsurance under varying levels of
the mandate penalty and risk adjustment strength (α), respectively. Three separate simulations are presented. The thinnest
line is our baseline simulation where no individuals are on the margin betweenH and uninsurance (γ = 0) while the thickest
lines correspond to when 20% of individuals do not consider L and are thus on the margin betweenH andU (γ = 0.2). All
simulations in panel (a) are for a cream-skimming L plan and ACA-like price linked subsidy and all simulations in panel (b)
are for anL plan with a 15% cost advantage and fixed subsidy of $250 for both plans.
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tested while demand forL only rises for high levels of the mandate. The rise inL only occurs in the range
of mandate penalties where the individuals induced to enter the market are of sufficiently low marginal
willingness to pay that some choose L instead of H . Because this is a relatively small group, the cost
differential betweenH and L remains small.

Panel (b) shows that increasing the strength of risk adjustment has similar effects at all levels of ρ.
Initially, stronger risk adjustment induces consumers to chooseH instead of L. But in all cases, there is
also eventually an unintended increase in the uninsurance rate. The effect ofmodifying ρ is that the shifts
in market share (both from L toH and from L to U ) occur at different levels of α with shifts occurring
at lower levels of α for higher levels of ρ. That is, when marginal willingness to pay forH relative to L is
higher, a lower level of risk adjustment is needed to induce changes in market shares.
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Figure A11: ScaledWTPH

(a) Low income demand

(b) High income demand

Notes: Panels (a) and (b) of A11 depicts willingness to pay curves for high and low-income consumers, respectively, under
various scaling factors ρ of∆W adj

HL = ρ∆WHL. The thickest lines are for high marginal WTP forH relative toL. Baseline is
for ρ = 1. Willingness to pay forL is the dashed line and remains unmodified.
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Online Appendix

Figure A12: Scaling ∆WTP

(a) Mandate penalty

ACA-like subsidy, Cream-skimming L plan

(b) Risk adjustment

Fixed subsidy = $250, 15 % cost advantage L plan

Notes: Figure A12 showsmarket shares forH ,L, and uninsurance under the different scaled∆WTP curves depicted in figure
A11. Panel (a) depicts shares for different mandate penalties under an ACA-like price-linked subsidy and cream-skimming L
plan (∆CHL = 0). Panel (b) depicts shares for different strengths of risk adjustment (α) under a fixed subsidy and a 15% L
plan cost advantage. As in figure A11, thicker lines correspond tomarket shares whenmarginal willingness to pay forH relative
toL is set higher (higher ρ).
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